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SUMMARY

The proportional likelihood ratio model introduced in Luo & Tsai (2012) is adapted to explicitly model
the means of observations. This is useful for the estimation of and inference on treatment effects, partic-
ularly in designed experiments and allows the data analyst greater control over model specification and
parameter interpretation.
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1. INTRODUCTION

Luo & Tsai (2012) introduced proportional likelihood ratio models as an extension of density ratio
(e.g., Fokianos et al., 2001) and biased sampling models (e.g., Vardi, 1985). While these models have
proved to be useful in many applied statistical settings, for regression problems, especially those pertaining
to designed experiments, treatment effects as measured by contrasts in the mean response have a more
immediate interpretation. In this note, we adapt the proportional likelihood ratio model to explicitly model
the observation means. We focus particularly on the multi-way layout, noting that data from designed
experiments in agriculture, engineering and biometry often come in this form.

The multi-way layout has K < ∞ groups or subpopulations, where each group k is defined by levels
of a q-vector Xk of covariates. Within group k, a sample of nk independent and identically distributed
observations {Yk1, . . . , Yknk } is drawn from a distribution Fk that depends only on Xk . Assume each Fk has
a density dFk with respect to some common dominating measure. A proportional likelihood ratio model
parameterized via mean regression in the multi-way layout is then defined by two components. First, there
is an explicit mean model,

E(Yki | Xk) = η(X T
kβ), (1)

where η is a user-specified inverse link function and β is a q-vector of unknown parameters. Secondly,
there is an assumption that the distributions Fk are related via an exponential tilting of some reference
distribution F . More precisely, for k = 1, . . . , K ,

d Fk(y) = exp(bk + θk y) d F(y), (2)

where

bk = − log
∫

exp(θk y) d F(y) (3)
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are normalizing constants and, in order to satisfy (1), each tilt θk ≡ θk(β, F) is implicitly defined as the
solution to the mean constraint

η(X T
kβ) =

∫
y exp(bk + θk y) d F(y). (4)

In other words, each density d Fk is an exponential tilt of some reference density d F , with the amount of
tilting indirectly determined by the mean η(X T

kβ) of group k.
The main difference between models (1)–(4) and the proportional likelihood ratio model of Luo & Tsai

(2012) is that the linear predictor X T
kβ appears explicitly in the mean model (1) and only indirectly in

the tilts θk in the distributional model (2). It is this mean specification that distinguishes our model from
proportional likelihood ratio models, density ratio models and biased sampling models.

For our model to be well-defined, we require the Laplace transform of F to exist in a neighbourhood of
the origin. For identifiability, we may use the convention bK = θK = 0, so that F coincides with FK . Other
properties of this model can be found in Rathouz & Gao (2009). In that paper, some favourable results
were obtained for the special case of polytomous responses. In contrast, this note deals with the multi-way
layout where covariates take on a finite number of levels, quantitative or categorical, but the response space
is arbitrary.

When the reference distribution F ≡ FK is specified, the model reduces to a standard generalized lin-
ear model and the loglikelihood function based on (1)–(4) can be used to derive maximum likelihood
estimators β̂MLE and to carry out likelihood-based inferences on β in the usual way. For example, if d FK

is a Gaussian kernel, then normal linear regression is recovered; if d FK is a Poisson kernel, then Poisson
regression is obtained. Of course, such estimators will typically be inefficient and likelihood-based infer-
ences will be biased unless the specified FK coincides with the true underlying error distribution. The
main advantage of adopting the exponential tilt perspective of (1)–(4) is that it lends itself immediately to
a semiparametric extension that obviates the need to specify, and possibly misspecify, an error distribution.
The idea is to leave the reference distribution FK unspecified, instead treating it as an infinite-dimensional
parameter in the loglikelihood function

l(β, FK ) =
K∑

k=1

nk∑
i=1

{log d FK (Yki ) + bk(β, FK ) + θk(β, FK )Yki },

where bK = θK = 0 and for k = 1, . . . , K − 1, bk(β, FK ) and θk(β, FK ) are the joint solutions to equations
(3) and (4). Our approach is thus a semiparametric extension of generalized linear models.

2. PROFILE EMPIRICAL LIKELIHOOD

A variety of parametric and nonparametric model specifications for FK are possible; here we construct
an empirical likelihood (Owen, 2001) by replacing the density d FK in the loglikelihood by nonnegative
probability masses {pki : i = 1, . . . , nk, k = 1, . . . , K } on the observed support {Yki }. The resulting empir-
ical loglikelihood function is

l(β, p) =
K∑

k=1

nk∑
i=1

(log pki + bk + θkYki ),

where, for k = 1, . . . , K , each pair (bk, θk) satisfies jointly the normalization and mean constraints

1 =
K∑

j=1

n j∑
i=1

p ji exp(bk + θkY ji ), (5)

η(X T
kβ) =

K∑
j=1

n j∑
i=1

Y ji p ji exp(bk + θkY ji ). (6)
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Equations (5) and (6) are empirical analogues of the normalization and mean constraints (3) and (4). By
setting bK = θK = 0 for identifiability, the probability masses {pki } have the interpretation of a multinomial
distribution with mean η(X T

K β) on the observed support. For the mean equation (6) to be solvable, β must
satisfy Ymin � η(X T

kβ) � Ymax for all k, where Ymin = min{Yki : i = 1, . . . , nk, k = 1, . . . , K } and Ymax =
max{Yki : i = 1, . . . , nk, k = 1, . . . , K } are the minimum and maximum observations, respectively. This is
commonly referred to as the convex hull condition in the empirical likelihood literature. For β outside this
range, the convention is to set the empirical loglikelihood to −∞; see Owen (2001, pp. 209–10) for more
discussion.

A profile empirical loglikelihood for β can then be defined by

lp(β) = sup
p

l(β, p),

where the supremum is taken over all multinomial distributions on the observed support with mean
η(X T

K β). The maximum empirical likelihood estimator for β is then defined as β̂ = argmaxβlp(β).

If β̂ satisfies the convex hull condition strictly, that is, if Ymin < η(X T
k β̂) < Ymax for all k, and the tilts

θ1, . . . , θK−1 remain finite, then the corresponding maximum empirical likelihood estimate of p, denoted
p̂ = p̂(β̂), exists and is unique, by an argument similar to that in Vardi (1985). In this case, we can define
a maximum empirical likelihood estimator of the reference distribution FK (y) by

F̂K (y) =
K∑

k=1

nk∑
i=1

p̂ki 1(Yki � y). (7)

3. MAIN RESULTS

Let n = n1 + · · · + nK denote the total sample size. In the following asymptotic considerations, let the
sample size ratios ρk = nk/n → ρ∗

k as n → ∞, where 0 < ρ∗
k < 1 for all k = 1, . . . , K .

In Proposition 1, we establish the consistency and asymptotic normality of the maximum empirical
likelihood estimator for β, and show that its asymptotic variance has a negative inverse profile Hessian
representation. Proposition 1 also justifies Wald tests and confidence regions for β, provided an accurate
estimate of the profile Hessian can be obtained.

PROPOSITION 1. The equation 0 = dlp(β)/dβ admits a solution β̂ that is consistent for the

true value β∗. Furthermore, H 1/2
P (β̂ − β∗) → N (0, I ) in distribution as n → ∞, where HP =

−E{d2lp(β
∗)/dβdβT}.

Likelihood-based inferences are often preferred to Wald-type methods because of asymptotic optimality
properties. Another, more practical, advantage is that likelihood-based methods do not require an estimate
of the asymptotic variance of β̂. In Proposition 2, we show that the profile empirical loglikelihood behaves
asymptotically like a true loglikelihood for the testing of hypotheses and construction of confidence regions
for β. Recall that β is a q × 1 vector.

PROPOSITION 2. Under H0 : β = β∗, 2{lp(β̂) − lp(β
∗)} → χ2

q in distribution as n → ∞.

A finite-sample adjustment can be obtained by comparing 2{lp(β̂) − lp(β
∗)} to a qFq,n−q distribution

instead. This is justified because qFq,n−q = χ2
q + oP(1) in distribution.

General composite hypotheses H0 : Mβ∗ = γ for a given matrix M and vector γ can be reparameterized
into the following form. Write β = (β(1), . . . , β(q))T componentwise and let B0 be a subspace of R

q given
by B0 = {β : β(1) = · · · = β(r) = 0} for some r � q. Let β̂0 = argmaxβ∈B0

lp(β) be the maximum empirical
likelihood estimator over B0 and β̂ be the unconstrained maximum empirical likelihood estimator over R

q .
An analogous result for composite hypotheses is then given by the following corollary.

COROLLARY 1. Under H0 : β ∈ B0, 2{lp(β̂) − lp(β̂0)} → χ2
r in distribution as n → ∞.
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Again, a finite-sample adjustment can be obtained by comparing the profile empirical loglikelihood
ratio to an rFr,n−q distribution instead.

A fundamental issue in generalized linear models is the selection of an appropriate error distribution for
the data. To this end, consistent estimation of the underlying error distribution is justified by Proposition 3.

PROPOSITION 3. As n → ∞, F̂K exists with probability tending to 1 and n1/2{F̂K (y) − F∗
K (y)} →

N {0, W (y)} in distribution, where F∗
K is the true reference distribution and W (y) = W (y;β∗, b∗, θ∗, F∗

K )

is some covariance function.

Proofs of Propositions 1 and 2 are outlined in the Supplementary Material. The proof of Corollary 1 is
straightforward and is omitted. Proposition 3 is analogous to Theorem 1 of Qin & Lawless (1994) and its
proof is omitted.

4. SIMULATION STUDY

To examine the performance of the proposed method in practice, we conducted a limited simulation
study using small to medium sample sizes, looking at Type I errors under the null hypothesis. Given
the level of generality and flexibility of our proposed method, the only truly comparable approach from
the existing literature appears to be quasilikelihood coupled with a sandwich estimator of variance. Nei-
ther method requires a correctly specified variance function and both are guaranteed to be asymptotically
correct, although in smaller samples, a correctly specified working variance model should work better
than an incorrect one. As a benchmark, we also looked at the standard Wald test from a correctly specified
parametric model.

First, a series of simulations was carried out using continuous data simulated from a 2 × 2 additive
mean model with normal errors,

Y jk,i ∼ N (μ0 + α1 I( j=2) + α2 I(k=2), σ
2) ( j, k = 1, 2; i = 1, . . . , nrep),

with intercept μ0 = 2·304, main effects α1 = −0·012, α2 = 0·750, error standard deviation σ = 1 and num-
ber of replicates nrep = 2, 4 and 8. The parameter values were chosen such that the simulated values and
covariate effects were similar to that of the chemical dataset from Myers et al. (2010, p. 74). For each
configuration, 10 000 replicate datasets were simulated. The average R2 of the simulated datasets was
around 50%.

A second series of simulations was performed using nonnegative continuous data simulated from a
2 × 2 log-additive mean model with gamma errors,

Y jk,i ∼ Ga{μ jk = exp(μ0 + α1 I( j=2) + α2 I(k=2)), ν} ( j, k = 1, 2; i = 1, . . . , nrep),

with mean parameters μ0 = 5·414, α1 = 0·0617, α2 = −0·15, shape parameter ν = 100 and number of
replicates nrep = 2, 4 and 8. The parameter values were chosen such that the simulated values and covariate
effects were similar to that of the resistivity dataset from Myers et al. (2010, p. 221). Again, for each
configuration, 10 000 replicate datasets were simulated.

For each simulated dataset, the empirical likelihood ratio test of Corollary 1, referred to as an F1,n−4

distribution, was used to test for an interaction term. The Type I errors were compared with those obtained
from using the Wald test from a quasilikelihood plus sandwich estimation approach, referred to as a tn−4

distribution. The quasilikelihood plus sandwich estimation approach correctly assumes a constant work-
ing variance function V (μ) = σ 2 for normal data and a quadratic working variance function V (μ) = φμ2

for gamma data, but allows for possible misspecification through a sandwich estimator of variance.
Computations were carried out using the MINOS optimizer in AMPL (Fourer et al., 2003).

The simulation results are displayed in Table 1. We see that in the smallest scenario of only two repli-
cates, both our proposed method and quasilikelihood with sandwich estimation performed quite poorly
compared with a correctly specified Wald test. This should not be surprising, however, since the mean
model under the alternative has four parameters, leaving us with only four degrees of freedom to estimate
the reference distribution or variance function. This is a formidable task. However, by four replicates, the
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Table 1. Type I errors in a 2 × 2 layout with normal additive and gamma log-additive data

Normal Gamma
Nominal Type I error (%) Nominal Type I error (%)

1 5 10 1 5 10

Two replicates
ELRT (F1,4) 0·6 7·1 17·8 0·4 4·9 16·3
QL + SW (t4) 3·2 13·2 21·7 3·5 12·5 20·2
Wald test (t4) 0·9 4·8 10·2 1·3 5·4 10·5

Four replicates
ELRT (F1,12) 0·9 6·6 13·9 1·4 7·3 13·4
QL + SW (t12) 1·8 8·5 15·2 2·3 8·8 14·4
Wald test (t12) 1·1 5·3 10·0 1·2 5·7 10·5

Eight replicates
ELRT (F1,28) 0·9 5·9 11·1 0·9 5·6 10·9
QL + SW (t28) 1·4 6·8 11·7 1·4 6·4 11·8
Wald test (t28) 0·9 5·0 9·9 0·9 4·9 9·3

ELRT, empirical likelihood ratio test; QL + SW, quasilikelihood with sandwich estimator of variance.

empirical likelihood ratio test was reasonably well calibrated by the F distribution for both normal and
gamma data and proves to be quite useable in practice. Furthermore, with the possible exception of two
replicates, the empirical likelihood ratio test outperformed the Wald test based on quasilikelihood with a
sandwich estimator of variance. The simulation standard errors for 1, 5 and 10% Type I errors are 0·1, 0·2
and 0·3%, respectively.

Empirical likelihood methods typically have larger Type I errors than their nominal values and the
convergence is usually from above (e.g., DiCiccio et al., 1991). The observed over-conservativeness at
lower significance levels for small sample sizes here is therefore unexpected, but may be due to numerical
inaccuracies in the algorithm used in fitting the model, especially for iterations near the boundary of the
convex hull. We tried to deal with this by using an additional stability parameter that penalizes iterations
that are too close to the convex hull boundary. As with all empirical likelihood methods, the convex hull
issue diminishes as sample size increases.

5. WORSTED YARN EXPERIMENT DATA ANALYSIS

An experiment investigating the effects of three factors, x1, length, x2, amplitude and x3, load, on the
cycles-to-failure, y, of worsted yarn is described in Box & Cox (1964), also in Myers et al. (2010, p. 234).
Each factor took on three quantitative values in a 33 factorial design, with the values of each factor nor-
malized and coded as −1, 0 and 1.

Myers et al. (2010) noted that the cycles-to-failure times in this experiment were nonnegative dis-
crete random variables expected to have an asymmetric distribution with a long right tail. Such data
are frequently modelled by exponential, Weibull, lognormal or gamma distributions. Ultimately, the
data were analysed using a log-linear mean model with a gamma distribution, although no initial jus-
tification was provided as to why this error distribution is appropriate. The fitted mean model assum-
ing gamma errors is μ̂ = exp(6·349 + 0·843x1 − 0·631x2 − 0·385x3), with estimated scale parameter
r̂ = 31·621.

In contrast, data analysis using our proposed method does not require any specification of an underlying
error distribution; instead, we estimate the error distribution and the mean model parameters simultane-
ously from the data. Our fitted mean model is μ̂ = exp(6·399 + 0·798x1 − 0·599x2 − 0·402x3), which is
very similar to that of using a gamma model.

In Table 2, we compare 95% confidence intervals for the coefficients based on the empirical likeli-
hood ratio test of Corollary 1 to those obtained from standard Wald tests for gamma regression. Confi-
dence intervals based on our approach are not necessarily symmetric around their point estimates, unlike
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Table 2. Worsted yarn experiment: estimated coefficients and confidence intervals

Gamma model Proposed method
(Wald-based 95% CI) (ELRT-based 95% CI)

x1 (length) 0·843 (0·756, 0·929) 0·798 (0·734, 0·898)

x2 (amplitude) −0·631 (−0·718, −0·545) −0·599 (−0·695, −0·528)

x3 (load) −0·385 (−0·472, −0·298) −0·402 (−0·471, −0·268)

CI, confidence interval; ELRT, empirical likelihood ratio test.
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Fig. 1. Worsted yarn experiment:
quantile-to-quantile plot of the maxi-
mum empirical likelihood estimate F̂

against the gamma distribution.

Wald intervals. Also, neither method produces uniformly narrower confidence intervals. Overall, however,
our proposed method provided a very similar fit to the data in terms of estimation and inferences on the
mean model.

In Fig. 1, we plot the quantiles of the estimated error distribution F̂ given by (7) against the quan-
tiles of the gamma distribution function with scale = 31·621 and mean 861·3, the same as that of F̂ . The
Kolmogorov–Smirnov statistic for comparing the two distributions is approximately 0·25 on 23 degrees
of freedom, giving a scaled statistic of 1·2. Both the plot and the Kolmogorov–Smirnov statistic suggest
that the gamma distribution is an acceptable approximation to the data. Our approach provides a diagnos-
tic and justification for the gamma log-linear model fitted by Myers et al. (2010), without relying on the
correctness of the gamma response model for inferences on regression coefficients.

6. DISCUSSION

Empirical likelihood approaches for generalized linear and quasilikelihood models have been
investigated before in the framework of general estimating equations (e.g., Kolaczyk, 1994). These meth-
ods typically construct likelihood functions that do not correspond to any explicit probability model for
the data. In contrast, the proportional likelihood ratio approach in this note assumes an explicit proba-
bility model for the data, up to an unspecified infinite-dimensional distribution parameter, which is then
estimated via empirical likelihood. The theoretical and simulation results suggest that the proposed method
performs quite favourably compared with existing methods. Our new class of semiparametric models can
also be used for model selection and diagnostics within the classical generalized linear model framework.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes an outline of the proofs of Proposi-
tions 1 and 2.
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