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Abstract

Background/Aims—OQObesity is a major contributor to the global burden of chronic disease and
disability, though current knowledge of causal biologic underpinnings is lacking. Through the
regulation of energy homeostasis and interactions with adiposity and gut signals, the brain is
thought to play a significant role in the development of this disorder. While neuroanatomic
variation has been associated with obesity, it is unclear if this relationship is influenced by
common genetic mechanisms. In this study, we sought genetic components that influence both
brain anatomy and body mass index (BMI) to provide further insight into the role of the brain in
energy homeostasis and obesity.

Methods—MRI images of brain anatomy were acquired in 839 Mexican American individuals
from large extended pedigrees. Bivariate linkage and quantitative analyses were performed in
SOLAR.

Results—Genetic factors associated with increased BMI were also associated with reduced
cortical surface area and subcortical volume. We identified two genome-wide quantitative trait
loci that influenced BMI and ventral diencephalon volume, and BMI and supramarginal gyrus
surface area, respectively.

Conclusions—This study represents the first genetic analyses seeking evidence of pleiotropic
effects acting on both brain anatomy and BMI. Results suggest that a region on chromosome 17
contributes to the development of obesity, potentially through leptin-induced signaling in the
hypothalamus, and that a region on chromosome 3 appears to jointly influences food-related
reward circuitry and the supramarginal gyrus.

Correspondence should be addressed to: Dr. Joanne E. Curran, Associate Scientist, Department of Genetics, Texas Biomedical
Research Institute, P.O. Box 760549, San Antonio, Texas 78245-0549 USA, Ph: +1 210 258 9828, Fax: +1 210 258 9444,
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Obesity is a major contributor to chronic disease and disability worldwide. In the US alone,
one third of the adult population is obese, and more than two thirds are overweight or obese.
Youth prevalence has tripled in the past 10 years, with 17% of children and adolescents now
considered obese [1,2]. In 2009 only two US states had an obesity prevalence rate of less
than 20% and a staggering 33 states had prevalence rates greater than 25% [1]. Of major
importance for providing insight into this epidemic is the characterization of a poorly
understood genetic component to disease susceptibility. Obesity-related phenotypes are 40%
to 70% heritable, [2,3,4], yet risk genes remain elusive. The latest update of the Obesity
Gene Map reports 127 candidate genes identified for common human obesity. However only
22 of these genes (or more accurately, gene regions) are supported by multiple studies.
Furthermore, the established body mass index (BMI) loci detected from large-scale genome-
wide association analyses jointly account for <2% of inter-individual variation in BMI [5,6].

Several of the most strongly associated and replicated gene regions for obesity including
FTO, BDNF, SH2B1 and NEGR1 have also been shown to influence aspects of neuronal
function, particularly in the hypothalamus, reinforcing the view that obesity is in part a
brain-related disorder [6]. Further supporting a role for a significant link between the brain
and obesity is the increased risk of brain atrophy, cognitive dysfunction and dementia later
in the life of obese individuals. In an imaging study of 94 elderly subjects, Raji and
colleagues showed that higher BMI was significantly correlated with reduced grey matter
and white matter volumes throughout the brain, and that atrophy (indicating an increased
risk for dementia) was evident in people with greater percentages of body fat tissue. Similar
results were observed for individuals with high fasting insulin levels and type 2 diabetes [7].
A third imaging study of 50 adults demonstrated that increased BMI is associated with
axonal and/or myelin abnormalities in frontal white matter and neuronal injury in frontal
grey matter [8]. In a fourth study by Ho and colleagues, subjects with higher BMI had
significantly lower regional brain volumes and structural brain atrophy was observed in
carriers of at least one copy of a risk allele correlated with a marker in the FTO gene,
although it still remains to be established that FTO is the underlying causal gene [9].
Additionally, individuals carrying this risk allele showed brain tissue deficits in the frontal
and occipital lobe regions; the same areas associated with brain volume reductions in
subjects with high BMI. These results suggest an underlying common susceptibility variant
for obesity that was independently associated with brain atrophy [9]. Together, these
neuroanatomical studies demonstrate a consistent link between increasing obesity and brain
atrophy and suggest that this relationship may be mediated by genetic factors. However,
formal genetic experiments to implicate pleiotropy between obesity and neuroanatomic
phenotypes have not been reported.

The current study represents an attempt to examine the potential pleiotropic basis of obesity
and brain structural variation in a human population. Using an extended pedigree design, we
examine the evidence for such shared genetic influence and attempt to exploit it to identify
likely genomic locations harboring causal loci.

Research Design and Methods

Human Subject Selection

All subjects included in this analysis were Mexican American individuals from the Genetics
of Brain Structure and Function Study (GOBS) that were originally recruited to participate
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in the San Antonio Family Heart Study (SAFHS) [10] or the San Antonio Family
Gallbladder Study [11]. At baseline, the SAFHS included 1,431 individuals in 42 extended
families. Ascertainment occurred by way of a single adult Mexican American proband
selected at random, without regard to presence or absence of disease and almost exclusively
from Mexican American census tracts in San Antonio. To ensure large, multigenerational
pedigrees, probands had to have at least 6 age-eligible offspring and/or siblings living in San
Antonio. All first, second, and third degree relatives of the proband and of the proband's
spouse, aged 16 years or above, were eligible to participate in the study. The SAFGS cohort
currently includes 907 individuals from 39 large Mexican American families. Recruitment
was similar to that of the SAFHS, with probands recruited from a random sample of
Mexican American individuals, but in the SAFGS probands were selected for type 2
diabetes [12]. All 1st, 2nd, and 3rd degree relatives of the proband, =18 years of age were
invited to participate. The near identity of the ascertainment designs for SAFHS and SAFGS
has been confirmed via comparisons of all diabetes- and obesity-related phenotypes.

For the analyses herein, we utilized 839 GOBS subjects [13] from whom we have acquired
MRI-based anatomical brain measures and BMI as a measure of obesity. Our sample is
composed of 514 females with an average age of 43.0 £ 14.2 years and 325 males with an
average age of 43.7 = 15.1 years from 57 extended families. Of these families, 19 represent
large extended pedigrees, each with 18 or more participants (max pedigree size = 125).

All participants gave written informed consent. The Institutional Review Boards of the
University of Texas Health Science Center at San Antonio and Yale University approved all
protocols.

MRI Acquisition and Processing

Magnetic resonance images were acquired on a Siemens 3T TIM Trio scanner with an 8-
channel head coil in the Research Imaging Institute, University of Texas Health Science
Center at San Antonio. The anatomic imaging protocol included seven T1-weighted 3D
Turbo-flash scans with an adiabatic inversion contrast pulse and the following parameters:
TE/TR/TI = 3.04/2100/785 ms, flip angle=13°, and 800 micron isotropic voxel resolution.
These images underwent a retrospective motion correction [14] and were averaged to
achieve optimal gray/white matter contrast for each subject.

Anatomic (gray matter) image processing was based on surface representations of the cortex
using FreeSurfer [15,16] as implemented in our group [17]. First, images underwent
inhomogeneity corrections and intensity normalization, linear alignment to a common atlas
space, and were skull-stripped. Next, white matter voxels were identified and the borders
between gray and white matter were defined. Hemispheres were separated and a tessellated
mesh was built around white matter voxels. This mesh was smoothed and topological
defects were corrected to accurately model the white matter surface. The gray matter (pial)
surface was generated by expanding the white matter surface to the gray matter/CSF
boundary while constraining the smoothness of the surface, resulting in a continuous
polygonal tessellations spanning the cortex. Surfaces were visually inspected and manually
edited if necessary. The pial surface was inflated into a sphere, registered to an atlas, and
parcellated into regions of interest defined by the Desikan atlas [18]. Cortical surface area
was calculated as the sum of the areas of each tessellation falling within a given region, in
the subject’s native space. Subcortical regions were parceled using analogous procedures
and volumetric measures were calculated accordingly, also in the subject’s native space.
FreeSurfer measurements have been validated against histological [19] and manual
measurements [20,21].
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High Density SNP Typing

More than one million SNPs, using the Illumina HumanHap550 BeadChip (in tandem with
the supplemental HumanHap450S BeadChip) or the 1M BeadChip were analysed. These
SNPs capture ~90% of the common variation in humans. Raw genotype data were processed
using standard quality control procedures, and variants were checked for consistency of
Mendelian transmission, an advantage of family-based designs. Missing genotypes were
imputed using the pedigree-exploiting procedure developed by Burdick and colleagues [22]
as implemented in MERLIN [23].

Quantitative Genetic Analysis

Heritability of each trait was estimated using SOLAR [24]. SOLAR employs variance
component methods to analyse family-based quantitative data by partitioning the observed
covariance into genetic and environmental components. The demographic covariates sex,
age, age? and their interactions were included in all genetic analyses. Prior to analysis, each
phenotype was transformed to approximate normality using a direct inverse Gaussian
transformation.

Genetic correlation represents the common genetic covariance between two traits, referred
to as pleiotropy [25]. Bivariate quantitative genetic analysis was used to estimate the genetic
(pg) and environmental (pe) correlations between each potential obesity-related and brain-
related phenotype. The phenotypic correlation (pp), which quantifies the overall relationship
between the two traits, can be derived from the genetic and environmental correlations as pp
= pgV(h?eh?) + peV[(1-h%)(1-h%)]. These parameters were estimated by jointly utilizing all
available familial relationships with a multivariate normal threshold model for combined
dichotomous and continuous traits [25,26].

Results from bivariate quantitative analyses of obesity and brain measures were used to
assess the overall potential for identifying overlapping influence of causal genetic variants
across these two major phenotypic domains. Specifically, we assessed the endophenotypic
value of quantitative brain measures vis-a-vis obesity using the Endophenotype Ranking
Value (ERV), which represents the standardized genetic covariance between trait and illness
[27]. Mathematically, the ERV is defined as the absolute value of the product of the square-
root of illness heritability (h%), the square-root of the endophenotype heritability (h2y), and
their genetic correlation (pg): ERVje = |\/h2i\/hzepg|, where heritability is the portion of
phenotypic variance accounted for by additive genetic variance (hZ:ozg/ozp). In this context,
a brain-based endophenotype is both heritable and genetically correlated with obesity.
Therefore, ranking endophenotypes served as an a priori theoretical mechanism for placing
focus on the action of gene sets that affect both brain and susceptibility to obesity.

The ERV varies between 0 and 1, where higher values indicate that the endophenotype and
illness are more strongly influenced by common genetic factors. All brain imaging traits
were ranked for relevance to obesity using this approach to identify those pairs of traits that
showed the most significant evidence for being jointly influenced by common gene sets.
Only these pairs of traits underwent QTL localization and identification analyses.

Bivariate QTL Localization Analysis of Brain-Related Endophenotypes and Obesity

Quantitative trait linkage analysis was used to identify specific chromosomal regions
harboring quantitative trait loci (QTLSs) that influence both brain and obesity phenotypic
domains simultaneously. Bivariate linkage analysis exploits the genetic covariance between
two traits to improve the power to localize QTLs and to detect QTL-specific pleiotropic
effects [26]. In the current experiment, we perfomed bivariate linkage analyses (again using
the SOLAR package) between cortical surface area or subcotial volume measures selected
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via the ERV analysis and BMI to search for chomorsomal regions that influnce both
neuroanatomic variability and body composition. More specifically, after addressing (by
blanking, recalling, or retyping) mistyping errors identified using Simwalk 1l [28], genotype
data were used to compute maximum likelihood estimates of allele frequencies. Matrices of
empirical estimates of identity-by-descent (IBD) allele sharing at points throughout the
genome for every relative pair were computed using the Loki package [29] based on a
selection of approximately 15,000 common SNPs that were in linkage equilibrium (define as
r2 < 0.2) with one another. SNPs are only used for their combined information on IBD
status; we do not test individual SNPs. We used high-resolution chromosomal maps
provided by deCODE genetics [30] to project physical genomic distances onto
recombination-relevant genetic distances. For the localization of QTLs, we performed both
univariate and bivariate variance components linkage analyses. All QTL analyses included
covariates for age, age?, sex and their interactions. Bivariate LOD scores were adjusted for
additional degrees of freedom incurred, making them directly comparable to traditional
univariate LOD scores. Once a genome-wide significant localization was made, formal
single degree of freedom likelihood ratio tests for pleiotropy were performed to test the
specific hypothesis that a QTL at that location influenced a given brain measure and BMI
risk jointly.

We employed the theoretical method of Feingold et al [31] to calculate genome-wide
significance levels for our linkage analyses. For our pedigree structure (which determines
the average non-independence between IBD vectors involving approximately 388 effective
tests), genome-wide significance requires a LOD score of 2.9 (nominal p-value = 1.3x1074)
while suggestive evidence (i.e., expected to occur only once by chance in a genome scan)
requires a LOD of 1.68 (nominal p = 0.0027). We do not additionally correct for the testing
of multiple phenotypes since each bivariate analysis also includes BMI and represents a
separate hypothesis with prior support from our ERV analyses.

Heritability of BMI and Brain Phenotypes

Using the complete extended pedigree information, the heritability of BMI in the Mexican
American sample was estimated to be 0.565 + 0.057 (p = 1.8 x 10730), indicating a
substantial genetic component and suggesting it is reasonable to search for genes responsible
for the observed variance. As we have previously shown, all of our cortical surface area and
subcortical volumes are significantly heritable (Tables 1 and 2) [32].

Bivariate Correlations between BMI and Cortical Surface Area

We performed bivariate quantitative genetic analyses examining the phenotypic, genetic and
environmental correlations between BMI and brain traits for the 839 GOBS participants
with available neuroanatomic images (Table 1). Genetic correlations were typically negative
(Figure 1) suggesting the same genetic factors that increase BMI act to reduce cortical
surface area. The strongest genetic correlations were observed in mesial and lateral
temporal, frontal, occipital and parietal lobes and the insular cortex, including the following
gyri: fusiform (pg= —0.385), middle temporal (pg= -0.321), inferior parietal (pg= -0.376),
lateral orbitofrontal (pg= —0.293), and supramarginal (pg= —0.293). In contrast to the genetic
correlations, environmental correlations were typically positive, suggesting a potential
dynamic feedback mechanism between the genetic component and an environmental
stressor.

A very similar pattern of results was observed for subcortical volumes (Table 2). The
strongest genetic correlations between BMI and subcortical regions included the ventral
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diencephalon (pg=—0.274) and accumbens area (pg=—0.255), with each region showing
positive environmental correlations (pe=0.191 and p=0.109, respectively). The ventral
diencephalon is primarily composed of the hypothalamus, which regulates food intake and is
strongly associated with obesity [6].

Endophenotype Ranking

To select a subset of brain traits for linkage analyses, we utilized the Endophenotype
Ranking Value (ERV) approach to select neuroanatomic traits that likely share causal
mechanisms with BMI [27]. The top 10 ranked ERV statistics for brain traits and BMI are
presented in Table 3. After this objective prioritization, bivariate linkage analysis was run on
each trait combination to search for specific genome locations that harbor pleiotropic QTLs
influencing brain and obesity.

Bivariate Linkage Analysis

Two significant QTLs and a number of suggestive regions were observed after performing
bivariate linkage on the top 10 ERV-ranked brain traits and BMI. We identified a QTL with
a LOD of 3.27 for BMI and ventral diencephalon on chromosome 17p13.1. This
chromosomal region was previously implicated in obesity and related disorders [33,34], and
the ventral diencephalon directly supports the regulation of food intake. Another QTL, with
a genome-wide significant LOD of 3.26 on chromosome 3¢22.1, was identified for BMI and
the surface area of the supramarginal gyrus. Both the genomic region [35] and brain region
[36] were independently associated with obesity in previous reports. Thus, our joint analyses
of brain structure and obesity build on these findings and provide unequivocal evidence for
two location-specific pleiotropic QTLs. In addition, we observed a number of genome-wide
suggestive scores (LOD>1.68; Table 3), including a locus at chromosome 6¢13-16 that
included the surface area of the fusiform gyrus (LOD=2.2, 6¢13), the lateral orbitofrontal
gyrus (LOD = 1.9, 6g16) and the rostral middle frontal gyrus (LOD = 2.0, 6g14).

Discussion

This is the first report to quantify shared genetic factors of brain anatomy and obesity and
localize significant pleiotropic influence. Specifically, we performed bivariate linkage
analyses with a subset of brain traits and BMI to localize two genome-wide significant
QTLs, on chromosomal regions were 3g22.1 and 17p13.1. Region 17p13.1 harbors genes
that pleiotropically influenced ventral diencephalon volume and BMI. Meyre and colleagues
reported suggestive evidence for linkage in this region for childhood obesity [37].
Additionally, strong evidence for a QTL influencing plasma leptin levels (LOD = 5) [34]
and marginal evidence for linkage with both hip and waist circumference (LOD=1.1) was
also reported in this region [33]. The second QTL we identified was 3922.1, which
significantly influenced the surface area of the supramarginal gyrus and BMI. This genomic
region was previously associated with obesity by Wu and colleagues, who found significant
evidence for linkage with BMI (LOD 3.45) in a sample of African Americans [35]. Our
results identify regions of the genome that are directly related to both brain structure and
obesity. Therefore, the same causal biologic pathway likely influences the underlying
function of these brain regions and the outcome measure of obesity.

The ventral diencephalon houses the hypothalamus, which is involved in the regulation of
eating tendencies. Although feeding behavior is complex, the lateral hypothalamus is
commonly referred to as the “feeding center” of the brain because animal models show that
stimulation increases food intake yet a lesion inhibits motivation to feed [38]. This suggests
functional plausibility for our finding on chromosome 17. Furthermore, leptin, which is
secreted by fat cells, triggers signalling from neurons of the arcuate nucleus to the
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paraventricular nucleus, lateral hypothalamus and lateral horn of the spinal cord. Depending
on the particular type of peptide carried by these neurons, metabolism is increased (or
decreased), along with sympathetic tone, while feeding is decreased (or increased,
respectively). Additionally, neurons containing these peptides project to widespread areas of
the cortex and may be involved in other components of feeding strategies [38]. Therefore,
our findings and those of Kissebah and colleagues [34] provide strong circumstantial
evidence that the region identified on chromosome 17 contributes to the development of
obesity through leptin-induced signaling in the hypothalamus.

The supramarginal gyrus has been linked to brain function differences in overweight and
healthy weight individuals. Frankort and colleagues reported that both left (p = 0.00025) and
right (p = 0.00083) gyri, amongst other regions, showed significant activation differences in
response to passively viewing versus imagining the taste of high-calorie food pictures [36].
This paradigm was designed to depict reward related brain activity. Similarly, Rothemund
and colleagues reported that, in obese compared to normal-weight women, viewing high-
calorie food stimuli differentially activated the dorsal striatum, insula, hippocampus and an
area just deep to the left supramarginal gyrus (T = 3.0) [38]. This was interpreted as a habit-
forming system associated with lowered dopamine receptor availability in obese subjects.
While the role of the supramarginal gyrus is poorly understood in this context, our findings
in conjunction with these reports implicate its involvement in the pathogenesis of obesity
due to shared influence of a region on chromosome 3.

The initial results from this study suggested that genetic factors associated with increasing
BMI were also associated with reduced cortical surface area, with the strongest correlations
observed in mesial and lateral temporal, frontal, occipital and parietal lobes and the insular
cortex. We also observed the same pattern of negative genetic correlations between BMI and
subcortical volumes, indicating that genes associated with increased BMI are also associated
with reduced subcortical volumes. This observation is conceptually similar to that of Ho and
colleagues, who reported significantly lower regional brain volumes with increasing BMI
(p=0.02) [9]. Specifically, with every 1-unit increase in BMI there was an associated 1-1.5%
average brain tissue reduction in several brain regions including the frontal, occipital and
parietal lobe regions. However, this work was based exclusively on phenotypic correlations
and did not contain a genetic component. Together, these results provide substantial
evidence for an underlying biologic mechanism and our pedigree-based design enabled us to
go beyond the inferential limits of traditional epidemiologic studies that enlist only unrelated
individuals.

It should be noted that the neuroanatomic data used here does not directly index neuronal
activity specifically or neurophysiological function more generally. Rather, measures of
cortical surface area or subcortical volume are highly heritable traits that have been
previously related to obesity (e.g. [9]). Unlike previous investigations of neuroanatomic
variation and BMI, our strategy involved prioritizing brain traits by only selecting those with
common genetic effects related to obesity (via the ERV analysis [27]). Indeed, the ERV
analysis significantly reduced the number of brain traits tested and ensured that linkage was
only performed on traits with high levels of genetic covariance with BMI. However, this
prioritization strategy, combined with the fact that BMI was always one of the two traits
used in the bivariate analyses, makes it very difficult to correct for the number of linkage
analyses performed. Yet, given that both of the identified genome-wide significant QTLs
have been previously linked to BMI, it is unlikely that these results are spurious.

The final results from this study localized two chromosomal regions whose genes
pleiotropically influenced BMI and brain structure. Future use of whole genome sequence
data in these regions provides a powerful approach to find causal variants and inform
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potential obesity treatments. Indeed, by discovering genes that predispose obesity risk, it is
our eventual goal to speed the development of drug targets to slow the epidemic
advancement of obesity and its sequalae.
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Table 2

Bivariate Analyses between BMI and Subcortical Volumes

Region of Interest Heritability  Environmental Genetic Phenotypic
Correlation (p;) ~ Correlation (pg)  Correlation (py)
Accumbens Area 0.495 0.109 -0.255 -0.075
Amygdala 0.793 0.365 -0.116 0.041
Caudate 0.761 0.139 -0.178 -0.064
Hippocampus 0.740 0.401 -0.197 0.020
Pallidum 0.727 0.137 -0.136 -0.032
Putamen 0.758 0.208 -0.085 0.019
Thalamus 0.777 0.144 -0.185 -0.069
Ventral Diencephalon 0.726 0.191 -0.274 -0.098
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