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Abstract
Studies of smoking behavior commonly use the time-line follow-back (TLFB) method, or periodic
retrospective recall, to gather data on daily cigarette consumption. TLFB is considered adequate
for identifying periods of abstinence and lapse but not for measurement of daily cigarette
consumption, thanks to substantial recall and digit preference biases. With the development of the
hand-held electronic diary (ED), it has become possible to collect cigarette consumption data
using ecological momentary assessment (EMA), or the instantaneous recording of each cigarette as
it is smoked. EMA data, because they do not rely on retrospective recall, are thought to more
accurately measure cigarette consumption. In this article we present an analysis of consumption
data collected simultaneously by both methods from 236 active smokers in the pre-quit phase of a
smoking cessation study. We define a statistical model that describes the genesis of the TLFB
records as a two-stage process of mis-remembering and rounding, including fixed and random
effects at each stage. We use Bayesian methods to estimate the model, and we evaluate its
adequacy by studying histograms of imputed values of the latent remembered cigarette count. Our
analysis suggests that both mis-remembering and heaping contribute substantially to the distortion
of self-reported cigarette counts. Higher nicotine dependence, white ethnicity and male sex are
associated with greater remembered smoking given the EMA count. The model is potentially
useful in other applications where it is desirable to understand the process by which subjects
remember and report true observations.
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1. Introduction
A common technique for eliciting consumption in studies of substance abuse is the time-line
follow-back (TLFB) method, in which one asks subjects to report daily consumption
retrospectively over the preceding week, month or other designated period. In smoking
cessation research, for example, TLFB is one important method for measuring cigarette
consumption and defining periods of quit and lapse.

Although TLFB is a practical approach to quantifying average smoking behavior (Brown et
al. 1998), TLFB data can harbor substantial errors as measures of daily consumption
(Klesges et al. 1995). TLFB questionnaires request exact daily cigarette counts, which
smokers are unlikely to remember, particularly after several days have passed. Moreover
some smokers may understate consumption to avoid the social stigma attached to excessive
smoking or an inability to quit (Boyd et al. 1998). Thus smoking cessation studies typically
require validation of TLFB reports of zero consumption by biochemical measurement of
exhaled carbon monoxide or nicotine metabolites from saliva or blood.

A second concern is that histograms of TLFB-derived daily cigarette counts commonly
exhibit spikes at multiples of 20, 10 or even 5 cigarettes. This phenomenon, known as “digit
preference” or “heaping”, is thought to reflect a tendency to report consumption in terms of
packs (each pack in the US contains 20 cigarettes) or half or quarter packs. The heaps
presumably arise because many smokers do not remember precisely how many cigarettes
they smoked and therefore report their count rounded off to a nearby convenient number. It
has also been hypothesized that some smokers consume exactly an integral number of packs
per day as a self-rationing strategy (Farrell, Fry and Harris 2003), but evidence so far
suggests that such behavior, if it exists, causes only a small fraction of the observed heaping
(Wang and Heitjan 2008). Indeed, Klesges et al. (1995) observed that the distribution of
biochemical residues of smoking is smooth, suggesting that heaping is a phenomenon of
reporting rather than consumption.

Recall bias and heaping bias in self-reported longitudinal cigarette counts potentially affect
estimates of both means and treatment effects. Moreover, heaping may lead to
underestimation of within-subject variability, thanks to smokers who regularly report one
pack rather than a precise count that varies around some mean in the vicinity of 20. If a large
enough fraction of subjects in a study are of this kind, estimates of both within-subject and
between-subject variability can be distorted.

Although there has been substantial research on statistical modeling of heaping and digit
preference in a range of disciplines (Heitjan and Rubin 1990; Heitjan and Rubin 1991;
Ridout and Morgan 1991; Pickering 1992; Klerman 1993; Torelli and Trivellato 1993;
Dellaportas et al. 1996; Roberts and Brewer 2001; Wright and Bray 2003; Wolff and
Augustin 2003), the only such application in smoking cessation research is that of Wang and
Heitjan (2008), who described a latent-variable rounding model for heaped univariate TLFB
cigarette count data. They postulated that the reported cigarette count is a function of the
unobserved true count and a latent heaping behavior variable. The latter can take one of four
values, representing exact reporting, rounding to the nearest 5, rounding to the nearest 10,
and rounding to the nearest 20. Except for “exact” reporters (i.e., those who report counts
not divisible by 5), one obtains at best partial information on the true count and the heaping
behavior. They analyzed univariate count data from a smoking cessation clinical trial,
assuming a zero-inflated negative binomial distribution for the true underlying counts
together with an ordered categorical logistic selection model for heaping behavior given true
count.
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The analysis of Wang and Heitjan (2008) has three important limitations: First, they
included only data from the last day of eight weeks of treatment, ignoring the 55 preceding
days. Second, they assumed — without empirical verification — that reported counts not
divisible by 5 were accurate. And third, they assumed that the preference for counts ending
in 0 or 5 actually represented rounding rather than some other form of reporting error. That
is, a declared count of 20 cigarettes was taken to mean that the true count was somewhere
between 10 and 30 cigarettes, and was merely misreported as 20. In the absence of more
accurate data on the true, underlying count, attempts to model heaping must rely on some
such assumptions.

Precise assessment of smoking behavior has taken on increasing importance as researchers
explore the value of reducing consumption as a way to lessen the harms of smoking
(Shiffman et al. 2002, Hatsukami et al. 2002) and to improve the chance of ultimately
quitting (Shiffman et al. 2009, Cheong et al. 2007). The advent of the inexpensive hand-held
electronic diary (ED) that allows the instantaneous recording of ad libitum smoking has
created the possibility of making much more accurate measurements. Such evaluation is an
instance of ecological momentary assessment (EMA; Stone and Shiffman 1994), in that it
generates records of events logged as they occur in real-life settings. In Shiffman (2009),
researchers asked 236 participants in a smoking cessation study to use a specially
programmed ED to record each cigarette as it was smoked over a 16-day pre-quit period;
moreover the ED periodically prompted the smokers to record any cigarettes they had
missed. At days 3, 8 and 15, subjects visited the clinic to complete a TLFB assessment of
daily smoking since the preceding visit (2, 5 or 7 days previously), stating how many
cigarettes they had smoked each day. The study found that while the TLFB data contained
the expected heaps at multiples of 10 and 20, the EMA data had practically none. Average
smoking rates from the two methods were moderately correlated (r = 0.77), but the within-
subject correlation of daily consumption between TLFB and EMA was modest (r = 0.29).
Self-report TLFB consumption was on average higher than EMA (by 2.5 cigarettes), but on
32% of days, subjects recorded more cigarettes by EMA than they later recalled by TLFB.

These data provide us with an opportunity — unprecedented, so far as we know — to study
the relationship between self-reports of daily cigarette consumption by TLFB and EMA. To
describe this relationship, we develop a statistical model with two components: The first is a
regression that predicts the patient's notional “remembered” cigarette count (a latent factor)
from the EMA count. The second is a regression that predicts the rounding behavior —
described as in Wang and Heitjan (2008) with an ordinal logistic regression — from the
remembered count and fully observed predictors. The models include random subject effects
that describe the propensities of the subjects to mis-remember their actual consumption (in
the first component) and to report the remembered consumption with a characteristic degree
of accuracy (in the second). Assuming that EMA represents the true count, the first
component of the model allows us to examine the recall bias resulting from mis-
remembering, while the second component describes the heaped reporting errors.

2. Notation and model
Let Yit denote the observed heaped TLFB consumption for subject i on day t, i = 1,…, n, t =
1,…, mi, and let Yi = (Yi1,…, Yimi)

T denote the vector of TLFB data for subject i. Let Xit be
the EMA consumption on subject i, day t, and let Xi = (Xi1,…, Ximi)

T be the vector of EMA

data for subject i. We furthermore let  be a vector of baseline predictors for

subject i, with  representing predictors of recall and  predictors of heaping. These
predictor sets may overlap.
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2.1. A model for remembered cigarette count
The first part of our model assumes that for each day and subject there is a notional
remembered cigarette count, denoted Wit(Wi = (Wi1, …, Wimi)

T). We assume Wit is
distributed as Poisson conditionally on a random effect bi, the EMA smoking pattern Xit and
the covariate vector Zi, with mean

(2.1)

The parameters β1 and β2 represent the effects of EMA consumption and baseline predictors,
respectively, on the latent remembered count. The random effect bi, which we assume

normally distributed with mean 0 and variance , represents heterogeneity among subjects.
We note that there are no 0 values of Xit in the Shiffman data, which are from a pre-quit
study in which subjects were encouraged to smoke as normal. Thus we can include ln(Xit) as
a predictor. In more general contexts where 0 EMA counts are possible, one can adjust the
model in simple ways to avoid this problem. Moreover when excessive 0 counts occur in the
TLFB data, one can fit a zero-inflated count model, as in Wang and Heitjan (2008), for the
remembered count.

2.2. A model for the latent heaping process
Following Wang and Heitjan (2008), we assume that a latent rounding indicator Git(Gi =
(Gi1, …, Gimi)

T) dictates the degree of rounding to be applied to the notional remembered
count Wit. Specifically, we let Git take one of four possible values: Git = 1 implies reporting
the exact count, Git = 2 implies rounding to the nearest multiple of 5, Git = 3 implies
rounding to the nearest multiple of 10, and Git = 4 implies rounding to the nearest multiple
of 20. We assume that the probability distribution of the heaping indicator depends on Wit, a

subject-level random effect  that is independent of bi, and a baseline predictor

vector . Specifically, we propose the following proportional odds model for the
conditional distribution of Git:

(2.2)

Here , and q(·) is the inverse logit function q(x) = exp(x)/(1 + exp(x)). The
parameters γ1 > γ2 > γ3 refer to the successive intercepts of the logistic regressions, γ0 refers
to its slope with respect to the remembered count, and β3 refers to its slopes with respect to

the vector of heaping predictors . The random effect ui describes between-subject
differences in heaping propensity not otherwise accounted for in the model.

2.3. The coarsening function
As in Wang and Heitjan (2008), the model links the observed Yit to the latent Wit and Git via
the coarsening function h(·, ·):

Wang et al. Page 4

Ann Appl Stat. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For example, at time t, subject i with Wit = 14 and Git = 1 reports h(14, 1) = 14, whereas
h(14, 2) = 15, h(14, 3) = 10, and h(14, 4) = 20. Figure 1 illustrates this heaping mechanism.

A coarsened outcome yit may arise from possibly several (wit, git) pairs. We denote the set of
such pairs as WG(yit) = {(wit, git): yit = h(wit, git)}. For example, a reported consumption of
yit = 5 may represent a precise unrounded value ((wit, git) = (5, 1)) or rounding across a
range of nearby values ((wit, git) ∈ {(3, 2), (4, 2), (5, 2), (6, 2), (7, 2)}). For subject i, the
probability of the observed yit at time t is the sum of the probabilities of the (wit, git) pairs
that would give rise to it. The density of reported consumption yit given the random effects
can therefore be expressed as

2.4. Estimation
We estimate the model by a Bayesian approach that employs importance sampling (Gelman
et al. 2004; Tanner 1993) to avoid iterative simulation of parameters. The steps are as
follows: We first compute the posterior mode and information using a quasi-Newton method
with finite-difference derivatives (Dennis et al. 1983). We then approximate the posterior
with a multivariate t5 density with mean equal to the posterior mode and dispersion equal to
the inverse of the posterior information matrix at the mode. Next, we draw a large number
(4,000) of samples from this proposal distribution, at each draw computing the importance
ratio r of the true posterior density to the proposal density. We then use sampling-
importance resampling (SIR) to improve the approximation of the posterior (Gelman et al.
2004). We evaluate posterior moments by averaging functions of the simulated parameter
draws with the importance ratios r as weights. The choice of a t with a small number of
degrees of freedom as the importance density is intended to balance the convergence of the
MC integrals and the efficiency of the simulation.

Letting θ = (β0, β1, β2, β3, σb, γ1, γ2, γ3, γ0, σu), the likelihood contribution from subject i is

(2.3)

we approximate the integral in (2.3) by Gaussian quadrature. We choose proper but vague
priors for the parameters, which we assume are a priori independent (except for γj, j = 1, 2,
3, as noted below). The parameter β1 in the Poisson mixed model (2.1), representing the
slope of the latent recall on the EMA recorded consumption, is given a normal prior β1 ∼
N(1, 102), whereas the priors of the other regression parameters in both model parts are set
to N(0, 102) subject to the constraint γ1 > γ2 > γ3. We assign the random-effect variances
inverse-gamma priors with mean and SD both equal to 1, a reasonably vague specification
(Carlin and Louis, 2000). We obtain the posterior mode and information using SAS PROC
NLMIXED, and implement Bayesian importance sampling in R.

3. Model checking
With heaped data, the unavailability of simple graphical diagnostics such as residual plots
complicates model evaluation. We therefore resort to examination of repeated draws of
latent quantities from their posterior distributions, in the spirit of Bayesian posterior
predictive checks (Rubin 1984; Gelman et al. 1996; Gelman et al. 2005). Specifically, we
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evaluate the adequacy of model assumptions using imputed values of the latent recall W,
which we compare to its implied marginal distribution under the model.

Imputations of latent Wi and Gi are ultimately based on the posterior density f(θ|yi) of the
model parameter θ given the observed data yi. Heitjan and Rubin (1990), sampling
univariate y values, used an acceptance-rejection procedure to draw quantities analogous to
our W and G from a confined bivariate normal distribution. In our model, the correlation
within Wi and Gi vectors poses a challenge to simulation. Note however that given the
subject-specific effects bi and ui, the components of Wi and Gi are independent. Thus, we
can readily simulate (Wi, Gi) from the joint posterior of (Wi, Gi, bi, ui). For each simulated θ
and the observed data yi, the posterior distribution of (Wi, Gi, bi, ui) is

Because the values of wit and git together determine yit, we have that

where I is an indicator function. Accordingly,

Thus given random effects bi and ui, the imputation of (wi, gi) is obtained by independent
draws of (wit, git), t = 1,…,mi, which can be implemented as an acceptance-rejection
procedure. We therefore impute the data as follows:

1. Make independent draws, θ(k), k = 1,…,K from f(θ|yi) by SIR.

2. Given θ(k), for i = 1,…, n, independently draw  and

.

3. For i = 1,…, n, given θ(k) and , for t = 1,…, mi, draw  as Poisson with mean

(2.1). Then given θ(k),  and , draw misreporting type  from (2.2). If

, discard  and repeat this step until

.
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To assess model fit, we plot K histograms of the imputed latent count ω. Implausible
patterns in these histograms, such as peaks or troughs at multiples of 5, suggest incorrect
modeling of the heaping. We can also base discrepancy diagnostics specifically on the
fractions of reported consumptions that are divisible by 5.

4. Simulations
To examine the performance of our approach, we conducted simulations replicating the
structure of the Shiffman data with m = 12 non-visit-day observations per subject. Each data
set consisted of n = 100 subjects, and for simplicity we do not consider baseline covariates.
For each subject we first set xi as an observed EMA count vector from the data and

generated a random effect . We then generated Wit values as
independent Poisson deviates with conditional mean (2.1). With β0 = 2.358, β1 = 0.2628,
when bi = 0 and EMA count xit = 20, the mean latent recall is 23.2, and when xit = 30 it is
25.8. With the random effect distributed as designated above, the marginal mean recalls for
xit = 20 and xit = 30 are 24.3 and 27.0, respectively.

Next we generated the latent heaping behavior indicator Git from (2.2). We set the
parameters to their estimates from the Shiffman data: The intercepts γ1, γ2, γ3 were −1.485,
−5.280 and −10.141, respectively, and the slope γ0 was 0.1098. We simulated the random

effect . Under this setting, when ui = 0 and wit = 22, the probability of
exact reporting is 28.3%, and the probabilities of rounding to the nearest multiples of 5, 10
and 20 are 66.3%, 5.4% and 0.04%, respectively. When the latent count wit = 36, these
probabilities are 7.8%, 71.2%, 20.8% and 0.2%, respectively. The simulated latent wit and
git determined yit as illustrated in Figure 1.

These parameter values allow for considerable discrepancy between remembered and
recorded consumption. To examine our methods when the latent recall and EMA match
more closely, we conducted a second simulation under parameter values that gave better
agreement. In this scenario, we assumed β0 = 0 and β1 = 1 with bi ∼ N(0, 0.05). Thus when
bi = 0, the expected precise recall E(wit) = xit, and the marginal mean recalls are 20.5 and
30.8 for EMA counts of 20 and 30, respectively. We set the parameters in the heaping
behavior models at −1.07, −4.37, −6.52 and 0.088 for γ1, γ2, γ3 and γ0, respectively, and

. In this case,when uit = 0, the probabilities of reporting exactly and to the nearest
multiples of 5, 10 and 20 for a true count of 22 are 29.6%, 62.3%, 7.1% and 1%,
respectively.

Table 1 presents summaries of 100 simulations of estimates of the parameter θ = (β0, β1, σb,
γ1, γ2, γ3, γ0, σu). Under both scenarios, the MLEs of the fixed-effect coefficients fell near
the true values on average, with no more than 0.5% bias for the parameters in the recall
model and no more than 2.7% bias for those in the heaping model. The random effects
variance estimates are also well estimated, with bias less than 1%. The coverage
probabilities of nominal 95% confidence intervals range from 93% to 98%, except for γ3 in
Case 1, where coverage is only 80%. The poor coverage rate for this parameter is a
consequence of instability in the inverse Hessian matrix; it can be improved by creating
parametric bootstrap confidence intervals (Table 2). The simulation shows good
performance of the MLEs, and as the sample size is large we expect the Bayesian estimates
to behave similarly. Moreover, the maximization part of the MLE calculation can help
identify multimodality of the likelihood, should it occur, and singularity of the Hessian that
we use in the Bayesian sampling.
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5. Data analysis
We applied the method of §2 to the Shiffman data, with the aim of evaluating our posited
two-stage process as an explanation for the discrepancy between actual and reported
consumption. To focus on the link between the self-report and true count, our first analysis
included only log EMA count in (2.1) and a visit day indicator in (2.2). The latter is
important because it seems reasonable that distance in time from the event would be a strong
predictor of heaping coarseness. Our second analysis expanded the recall model to include a
range of baseline characteristics: demographics (age, sex, race and education); addiction;
measures of nicotine dependence (the Fagerströom Test for Nicotine Dependence [FTND]
and the Nicotine Dependence Syndrome Scale [NDSS]); and EMA compliance measured as
the daily percentage of missed prompts. Age, education, FTND, and EMA compliance are
considered as quantitative variables, sex and race are binary indicators, and addiction is a
categorical variable taking three levels (possible, probable, and definite). They are the first
variables that a smoking researcher would think to investigate, and could potentially affect
remembered count or heaping probability. The two measures of nicotine dependence FTND
and NDSS showed only a modest correlation, with Spearman r = 0.56 in our data. So we
considered both in the model. The dataset and programming code are included in the
supplementary materials (Wang et al. 2012).

5.1. Evaluating goodness of fit
We evaluated model fit by creating multiple draws from the posterior predictive distribution
of latent quantities as discussed in §3. Lack of smoothness in the histogram of the imputed
latent count would suggest an inadequate heaping model.

We evaluated goodness of fit for the model that includes log EMA count in (2.1) and a visit
day indicator in (2.2).The top row in Figure 2 displays the histograms of TLFB cigarette
consumption at Days 3 (a visit day), 9 and 14. The spikes at 10, 15, 20, 25, 30, etc. are
characteristic of self-reported cigarette counts (Wang and Heitjan 2008). As many as 70% of
subjects reported cigarette smoking in multiples of 5 for non-visit-day consumption,
whereas for the visit day (Day 3) that number is only 48%. Only 1/4 of the counts on the
visit day ended in 0.

The next three rows represent independent draws of the latent count Wit. The spikes at
multiples of 20, 10 or 5 have disappeared. Compared to the selfreported count, the
percentage of subjects whose exact counts are divisible by 5 (or 10 or 20) is smaller and
consistent across time. Averaged over three imputations, the fraction of counts ending in
multiples of 5 is 27%, 25%, 23% on Days 3, 9 and 14, respectively, and 15%, 14% and 12%
end in multiples of 10. These checks indicate that our model offers a plausible explanation
for the heaping.

5.2. The fitted model
In order to assess the impact of the assumed correlation structure, we fit the model as
proposed in (2.1) and (2.2) and also a model that exclude random effects. Posterior modes
and 95% credible intervals (CIs) appear in Tables 3 and 4. The estimates in both the
remembered count model that characterizes the latent recall process and the heaping
behavior model are sensitive to the assumption of random effects. The Bayesian information
criterion (BIC) of the model with two random effects is 14,705 when including EMA as the
only predictor and 14,059 when including EMA and the baseline patient characteristic
predictors. The BICs for the corresponding models excluding random effects are 18,340 and
16,641, respectively. Thus the evidence is overwhelming that the mixed model is preferable.
Furthermore, we included the patient characteristic predictors as covariates in both the
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remembered count model and heaping process model, but this model (BIC = 14,079) is less
favorable compared to the model with the covariates in just the latent remembered count
model. None of these predictors is significant in the heaping process model (results not
shown).

The 95% CI of β1 is [0.23,0.28], indicating that remembered consumption is positively
associated with recorded EMA consumption. In addition, baseline patient characteristics
FTND, NDSS, race and gender have significant effects on the recall process. For fixed EMA
count, the following characteristics are associated with greater remembered smoking: higher
nicotine dependence (measured by both FTND and NDSS), white ethnicity (compared to
black), and male sex.

Figure 3 displays the estimated curve of the mean of Wit against the EMA count. A natural
hypothesis is that the estimated latent mean agrees with EMA, which would be reflected in
the Poisson model by an estimated intercept of 0 and slope of 1; one might call this a model
of unbiased memory. To the contrary, Figure 3 shows that the fitted mean curve diverges
substantially from the 45° line, with the lighter smokers on average overestimating their
consumption and the heavier smokers underestimating consumption. The mean remembered
consumption agrees with the true count roughly in the range 22–26 cigarettes, or slightly
more than a pack per day.

Figure 4 shows the estimated heaping probability as a function of remembered cigarette
consumption for visit and non-visit days. The possibility of rounded-off reporting increases
rapidly as the remembered count increases, although surprisingly the probability of rounding
to the nearest 20 is not large for either type of day. When the perception of smoking is more
than two packs, say 41 cigarettes, the chance of heaped reporting rises to more than 84%, of
which 37% is attributed to half-pack rounding. The results confirm that the degree of
heaping is much smaller on visit days. For example, only 51% of subjects round off the
visit-day count when reporting 41 cigarettes, and among those 39% round off to the nearest
multiple of 5.

6. Discussion
We have developed a model to describe the process whereby exact longitudinal
measurements become distorted by retrospective recall. Our approach uses latent processes
to explain the data as a result of mis-remembering and rounding: A model of the latent exact
value describes subject-level recall and allows for association over time and with baseline
predictors, while a misreporting model describes the dependence of heaping coarseness on
the latent value and other predictors. Random effects represent individual propensities in
recall and heaping; in our data, inferences depend strongly on the inclusion of these random
effects.

The data suggest that both mis-remembering and heaping contribute substantially to the
distortion of cigarette counts. The curve of mean remembered count as a function of EMA
count departs markedly from the 45° line, with lighter smokers overstating consumption and
heavier smokers understating consumption. The remembered smoking coincides with the
accurate EMA count at around 24 cigarettes, suggesting that the popularity of reporting one
pack per day is partially a result of the general heaping behavior rather than a particular
affinity for remembering a pack a day. The curves of heaping probabilities suggest that exact
reporting is uncommon and practically disappears beyond about 40 cigarettes/day.
Nevertheless it is interesting just how much of the misreporting is due to mis-remembering.
The remembered cigarette consumption depends not only on true consumption, but also on
the subject's sex, race and degree of nicotine dependence.
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The interpretation of our model components as representing memory and rounding depends
on the assumption that EMA data are exact. Of course, even EMA data are subject to errors,
as smokers may neglect to record cigarettes both at the time of smoking and later. Yet good
correspondence with smoking biomarkers strongly supports the use of EMA over TLFB as a
proxy for the truth (Shiffman 2009).

We have implemented our model with a combination of standard numerical methods
including Gaussian quadrature, quasi–Newton optimization, and sampling-importance
resampling. Our experience suggests that with the model as specified, and incorporating a
modest numbers of predictors, the method is robust and efficient. Increasing the number of
random effects would increase the time demands (from the numerical integration) and raise
the possibility of numerical instability (from possible errors in integration). For more
extensive models, sophisticated approaches based on MCMC sampling would be necessary.

Our model allows for the inclusion of covariates to better explain the discrepancy between
smokers' self-perceived behaviors and reality. It also provides a basis for predicting true
counts (effectively the EMA data) from reported TLFB counts. This would be a valuable
activity in the large number of studies that do not collect EMA data. To predict true counts
from the recalled counts, we first need to estimate the parameters θ in the model using a
subset of the primary study or an external independent study that collects both TLFB count
Y and accurate EMA count X. Then we can impute the true count together with the latent
remembered count and heaped reporting behavior. Specifically, the posterior distribution of
(Wi, Gi, xi, bi, ui) is

where f(xi) is the density function of the true count. Imputation follows similar steps as
described in §3 with θ set equal to the maximum likelihood estimates.

The methods developed here also can have application in a wide variety of settings in social
and medical science involving self-reported data — for example, assessing sexual risk
behavior, trial drug consumption, eating episodes and financial expenditures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Reported cigarette count Y as a function of the underlying count W and the rounding
behavior G.
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Fig 2.
Top row: Histogram of self-reported cigarette consumption. Lower three rows: Histograms
of draws from the posterior distribution of the latent exact consumption recall.
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Fig 3.
Estimate of the conditional mean of recalled count given EMA count in the Poisson mis-
remembering model. Covariates are fixed at education=high school, addicted=definitely,
race=white, sex=female, and mean values of the quantitative predictors: FTND=5.97,
NDSS=−0.023, age=43.5, and EMA non-compliance=10.1%.
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Fig 4.
Estimated rounding behavior given EMA count in the proportional odds heaping model.
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Table 3

Estimated parameters from the Shiffman data under simple models for recall (EMA only) and heaping
(remembered count and visit day indicator).

Random Effects Model Independence Model

Parameter Posterior mode 95% CI Posterior mode 95% CI

Latent recall: Poisson model

 Intercept: β0 2.32 [2.24, 2.40] 1.14 [1.09, 1.20]

 ln(EMA): β1 0.27 [0.25, 0.30] 0.68 [0.66, 0.69]

  
0.09 [0.08, 0.11]

Heaping behavior: Proportional odds model

 Intercept 1: γ1 −1.50 [−2.17, −0.85] −1.06 [−1.30, −0.84]

 Intercept 2: γ2 −5.21 [−6.14, −4.43] −2.94 [−3.26, −2.65]

 Intercept 3: γ3 −10.15 [−12.49, −8.48] −4.17 [−4.59, −3.82]

 Exact count (latent): w 0.11 [0.09, 0.13] 0.07 [0.06, 0.08]

 Visit day −2.96 [−3.50, −2.50] −1.29 [−1.54, −1.06]

  
6.65 [5.12, 9.08]
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Table 4

Estimated parameters from the Shiffman data under an expanded model for recall.

Random Effects Model Independence Model

Parameter Posterior mode 95% CI Posterior mode 95% CI

Latent recall: Poisson model

 Intercept: β0 2.34 [2.21, 2.49] 1.51 [1.44, 1.58]

 ln(EMA): β1 0.25 [0.23, 0.28] 0.53 [0.51, 0.55]

 Addicted

  Possible vs. Definite 0.07 [−0.10, 0.24] 0.05 [0.01, 0.09]

  Probable vs. Definite −0.01 [−0.11, 0.08] −0.02 [−0.04, 0.006]

 FTND 0.06 [0.04, 0.08] 0.04 [0.03, 0.05]

 NDSS 0.08 [0.05, 0.12] 0.05 [0.04, 0.06]

 EMA compliance 0.13 [−0.28, 0.51] 0.39 [0.29, 0.49]

 Age 0.002 [−0.001, 0.006] 0.003 [0.002, 0.004]

 Race (Black vs. White) −0.14 [−0.27, −0.01] −0.06 [−0.10, −0.03]

 Sex (Male vs. Female) 0.16 [0.10, 0.23] 0.12 [0.09, 0.23]

 Education −0.001 [−0.03, 0.02] 0.003 [−0.004, 0.009]

  
0.06 [0.05, 0.07]

Heaping behavior: Proportional odds model

 Intercept 1: γ1 −1.62 [−2.35, −0.90] −1.14 [−1.37, −0.91]

 Intercept 2: γ2 −5.52 [−6.42, −4.61] −3.15 [−3.47, −2.82]

 Intercept 3: γ3 −10.31 [−12.65, −8.37] −4.54 [−4.99, −4.08]

 Exact count: w 0.11 [0.09, 0.14] 0.07 [0.06, 0.08]

 Visit day −2.99 [−3.51, −2.47] −1.26 [−1.50, −1.02]

  
6.79 [4.73, 8.68]
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