
Tracking Clathrin Coated Pits with a Multiple Hypothesis Based
Method⋆

Liang Liang, Hongying Shen, Pietro De Camilli, and James S. Duncan
Yale University, New Haven, CT 06520, USA
Liang Liang: liang.liang@yale.edu

Abstract
Cellular processes are crucial for cells to survive and function properly. To study their underlying
mechanisms quantitatively with fluorescent live cell microscopy, it is necessary to track a large
number of particles involved in these processes. In this paper, we present a method to
automatically track particles, called clathrin coated pits (CCPs), which are formed in clathrin
mediated endocytosis (CME). The tracking method is developed based on a MAP framework, and
it consists of particle detection and trajectory estimation. To detect particles in 2D images and take
account of Poisson noise, a Gaussian mixture model is fitted to image data, for which initial
parameters are provided by a combination of image filtering and histogram based thresholding
methods. A multiple hypothesis based algorithm is developed to estimate the trajectories based on
detection data. To use the current knowledge about CCPs, their properties of motion and intensity
are considered in our models. The tracking method is evaluated on synthetic data and real data,
and experimental results show that it has high accuracy and is in good agreement with manual
tracking.

1 Introduction
Clathrin mediated endocytosis (CME) [1] is an essential cellular process that cells use to
take up nutrients, to internalize plasma membrane proteins, and to recycle lipid components
on the plasma membrane. The study of the process is important in fundamental biological
research and virology. It has been found out that the dysfunctions of the process in neurons
are correlated to several diseases [1], and CME is one of the major pathways through which
viruses enter cells [2]. To understand the process quantitatively, it is necessary to track a
large number of particles formed in the process, called clathrin coated pits (CCPs), and
obtain their statistics. Since manual tracking is infeasible for large datasets, automatic
tracking is important for quantitative studies.

The process can be divided into several stages [1] as illustrated in Fig. 1: clathrin coat
assembly, clathrin coat maturation, clathrin coated pits fission into clathrin coated vesicles
(CCVs), and finally vesicles uncoating clathrin. Recent advancement in fluorescent live cell
microscopy, e.g., spinning disc confocal microscopy (SDCM) and total internal reflection
florescent microscopy (TIRFM), enables us to observe CCPs till fission at single particle
resolution. As shown in Fig. 1, there are innumerable CCPs on the cell membrane.

Tracking consists of detecting CCPs in each 2D image and estimating the trajectories based
on detection data. Although numerous methods for general point tracking have been
proposed [3,4], some assumptions on object motion may not be valid for fluorescent
particles. Many methods for tracking fluorescent particles have been developed
[5,6,7,8,9,10]. In these methods, fluorescent particles are assumed to move with a nearly
constant or slow varying velocity, or undergo free diffusion, and their intensities are only
related to imaging conditions or their positions. Recently a method [10] is reported for CCP
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tracking, whose main focus is on data association algorithms. CCPs are not featureless
points in images and have their own properties different from other fluorescent particles.
CCPs can be created at any time but the rate is limited. Each CCP is connected to cell
membrane and can not move freely, and its intensity changes in different stages. To achieve
a high tracking accuracy, these properties must be considered.

We present an automatic tracking method based on a MAP framework. A constrained
Brownian model is proposed for CCP motion. A linear Gaussian model is used to describe
CCP intensity over time. For detection, several methods are used to find reliable positions
and intensities of CCPs in each image. A multiple hypothesis based algorithm is developed
to find the best trajectories.

2 Method
2.1 The Tracking Framework

Let It be the image at time t (frame index), St be the joint state of all CCPs at time t, and T be
the total number of images. The goal is to find the set of joint states that maximizes a
posterior probability:

(1)

Assuming CCPs are statistically independent of each other and the process is Markovian,
then we obtain

(2)

(3)

 is the state of the CCP associated with the ith trajectory at time t, and it consists of

position, fluorescent intensity and its derivative. The joint state , and
N is the upper bound on the number of CCP trajectories. p(S1) is assumed to be uniform

distribution. p(It|St) and  will be discussed in section 2.2 and section 2.3
respectively.

Since it is difficult to find the optimal solution of Eq.(1) directly when the CCP number is
large, we adopt a conventional strategy, i.e., trajectory estimation after detection. Detection
is to find CCP positions and intensities that maximize p(It|St) at each time t. Trajectory
estimation is to find the correspondences of CCPs in different frames that maximize the

product . Detections are performed frame by frame. A multiple hypothesis
based algorithm is developed to find the best trajectories given the detection data.

2.2 Detection
In biological experiments, to visualize the dynamics of CCPs, proteins of interest (e.g.,
clathrin or AP-2 complex in each CCP [1]) are fluorescently labeled, and SDCM or TIRFM
is used to obtain time lapse images. The size of each CCP is comparable to the size of the
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diffraction limited airy disk. As a result, the intensity distribution of each CCP can be
described by the point spread function (PSF) which is well approximated by a Gaussian
function [11]. During the image capture process in the CCD camera, several types of noises
are generated [5]. The major one is shot noise [5] which follows a Poisson distribution and is
assumed to be independent at each pixel. Here, we drop the time index of each variable for
simplicity. Let F be the fluorescence image without noises, and b be the background
intensity level, then we obtain

(4)

where (x(k), y(k)) and f(k) are position and intensity of the detected particle (CCP) k in the
image F.

The detection is to find the set of variables {b, x(k), y(k), f(k), k = 1,…, K} that maximize the
probability p(I|S) in Eq.(2) at each time t, which is given by

(5)

By taking the logarithm, it is equivalent to find the minimum of the function:

(6)

The optimal solution can be obtained by using gradient based optimization. Mixture model
fitting has been used by some methods [6] to detect fluorescent particles, for which Gaussian
image noise is assumed. Here, we use Poisson noise model that fits the image noise well.
The background intensity level is estimated by the mean of background intensities. To
determine the number of CCPs, we adopt a bottom-up scheme similar to the approach in [6].
To obtain initial values of CCP positions and intensities, we use several methods as shown
in Fig. 3. First, local maxima are located by using normalized Laplacian of Gaussian (LoG)
filter. Many of them are induced by noises. To separate signals from noises, Gaussian
mixture models with two components are fitted to the histograms of the original image and
the local maxima (in the filtered image) by invoking EM algorithm. After thresholding, the
surviving local maxima give the initial values.

2.3 Motion and Intensity Modeling
Xt is the state of a CCP at time t and Xt = [xt, yt, ft, gt]′. (xt, yt) is the position in the x-y plane,
ft is the fluorescence intensity, and gt is the derivative of ft with respect to t. Here, we drop
the trajectory-index of each variable for simplicity. p(Xt|Xt−1) in Eq.(3) is the state evolution
model and can be factorized as

(7)
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p (xt, yt|xt−1, yt−1) is the motion model, and p (ft, gt|ft−1, gt−1) is the model of fluorescence
intensity over time. The factorization is based on the plausible assumption that intensities
are independent with x-y positions for each CCP.

Motion Modeling—CCP motion is mainly caused by two factors. First, tiny molecules in
cytosol randomly bombard CCPs, which causes CCPs to move. Second, the forces induced
by clathrin coat assembly will cause vibrations of CCPs. Since each CCP is connected to the
plasma membrane, it can only move within a restricted region as shown in Fig. 3. Therefore,
we propose the constrained Brownian motion model to describe CCP motion, given by

(8)

where  and . t1 is the starting time of the
trajectory. σm and σc are estimated from training data.

Intensity Modeling—CCP intensity changes over time. Fig. 3 shows a typical intensity-
time curve. The gradual increase of fluorescence intensity corresponds to CCP creation and
growth. The decrease indicates that the connection between the CCP and cell membrane will
be cut off, and then it will disappear quickly in the image. Therefore, intensity over time is
directly modeled by using a linear Gaussian model, given by

(9)

where Q is learned from training data.

2.4 Trajectory Estimation
There are many general methods [12] for solving the correspondence problem given the
detection data. We use the multiple hypothesis approach [13] due to its flexibility and tailor
it to our application.

Suppose the CCP trajectory i starts from time (frame) t1 and ends at time t2. The lifetime of

the CCP is t2 − t1 + 1. The cost of the trajectory is defined as .

The cost of the correspondence between the CCP trajectory i in frame t − 1 and the detected

CCP k in frame t is defined as . Here,  is the kth

“candidate” for state , and . Measurements of the states are
provided by the detection module discussed in section 2.2. Since the key biological
parameter is CCP lifetime, measurement noises of positions and intensities can be ignored.

To deal with CCP appearing, set , which means the CCP's
intensity is low when it is created. To deal with CCP disappearing, set

, which means it will leave the current position
with a low intensity. bt is the background intensity level, and σb(t) is the standard deviation
of background intensities. Δx and Δy are set to ησm. Multiplication factors (γ and η) are
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learned from training data. For t ∈ [1, t1 − 1] ∪ [t2 + 2, T], set ,
which means the states are irrelevant when the CCP has not been created or has disappeared.

By using Eq.(3), the total cost is defined as

(10)

With these cost functions, multiple hypotheses can be generated and pruned to find the
correspondences associated with the minimal total cost. We develop an algorithm based on
MHT [13]. The generation of hypotheses is achieved by random sampling according to the
soft-assign matrices [14].

3 Experimental Results
3.1 Evaluation on Synthetic Data

The proposed method is evaluated on synthetic 2D image datasets. Each dataset is generated
from a noise-free image sequence of moving particles (200 images of 120×120 pixels) by
adding different level of noises, and the number of particles (CCPs) is 386. To simulate CCP
motion, we fit Gaussian distributions to the histograms of displacements and deviations from
the mean positions, and therefore trajectories can be generated by sampling from these fitted
distributions. Each simulated CCP has a linear intensity-time curve. We choose exponential
distribution as the lifetime distribution based on the current knowledge about CCPs. If a
CCP's intensity is near the background level, it may not be discriminated from noise.
Therefore, the SNR of a dataset is defined as

Since the key parameter is CCP lifetime, tracking accuracy is defined as

The definition is similar to the metric in [15]. The best match between ground truth
trajectories and estimated trajectories are found by using the matching algorithm in [15].
Supposing that the estimated trajectory k is matched to the ground truth trajectory n, if a
detected CCP in any frame is associated with both trajectories, then the estimated trajectory
k has a correct association.

We also test the method reported in [10]. It uses pure Brownian motion model which allows
CCPs move freely, and it does not consider intensity variations of individual CCPs. For
detection, its model fitting module is selected because CCPs are homogeneous in the
simulation.

The Accuracy - SNR curves are shown in Fig. 4(a). The proposed method is consistently
more accurate, most likely in part due to the better models.
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3.2 Evaluation on Real Data
COS7 cells were electroporated with clathrin light chain GFP construct using the Amaxa
Nucleofector method, and were plated at subconfluent densities into 35mm glass bottom
dishes, and allowed to grow for 12 to 48 hours. Then, TIRFM images were acquired using
an inverted microscope equipped with a high numerical aperture (NA=1.49, 60×) lens
(Olympus) and a back illuminated Andor iXon887 EMCCD camera, controlled by Andor iQ
software (Andor Technology).

Since ground truth is not available, 30 CCPs are manually tracked by a human expert
biologist, to serve as reference data. To show the effectiveness of the proposed CCP models,
we test the trajectory estimation modules of the proposed method and the method in [10]
based on the same detection data provided by the method in section 2.2. The results are
shown in Fig. 4(b)–(d). Kolmogorov-Smirnov test (KS-test) is used to measure the
difference between lifetime distributions. The proposed method has good agreement with
manual tracking (p>0.5). The alternative method produces longer trajectories (p<0.01),
which is most likely to happen when new CCPs appear in the vicinities of disappeared
CCPs. Thus, better models are helpful to prevent erroneous links.

4 Conclusion
We have proposed a method to automatically track Clathrin Coated Pits (CCPs) in clathrin
mediated endocytosis (CME). Starting from a MAP framework, we have developed
algorithms for CCP detection and trajectory estimation. Some properties of CCPs are
considered in our models, which is different from related works. We also consider the
Poisson image noise in the mixture model fitting procedure. The proposed method has been
demonstrated on synthetic data and real data. It will be used by the biologists to investigate
mechanisms of CME.
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Fig. 1.
(a) Different stages of CME. (b) An image taken with SDCM. (c) A sequence showing a
CCP in different stages.
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Fig. 2.
TIRFM is used and clathrin is fluorescently labeled. (a) Histogram of an original image with
fitted distributions. (b) Histogram of the local maxima on the filtered image with fitted
distributions. (c) A cropped region. (d) The positions of detected CCPs in the region.
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Fig. 3.
TIRFM is used and AP-2 complex is fluorescently labeled. (a) The intensity-time curve of
the CCP. (b) Each red dot indicates the position at each time t, and each green curve shows
the trajectory up to each time t.
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Fig. 4.
(a) Accuracy-SNR curves. (b) Empirical cumulative distribution functions (CDFs) of
lifetimes. (c) Samples of trajectories obtained by using the proposed method. (d) Samples of
trajectories obtained by using the trajectory estimation module of the method in [10]. Red
dots indicate the positions of the CCPs at t=33 and green curves show their trajectories up to
the time t.
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