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Abstract
External beam radiation therapy (EBRT) for the treatment of cancer enables accurate placement of
radiation dose on the cancerous region. However, the deformation of soft tissue during the course
of treatment, such as in cervical cancer, presents significant challenges for the delineation of the
target volume and other structures of interest. Furthermore, the presence and regression of
pathologies such as tumors may violate registration constraints and cause registration errors. In
this paper, automatic segmentation, nonrigid registration and tumor detection in cervical magnetic
resonance (MR) data are addressed simultaneously using a unified Bayesian framework. The
proposed novel method can generate a tumor probability map while progressively identifying the
boundary of an organ of interest based on the achieved nonrigid transformation. The method is
able to handle the challenges of significant tumor regression and its effect on surrounding tissues.
The new method was compared to various currently existing algorithms on a set of 36 MR data
from six patients, each patient has six T2-weighted MR cervical images. The results show that the
proposed approach achieves an accuracy comparable to manual segmentation and it significantly
outperforms the existing registration algorithms. In addition, the tumor detection result generated
by the proposed method has a high agreement with manual delineation by a qualified clinician.
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I. Introduction
EACH year in the United States about 12 200 women are diagnosed with invasive cervical
cancer [1]. This cancer is a major health threat for women in less developed nations where
vaccination programs are likely to have minimal impact, with 529 900 incidences and 275
100 deaths worldwide in 2008 [2]. The traditional treatment for carcinoma of the cervix has
been by surgery or external beam radiation therapy (EBRT). However, when the disease is
at an advanced stage, EBRT is the primary modality of treatment, in combination with
chemotherapy [3]. Radiotherapy is feasible, effective, and is used to treat over 80% of
patients [4]. For some patients, a special type of EBRT is employed, known as intensity
modulated radiotherapy (IMRT) [5]. In general, but especially in cases requiring IMRT,
understanding and accounting for soft tissue change during fracionated treatment is
important. Fig. 1 shows an example of a 3-D dose plan created for a patient undergoing
IMRT for cervical cancer. The dose plan is overlaid on the planning-day CT image, with the
tumor outlined in red, bladder in yellow, and rectum in green.

Imaging systems capable of visualizing patient soft-tissue structure in the treatment position
have become the dominant method of positioning patients for both conformal and
stereotactic radiation therapy. Traditional computed tomography (CT) images suffer from
low resolution and low soft tissue contrast, while magnetic resonance (MR) imaging is able
to characterize deformable structure with superior visualization and differentiation of normal
soft tissue as well as tumor-infiltrated soft tissue. MR imaging also performs better for
measuring cervical carcinoma size and uterine extension [7]. Meanwhile, advanced MR
imaging with modalities such as diffusion, perfusion and spectroscopic imaging has the
potential to better localize and understand the disease and its response to treatment [8].
Therefore, magnetic resonance guided radiation therapy (MRgRT) systems with integrated
MR imaging in the treatment room are now being developed as an advanced system in
radiation therapy [9].

During radiation therapy treatment, a patient is irradiated multiple times across the whole
treatment process that usually lasts for more than several weeks. The main factor controlling
the success of treatment is dose targeting, i.e., delivering as much dose as possible to the
tumor [gross tumor volume (GTV)], while trying to deliver as little dose as possible to
surrounding organs at risk [10]–[12]. Thereafter, accurate localization of the GTV and
neighboring normal structures is essential to effectively aim the dose delivery. However,
precise delineation of the tumor as well as the soft tissue structure is challenging because of
structure adjacency and deformation over treatment. Due to unpredictable inter- and intra-
fractional organ motion over the process of the weekly treatments, it is desirable to adapt the
original treatment plan to changes in the anatomy, which requires an accurate mapping and
precise anatomical correspondence between treatment and planning day. Another important
factor in radiation therapy concerns the treatment margins around the GTV that form the
clinical target volume (CTV) [13]. The prescribed margin is used to accommodate
uncertainties in the position of the target volumes, and the uncertainty can be high due to the
large movement of the bladder, uterus and rectum. Therefore, the clinical motivations to
shrink the margin, to place accurate dosage and to adapt the treatment plan call for a robust
method that can achieve precise organ segmentation, tumor detection, and nonrigid
registration.
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A. Previous Work
Some previous work has been performed in simultaneously handling registration as well as
segmentation, and some interesting results have been reported. Chelikani et al. integrated
rigid 2-D portal to 3-D CT registration and pixel classification in an entropy-based
formulation [14]. Yezzi et al. integrated segmentation using level sets with rigid and affine
registration [15]. A similar method was proposed by Song et al., which could only correct
rigid rotation and translation [16]. Unal et al. proposed a PDE-based method without shape
priors [17]. Pohl et al. performed voxel-wise classification and registration which could
align an atlas to MRI [18]. Chen et al. used a 3-D meshless segmentation framework to
retrieve clinically critical objects in CT and cone-beam CT data [19], but no registration
result was given. Lu et al. performed an iterative conditional mode (ICM) strategy and
integrated constrained nonrigid registration and deformable level set segmentation [12],
[20]. On the other hand, the automatic mass detection problem mainly focuses on the
application of mammography [21]. Recently, Song et al. proposed a graph-based method to
achieve surface segmentation and regional tumor segmentation in one framework for
pulmonary CT images [22], no registration incorporated though. Very limited work has been
reported to register cervical MR images. [23] investigated the accuracy of rigid, nonrigid,
and point-set registrations of MR images for interfractional contour propagation in patients
with cervical cancer. Staring et al. presented a multifeature mutual information based
method to perform registration of cervical MRI [24].

However, the presence of pathologies such as tumors may violate registration constraints
and cause registration errors, because the abnormalities often invalidate gray-level
dependency assumptions that are usually made in intensity-based registration. Furthermore,
the registration problem is particularly challenging due to the missing correspondences
caused by tumor regression. Incorporating knowledge about abnormalities into the
framework can improve the registration. All of the above approaches neglect the
deformation generated by abnormalities, while such deformation is usually significant
during the treatment of cervical cancer. Greene et al. [5] updated the manually created
treatment plan of the planning day, to that of the treatment day. Automatic updates are
approximated by performing a nonrigid intrasubject registration, and propagating the
segmentation of the planning day to the treatment day. However, for cervical cancer
radiotherapy cases, propagation of the GTV segmentation is probably not possible with
intensity based registration only. Even if anatomical correspondence is found, tumorous
tissue may disappear in time due to successful treatment. Staring et al. [24] and Lu et al.
[12] mention this challenge but do not give any solution. The tumor regression phenomenon
distorts the intensity assumptions and raises questions regarding the applicability of the
above approaches.

Limited work has been reported for handling tumor in registration framework. Kyriacou et
al. [25] presented a biomechanical model of the brain to capture the soft-tissue deformations
induced by the growth of tumors and its application to the registration of anatomical atlases.
Mohamed et al. [26] and Zacharaki et al. [27] proposed similar approaches. However, these
methods are only applied to brain MRI and can not solve the missing correspondence
problem induced by tumor regression in radiotherapy treatment course.

B. Our Contributions
Since a standard approach based on MR image intensity matching only may not be sufficient
to overcome these limiting factors, in this paper, we present a novel probability based
technique as an extension to our previous work in [28], for the motivations mentioned
above. Our model is based on a maximum a posteriori (MAP) framework which can achieve
deformable segmentation, nonrigid registration and tumor detection simultaneously. The
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deformable segmentation extends the previous level set deformable model with shape prior
information, and the constrained nonrigid registration part considers organ surface matching
and intensity matching together. Different from our previous work [12], in this paper, a
tumor probability map is simultaneously generated, which estimates each voxel’s probability
of belonging to tumor. A key novelty of this paper is that the intensity matching is defined
as a mixture of two distributions which statistically describe image gray-level variations for
two pixel classes: tumor and normal tissue. The mixture of the two distributions is weighted
using the tumor probability map. The constraint of the transformation is also constructed in a
weighted mixture manner, where the probability density functions are well-designed
functions of the transformation’s Jacobian map, and the constraint guarantees the
transformation to be smooth and simulates the tumor regression process.

In this manner, we can interleave the segmentation, registration and detection processes, and
take proper advantage of the dependence among them. Using the proposed approach, it is
easy to calculate the location changes of the lesion for diagnosis and assessment; thus we
can precisely guide the interventional devices toward the tumor during radiation therapy.
Escalated dosages can then be administered while maintaining or lowering normal tissue
irradiation. There are a number of clinical treatment sites that will benefit from our MR-
guided radiotherapy technology, especially when tumor regression and its effect on
surrounding tissue can be significant. Here we focus on the treatment of cervical cancer as
the key example application.

The remainder of this paper is organized as follows. In Section II, details about the unified
framework are given. Deformable segmentation, nonrigid registration and tumor detection
modules are explained in details. In Section III, we provide experimental results using our
new approach. We also compare the results with those obtained with existing methods. In
Section IV, we provide a discussion of our approach, and conclude this paper.

II. Methods
Fig. 2 illustrates the workflow of our proposed algorithm. First, a preprocedural (planning
day) MR image is captured before the treatment. Then, the GTV, bladder, and uterus are
manually segmented for therapy planning. During the course of treatment, the weekly intra-
procedural MR image is first obtained, and the clinicians perform the preprocessing steps,
i.e., image reslicing, etc. Then, our proposed method is performed. The 3-D normal tissue
segmentation, tumor detection and nonrigid registration modules are performed iteratively,
and the algorithm converges when the difference between two consecutive iterations is
smaller than a prescribed threshold.

A. A Unified Framework: Bayesian Formulation
Using a probabilistic formulation, various models can be fit to the image data by finding the
model parameters that maximize the posterior probability. Let I0 and Id be the planning day
(day 0) and treatment day (day d) 3-D MR images, respectively, and S0 be the set of
segmented planning day organs. A unified framework is developed using Bayesian analysis
to calculate the most likely segmentation in the treatment day fractions Sd, the deformation
field between the planning day and treatment day data T0d, and the tumor map Md at
treatment day which associates with each voxel of the image its probability of belonging to a
tumor

(1)
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As in our previous effort [12], this problem is reformulated so that it is solved in two basic
iterative computational stages [29]. With k indexing each iterative step, we have

(2)

(3)

These two equations represent the key problems we are addressing. Equation (2) estimates

the segmentation of the treatment day structure . Equation (3) estimates the next

iterative step of the mapping  between the day 0 and day d spaces, as well as the tumor
probability map Mk+1 in treatment day.

B. Segmentation
The segmentation module here is similar to our previous work [12], [28]. In this paper, we
use (2) to segment the normal or noncancerous organs (bladder and uterus). For the sake of

simplicity, we assume the normal organ segmentations  here are independent of the
abnormal tumor map M. Bayes’ theorem is applied to (2)

(4)

1) Shape Prior Construction: Nonparametric Kernel Density Estimation Model
—Here we assume that the priors are stationary over the iterations, so we can drop the k

index for that term only, i.e., . Instead of using a point model to represent the
object, we choose a level set representation of the object to build a model for the shape prior,
and then define the probability density function p(Sd) in (4).

The Bayesian formulation of the image segmentation problem allows us to introduce higher-
level prior knowledge about the shape of expected objects. The first application of shape
priors for level set segmentation was developed by Leventon et al., who proposed to
perform principal component analysis (PCA) on a set of signed distance functions
embedding a set of sample shapes [30]. This PCA-based approach was widely accepted by
researchers and it works well in practical applications ([20], [31]–[34]). However, the use of
PCA to model level set based shape distributions has two limitations. Firstly, the space of
signed distance functions is not a linear space, i.e., arbitrary linear combinations of signed
distance functions will in general not correspond to a valid signed distance function.
Secondly, the PCA-based methods typically use the first few principal components in the
feature space to capture the most variation on the space of embedding functions. As a
consequence, they may need a larger number of eigenmodes to capture certain details of the
modeled shape [33].

Instead of using the PCA-based priors, in this paper, we use a nonparametric technique of
kernel density estimation (KDE) to model the shape variation, which addresses above
limitations and allows the shape prior to approximate arbitrary distributions [35], [36].
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Consider a training set of n rigidly aligned images, with L objects or structures in each
image. Fig. 3 shows a training set of bladders overlaid on six MR pelvic images. Ideally, the
rigid alignment removes the pose variability in the training data, and what remains is just
shape variability. The training data were generated from manual segmentations by a
qualified clinician. Each object in the training set is embedded as the zero level set of higher
dimensional level sets Ψ1, …, Ψn with negative distances outside and positive distances
inside the object. The prior constructing problem then is to estimate p(Sd) = p(ΨSd) from
which the training samples Ψ1, …, Ψn are drawn. This density is a probability density over
an infinite dimensional space. We would like to leave the shape of this density
unconstrained, therefore we adopt a nonparametric density estimation route. Assuming that
we have a distance metric D(·, ·) in the space of implicit surfaces Ψ, we can form a Parzen
density estimator as follows:

(5)

where k(·, σ) denotes a Gaussian kernel with kernel size σ, i.e.,

(6)

Conceptually, the nonparametric density estimate in (5) can be used with a variety of
distance metrics. Kim et al. [36] provide a detailed analysis of different distance metrics
including template metric and Euclidean distance, etc.

With the level set representation, the above Parzen density estimator (5) can be rewritten
explicity in terms of Ψ as well as the distance metric. Here, we define the distance measure
between level set shapes (DLS) as the area of the symmetric difference, as was previously
proposed [35], [37]

(7)

where H is the Heaviside function

(8)

There exist extensive studies on how to optimally choose the kernel width σ, based on
asymptotic expansion such as heuristic estimates [38] or maximum likelihood optimization
by cross validation [39]. For this work, we simply fix σ2 to be the mean squared nearest-
neighbor distance

(9)

The intuition behind this choice is that the width of the Gaussian is chosen such that on
average the next training shape is within one standard deviation [35].

When learning a reference level set from training shapes, the PCA-based approaches need to
make the statistical assumption that the training shapes are distributed according to a
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Gaussian distribution. This assumption sometimes does not hold since many real-world
objects undergo complex shape variations in different scenarios. On the other hand, the
nonparametric technique of KDE model allows the shape prior to approximate arbitrary
distributions. Since the level sets are not linear functions, the problem of applying PCA to
level sets is that it tries to represent nonlinear distance functions and their variation. In this
paper, we do not have this problem since KDE estimates the probability of the surface, not
the variations.

2) Segmentation Likelihoods—As we did previously [12], we impose a key assumption
here: the segmentation likelihood term is separable into two independent data-related
likelihoods, requiring that the estimation of the normal structure at day d be close to: 1) the
same structure segmented at day 0, but mapped to a new estimated position at day d by the

current iterative mapping estimate  and 2) the intensity-based feature information derived
from the day d image.

In (4),  constrains the organ segmentation in day to be adherent to the

transformed day 0 organs by current mapping estimation . The segmented object is still
embedded as the zero level set of a higher dimensional level set Ψ. Thus, we use the
difference between the two level sets to model the probability density of the day 0
segmentation likelihood term

(10)

where x represents all the voxels in the image domain, and Z is a normalizing constant that
can be removed once the logarithm is taken.

In (4),  indicates the probability of producing an image Id given . In three-
dimensions, considering L organs in the image, assuming gray level homogeneity within
each object, we use the imaging model defined by Chan and Vese [40] in (11), where c1–obj

and σ1–obj are the average and standard deviation of Id inside , and σ2–obj are

the average and standard deviation of Id outside  but also inside a certain domain Ω

that contains 

(11)

In practice, MR images often suffer from intensity inhomogeneity due to various factors,
such as spatial variations in illumination and imperfections of imaging devices [41]. In our
work, the clinicians perform the bias field correction after the acquisition of MR images, in
order to eliminate the intensity inhomogeneity. In addition, we also incorporate the
constraints from registration to guide the surface evolving [use (10)], which guarantees an
accurate segmentation.

3) Energy Function—Combining (5), (10), and (11), we introduce the segmentation
energy function Eseg defined by
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(12)

The parameters λ1, λ2, γ, μ are used to balance the influence of the registration constraint,
KDE prior model and the image information model. Notice that the MAP estimation of the

objects in (12), , is also the minimizer of the above energy functional Eseg. This
minimization problem can be formulated and solved using the level set surface evolution
method [42].

To simplify the complexity of the segmentation system, we generally choose the parameters
in our experiments as follows: λ1 = λ2 = λ, μ = 0.5. This leaves us only two free parameters
(λ and γ) to balance the influence of two terms, the constraints from registration module and
the image data term. The tradeoff between these two terms depends on the strength of the
constraints and the image quality.

C. Registration and Tumor Detection
In this section, in order to solve the challenging intrapatient registration problem while
taking tumor detection into consideration, we develop a novel module that is different from
previous registration approaches [5], [12], [24], [43]–[47]. The goal here is to register the
planning day (0) data to the treatment day (d) data and carry the planning information
forward, as well as to carry forward segmentation constraints. In the mean time, the tumor
detection map M is estimated, which associates each pixel in the image to its probability of
belonging to a tumor.

The second stage of the proposed strategy described above in (3) can be further developed

using Bayes rule. As indicated in Section II-B, the normal organ segmentations  are
independent of the tumor detection map Md, and the priors are stationary over the iterations

(13)

The first term on the right-hand side represents the conditional likelihood related to mapping
the segmented soft tissue structures (organs) at days 0 and d, and the second term registers
the intensities of the images while simultaneously estimating the probability tumor map. The
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third term constrains the overall nonrigid transformation, and the fourth term represents
prior assumptions for the tumor map.

1) Segmented Organ Matching—To begin breaking down the organ matching term,

, we must make the reasonable assumption that the individual organs can be
registered

(14)

with L represents the number of objects in each image.

As discussed in the segmentation section, each object is represented by the zero level set of a
higher dimensional level set Ψ. Assuming the objects vary during the treatment process
according to a Gaussian distribution, and given that the different organs can be mapped,
respectively, we further simplify the organ matching term to be

(15)

where , and ωobj are used to weight different organs. Z1 is a constant that can

be omitted when the logarithm is taken. When maximized with respect to , the organ
matching term ensures the transformed day 0 organs and the segmented day d organs align
over the regions. We note that ultimately we may use several organs here (rectum, uterus,
and bladder) in the future, although in some applications (e.g., biomarker development) only
the uterus is the key organ. In this paper, we use the uterus and the bladder as the
constraints.

2) Intensity Matching and Tumor Probability Map Estimation—To determine the
relationship between a planning day image and a treatment day image, a similarity criterion
which determines the degree of match between the two images must be defined. Previous
works have made use of various intensity matching similarity metrics, including sum of
squared differences (SSD) [5], normalized correlation coefficient (NCC) [20], mutual
information (MI) [44], [48], and multifeature mutual information (α-MI) [24]. However, all
of the above methods use a single similarity metric, and their intensity dependency
assumptions are often invalidated due to the existence and regression of tumor.

For our work, in order to define the likelihood term , we assume
conditional independence over the voxel locations x. This assumption is reasonable and the
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image processing/computer vision literature are replete with this correlated random field
image models [49]

(16)

Different from previous work which only use a single similarity metric, here we model the

probability of the pair  to be dependent on the class of
each voxel. Each class is characterized by a well-designed probability distribution, denoted

by pN for the normal tissue pT and for the tumor. Let  be the tumor map which
associates with x its probability of belonging to a tumor, the probability distribution

 can be defined as a mixture of the two class
distributions

(17)

Normal Tissue Class—Across the treatment procedure, the tumor experiences a
regression process if the treatment is successful [13]. The tumor regression is illustrated in
Fig. 4, which presents a plot of mean relative tumor volume as measured with weekly MRI
during EBRT in five patients with cancer of the uterine cervix.

As the tumor shrinks, part of the tumor turns into scar, and returns to the intensity level near
normal tissue. Thereafter, normal appearing tissue in treatment day MR has two origins:
originally normal tissue (type I), and tumor that returns to a normal intensity level due to
treatment (type II). We choose two different probabilities for these two types. The
histograms of normal cervical tissue and tumor are plotted in Fig. 5. From current clinical
research [50] and Fig. 5, we can see that the intensities of tumor are generally much higher
than those of normal cervical tissue in T2-weighted MR images.

Therefore, for the sake of simplicity, we characterize normal tissue of type II (tumor that
returned to normal intensity) as areas with much lower intensity in treatment day MR [50].
We assume a voxel labeled type II in day d MR can match any tumor voxel in day 0 with
equal probability and use a uniform distribution. The remaining normal tissue voxels are
labeled as type I normal tissue (always normal since the planning day), which are modeled
assuming a discrete Gaussian distribution across the corresponding voxel locations

(18)

where c is the number of voxels in the day 0 tumor, and Δ is the predetermined threshold
used to differentiate the intensity of normal and tumor tissue.

Tumor Class—The definition of the tumor distribution is a difficult task. Similar to
normal tissue, the tumor tissue in treatment day MR also has two origins. One is the tumor
tissue in planning day MR (type I), which represents the remaining tumor after the
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radiotherapy. We assume a voxel in the residual tumor can match any voxel in the initial
tumor (day 0) with equal probability and use a uniform distribution. The other origin of the
tumor class in day d (type II) is from normal tissue in planning MR that has become tumor
due to disease progression. This type is characterized with a much higher intensity in day d
image[50]. We assume that each normal voxel in the day 0 MR can turn into a tumor voxel
with equal probability. Thus, this type is also modeled using a uniform distribution, but with
lower probability, since the chance of this deterioration process is relatively small across the
radiotherapy treatment

(19)

where V is the total number of voxels in MR image, c is the number of voxels in the day 0
tumor [the same as in (18)].

3) Transformation Smoothness: Weighted Non-Negative Jacobian Constraints
—To constrain a transformation to be smooth, a penalty term which regularizes the
transformation is required [12]. The penalty term will disfavor impossible or unlikely
transformation, promoting a smooth transformation field and local volume conservation or
expected volume change. Previously, regularization measures based on the bending energy
of a thin-plate of metal have been widely used [12], [43]; this kind of constraint penalizes
nonaffine transformations.

A key property of nonrigid transformations is the determinant of the Jacobian of the
transformation, often referred to as the Jacobian map. This measure gives the local volume
expansion required to map the images. If the determinant of the Jacobian is equal to 1, then
there is no volume change; if it is greater than 1, it implies that the fixed image is bigger
than the moving image; whereas if it is less than 1, it implies that the moving image has to
be shrunk to match the target [51]. If this value goes below zero (or even close to zero), it is
a sign of trouble, which implies that the transformation has become singular. In such cases,
one can discard the transformation and repeat the registration with higher smoothness
settings.

The use of the Jacobian map as a regularization constraint has been introduced into image
registration [48], [51], [52]. Here, we extend the previously reported Jacobian penalty
methods by designing a novel regularization term to constrain the deformation. The new
regularization is based on the weighted sum of two probability density functions computed
from the Jacobian map. Similar to the discussion of (16) and (17), here we have

(20)

We expect the transformation to be nonsingular hence we would like to have a large penalty
on a negative Jacobian for normal tissues. Meanwhile, we simulate the tumor regression
process by constraining the determinant of the transformation’s Jacobian at tumor M(x) to be
between 0 and 1. In our approach, pN and pT are calculated using the modified continuous
logistic functions: (∊ = 0.1)
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(21)

(22)

pNand pT are plotted in Fig. 6. These constraints (pN and pT) penalize negative Jacobians,
thus reduce the probability of folding in the registration maps. pT encourages the
determinant of the transformation’s Jacobian to be less than 1, which simulates the tumor
regression process.

We have studied tumor regression [53] using structural MR images from 27 cervical cancer
patients receiving EBRT [53]. Tumor regression was estimated from manually-outlined
surfaces of any residual tumor during treatment. Regression occurred for all patients, but the
shapes of the regression curves and the relative volume reduction varied substantially.
Therefore, it is reasonable to make the assumption that the Jacobian constraint for the tumor
label lies between 0 and 1; and the underlining assumption of (18), i.e., each tumor voxel
might return to normal with equal probability, is also applicable.

4) Tumor Map Prior—We assume that the tumor map arises from a Gibbs distribution

(23)

where Z is a normalization constant, and U(Md) is a discrete energy of regularization. Many
specific terms can be defined to describe the spatial configurations of different types of
lesion. The previous detection approaches applied to mammography have a tendency to
over-detect (to find more regions than the real ones) [21], hence in this paper, we use an
energy restricting the total amount of abnormal pixels in the image

(24)

5) Registration – Detection Energy Function—Combining the above (13), (15), (16),
(17), (20), (24), we introduce
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(25)

At each iteration,  and  are updated by minimizing (25). Equations (12) and (25)
run alternatively until convergence. Thereafter, the soft tissue segmentation as well as the
nonrigid registration and tumor detection in day d benefit from each other and are estimated
simultaneously.

6) Transformation Model—The registration module is implemented using a hierarchical
multi-resolution free form deformation (FFD) transformation model based on cubic B-
splines. An FFD based transform was chosen because an FFD is locally controllable due to
the underlying mesh of control points which are used to manipulate the image [54]. B-
splines are locally controlled, which makes them computationally efficient, even for a large
number of control points. Local control means that cubic B-splines have limited support,
such that changing one control point only affects the transformation in the local
neighborhood of the manipulated control point [5], [43], [47], [54].

D. Implementation
The practical implementation of the algorithm described by the solution of (2) and (3) will
proceed as follows.

1) Initialization—First, an expert manually segmented the key soft tissue structures (S0) in
the planning 3-D MR images, i.e., the bladder, uterus, cervix, and GTV. Then, the first

iterative estimate (k = 1) of a nonrigid mapping from day 0 to day  will be formed.
This is done by performing a intensity based conventional nonrigid registration. The first
iterative estimate (k = 1) of the tumor probability map (M1) is initiated to be bi-modal. For
the pixels within the planning day cervix (including normal cervix tissue and GTV), the
probability is set to be the ratio of day 0 GTV volume divided by the day 0 overall cervix
tissue volume. For the pixels outside the planning day cervix, the initial probability is set to
be cervix tissue volume divided by the whole image volume.

2) Iterative Solution—Here we alternately perform: (a) Segmentation: Using the current
transformation estimated, the soft tissue segmentations obtained at day 0 will be mapped

into day d, thus forming . Now using this information as a constraint, as well as the
likelihood information and shape prior model defined in Section II-B, the segmentation

module (12) is run, producing the soft tissue segmentations at day . (b) Registration
and Tumor Detection: A full 3-D nonrigid mapping of the 3-D MRI from day 0 to the day d
3-D MRI is estimated in the second stage using (25), producing a newer mapping estimation

. Meanwhile, the tumor map Mk+1 is also updated. The two steps run alternatively
until convergence. Thereafter, the normal tissue segmentation in day d, nonrigid
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transformation between planning day and treatment day, as well as the tumor probability
map at day d are estimated simultaneously. For the optimization, we use the level set surface
evolving technique to update the segmentation after each iteration, and the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method [55] is used to solve registration-detection
module. Due to the difficulty of obtaining the analytic gradient of the entire energy function,
we use a numerical gradient.

III. Results
A. Data and Training

MR data were acquired with a GE EXCITE 1.5T magnet from six different patients
undergoing EBRT for cervical cancer at Princess Margaret Hospital, Toronto, ON, Canada.
Each patient was scanned six times, one scan at baseline and then every week of treatment,
i.e., 36 MR images overall. T2-weighted, fast spin echo images (echo time/repetition time
100/5000 ms, voxel size 0.36 mm × 0.36 mm × 5 mm, and image dimension 512 × 512 ×
38) were acquired in all cases. Bias field correction was performed so that the intensities can
be directly compared, and the MR images were resliced to be isotropic with a clinically
applicable spatial resolution 2 mm × 2 mm × 2 mm, and image dimension 92 × 92 × 95,
using the software BioImage Suite 3.0 [56]. MR data were acquired with a GE EXCITE
1.5T magnet from six different patients undergoing EBRT for cervical cancer at Princess
Margaret Hospital, Toronto, ON, Canada. Each patient was scanned six times, one scan at
baseline and then every week of treatment, i.e., 36 MR images overall. T2-weighted, fast
spin echo images (echo time/repetition time 100/5000 ms, voxel size 0.36 mm × 0.36 mm ×
5 mm, and image dimension 512 × 512 × 38) were acquired in all cases. Bias field
correction was performed so that the intensities can be directly compared, and the MR
images were resliced to be isotropic with a clinically applicable spatial resolution 2 mm × 2
mm × 2 mm, and image dimension 92 × 92 × 95, using the software BioImage Suite 3.0
[56].

Manual segmentations of the GTV, bladder, and uterus were available for each image. They
were created by a radiation oncologist and approved by a radiologist. The manual
segmentations of bladder and uterus was used to form the training set. We adopted a “leave-
one-patient-out” test that alternately chose one patient out of the 30 sequences to validate
our algorithm. The tested images were not included in the corresponding training sets. Fig. 3
shows a training set for bladder overlaid on six MR pelvic images. Using the KDE approach
described in Section II-B1, we built a model of the shape profile of the bladder and uterus.
The manual segmentations of GTV were not used in the algorithm, but for evaluating the
detection results only.

B. Segmentation Results
In this section, we describe and evaluate the segmentation result of normal structures; the
delineation result for cancerous tumor tissue will be discussed in Section III-D. Figs. 7 and 8
show example segmentation results for bladder and uterus using the proposed method,
respectively. Both figures present the coronal, sagittal, axial, and 3-D views of the
segmented surface. The results presented here are achieved with parameters λ = 0.3, γ = 0.7.
The algorithm typically converges in 20–30 iterations, and it usually takes around half an
hour on a 8 Core 2.83 GHz Intel XEON CPU with 16 G RAM using MATLAB.
Implementing using C++ is able to speed it up to achieve a more acceptable performance for
usage.

To validate the segmentation results, we compare the expert’s manual delineations (which
are used as ground truth) to the automatic results using three metrics, namely mean absolute
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distance (MAD), Hausdorff distance (HD), and Dice coefficient. While MAD represents the
global disagreement between two contours, HD compares their local similarities [57], and
Dice coefficient evaluates their volume overlaps.

We compare the experimental results from our algorithm with those obtained from
segmentation using an active contour model (defined by Chan and Vese [40]), level set
active shape models with shape priors only (defined by Leventon et al. [30]), and iterative
conditional mode (ICM) model we described previously [12]. Tables I and II use MAD, HD
and Dice coefficient to quantitatively analyze the segmentation results on bladder and uterus
surfaces, respectively.

From Tables I and II, we see that the Chan–Vese method produces the largest error and
lowest Dice coefficients for both bladder and uterus. The key reason is that the Chan–Vese
model assumes the image to be bi-modal, which is mostly unrealistic in actual medical
images. The Leventon model incorporates a shape prior into the segmentation framework
[30], and provides better results than Chan–Vese model. Our previously developed ICM
model takes the shape prior as well as the registration constraints into consideration [12],
and thus performs much better than both the Chan–Vese model and the Leventon model.
However, the ICM model uses a PCA-based prior, and the PCA-based level set method only
works well when the shape variation is relatively small, so that the space of signed distance
functions can be approximated by a linear space[36]. The proposed algorithm in this paper
replaces the PCA prior with a KDE based prior, which allows the shape prior to approximate
arbitrary distributions. From Tables I and II, we observe that both MAD and HD decrease
with the proposed method, while Dice coefficient increases slightly compared to the ICM
model. The quantitative results imply that our newly developed method has a consistent
agreement with the manual segmentation, and performs equally with our previous ICM
technique, yielding an approach that performs accurated segmentation while now
incorporating nonrigid registration as well as tumor estimation.

C. Registration Results
In Fig. 9, a typical example registration result is given; the checkerboard and deformed grid
are also presented. The treatment day image (a) and planning day image (b) are quite
different largely due to the filling of the bladder, therefore, a large deformation is required at
that position. Much less deformation is expected near the bony anatomy; see the bottom and
right side of Fig. 9(a) and (b). The example shows accurate registration near both the bladder
and the bony area using the proposed approach; see Fig. 9(c) and (d). The deformed grid is
presented in Fig. 9(e). Due to the use of Jacobian constraints, Fig. 9(e) shows no folding in
the deformation field generated by our method. Fig. 9(f) illustrates the organ matching result
using the proposed method; the nonrigid alignment of the bladder is seen here. The
parameters in (25) are set to be ωuterus = ωbladder = 0.5.

The registration performance of the proposed algorithm is also evaluated quantitatively. For
comparison, a rigid registration (RR), an intensity-based FFD nonrigid registration (NRR)
[43] using sum-of-squared difference (SSD) as the similarity metric, as well as an ICM-
based nonrigid registration [12] are performed on the same sets of real patient data. The
control point setting is kept to be the same for all the approaches.

Organ overlaps between the ground truth in day d and the transformed organs from day 0 are
used as metrics to assess the quality of the registration (Table III). We also track the
registration error percentage for both bladder and uterus, shown in Table IV. The organ
overlap is represented as percentage of true positives (PTP), while the registration error is
represented as percentage of false positives (PFP), which calculates the percentage of a
nonmatching voxels being declared as matching. Besides the above two area error metrics,
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we also use two intensity metrics to evaluate the overall performance of the different
approaches: mutual information (MI) and normalized correlation coefficient (NCC).

From Tables III–V, we find that the RR performs the poorest out of all the registrations
algorithms, while NRR performs better than RR. From our prior experience with
radiotherapy research ([5], [58]), we know that the best organ registration results occur when
the organ is used as the only constraint or one of the main constraints. Thus, it is not a
surprise to see the ICM method and the proposed method significantly outperform NRR at
aligning segmented organs. We showed [47] that the correct alignment of one organ would
help align the adjacent tissues. While the ICM method neglects tumor regression, it can not
accurately delineate the GTV, nor can it achieve precise matching at the tumor region,
which is adjacent to the bladder and uterus. The inclusion of tumor detection helps the
proposed method provide slightly better results than the ICM method. This improvement is
also confirmed by Table V.

Fig. 10 shows a registration result of the GTV neighborhood region. Fig. 10(a) was
generated using intensity-based nonrigid registration (described in [43]), from which we can
clearly observe the mismatching at the boundary of the bladder. Problems also occur around
the GTV area (red rectangle), where the tissue changes due to irradiation and tumor
regression. At such locations, the tissue intensity changes violate the gray level dependency
assumptions made in [43], which leads to severe distortion in the red rectangle. From Fig.
10(b), we see that the ICM registration performs much better but some distortion still exists
around GTV. Our proposed approach defines different matching probability density
functions for distinct tissue classes, and there is no distortion observed using the proposed
method, as shown in Fig. 10(c).

In Section II-C3, we describe the Jacobian constraints posed on the transformation; here we
present the final Jacobian map of the transformation. Fig. 11 shows the Jacobian map as a
percentage of volume expansion/contraction. From the figure, we can see that due to the use
of nonnegative Jacobian constraints in (21) and (22), the minimum of the Jacobian map is
0.36, which means that folding does not exist in our transformation field. We also use (22)
to simulate the tumor regression process, i.e., the determinant of Jacobian should be less
than 1 at GTV. The result is presented in Fig. 11, in which the bladder and GTV contours
are depicted as black and white, respectively. As expected, the volume of GTV contracts
about 20%–40%.

D. Detection Results
In this section, we describe and evaluate the performance of our tumor detection module.
Fig. 12 shows an example detection result for gross tumor volume (GTV) using the
proposed method.

Accurate propagation of the GTV segmentation or tumor detection is not possible with
currently existing registration approaches. Even if anatomical correspondence is found,
tumorous tissue may disappear in time, due to successful treatment. Registration problems
usually occur at and around the GTV, where the tissue changes due to irradiation. Staring et
al. [24] raised this issue but did not propose a solution. Fig. 13 illustrates an example of this
problem. The red contour is the original tumor at planning day (day 0), and the yellow
contour is the actual remaining tumor after three weeks of radiotherapy. We perform an
intensity based nonrigid registration (NRR) [43], and use the transformation to deform the
original GTV surface. The derived GTV propagation is depicted as the blue contour. There
is obvious disagreement between the NRR derived tumor contour and the actual GTV. Such
disagreement happens to all the existing intensity matching registration approaches ([5],
[24], [43]) when they are applied to MR guided cervical cancer radiation therapy treatment.
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The proposed method described in this paper defines the matching as a weighted mixture of
probability density functions that are carefully designed for different tissue classes, and the
new method is able to handle this difficult situation. From Fig. 14, we can see that the
detected GTV is consistent with the manual delineation, and only a slight difference exists.

We compare the tumor images obtained using our method with the manual detection
performed by a clinician. For the proposed method, we set a threshold for the tumor
probability map M. The tumor binary images are obtained with the probability threshold 0.7,
which selects all voxels that have an over 70% chance to be in the tumor. From our
experiments, we have found that the detection results are not sensitive to the threshold.
Thresholds between 0.5 and 0.8 give the same detection results within ±8% (measured using
volume size).

Using the expert manual delineations as ground truth, we quantitatively evaluate and
compare our detection results in Table VI. Since the NRR and ICM approaches do not take
the shrinkage of tumor into account, the volumes of their deformed GTV do not change
much. Hence, the Dice coefficients of the NRR and ICM methods decrease for later weeks.
On the contrary, a consistent agreement of our detection with the expert’s delineation is
shown in Table VI.

From the experiments, we find that the tumor shape has a strong influence on the
performance of the detection results. As a global trend, algorithms show more accurate
detection on circumscribed (round or oval shapes) than on ill-defined masses. This is due to
the fact that ill-defined masses have irregular and poorly defined borders, which tend to
blend into the background. On the other hand, tumor size has a weak influence on the
detection performance. From the experiments, we find that there is not a specific size where
our algorithm performs poorly, i.e., our algorithm is not sensitive to tumor size, as shown in
Table VI.

The tumor volumes detected by the algorithm are considered true positives if they overlap
with a ground truth (manual detection), and false positives otherwise. Free-response receiver
operating characteristic (FROC) curves [21] are produced as validation of the algorithm. For
performing the FROC analysis, a connected component algorithm is run to group
neighboring voxels as a single detection. The algorithm achieved 85% sensitivity at six false
positives per image. In comparison, the ICM algorithm resulted in only 50% sensitivity and
the NRR algorithm gave only 33% sensitivity at the same false positive rate. The
corresponding FROC curves are shown in Fig. 15. The proposed method shows better
specificity and achieves a higher overall maximum sensitivity.

Fig. 16 shows a representative slice from the planning day MRI with overlaid five treatment
day tumor detection contours. It can be seen that the detected tumor appears in the same
slice and the same location in the registered serial treatment images, and the tumor
regression process is clearly visible from the contours. Using the proposed technique
described in this paper, we can easily segment the organs of interest, estimate the mapping
between planning day and treatment day, and calculate the location changes of the tumor for
diagnosis and assessment, thus we can precisely guide the interventional devices toward the
lesion during image guided therapy.

IV. Conclusion
In this paper, we have introduced a unified framework for cervical MR image analysis
capable of simultaneously solving deformable segmentation, constrained nonrigid
registration and automatic tumor detection. We believe that integrating all three modules is a
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promising direction for solving difficult medical image guided radiotherapy and computer
aided diagnosis problems.

The unified framework is derived using Bayesian inference. In the segmentation process, the
surfaces evolve according to constraints from deformed contours and image gray level
information as well as prior information. The constrained nonrigid registration part matches
organs and intensity information together while taking tumor detection into consideration. It
has been shown on clinical data of patients with cervical cancer that the proposed method
produces results that have an accuracy comparable to that obtained by manual segmentation,
and the proposed method outperforms the standard registration approaches based on
intensity information only. Most importantly, it has been shown that the proposed method is
able to handle the difficult problems induced by the presence and regression of tumor, where
all of the existing registration approaches fail.

The novelty of this paper is that we define the intensity matching as a mixture of two
distributions which statistically describe image gray-level variations for different pixel
classes (i.e., tumor class and normal tissue class). These mixture distributions are weighted
by the tumor detection map which assigns to each voxel its probability of abnormality. We
also constrain the determinant of the transformation’s Jacobian, which guarantees the
transformation to be smooth and simulates the tumor regression process. In addition, the
usage of a KDE model to capture the shape variation enables the shape prior to approximate
arbitrary distributions.

One possible goal for future research is to incorporate a physical tumor regression model
and a shape predicting model into the unified framework, both to enhance the accuracy and
to improve the clinical utility of the algorithm. We will also use the dose accumulation
metric [12], [59] to extend our current effort to realize dose-guided radiotherapy [60], where
the dosimetric considerations are the basis for decisions about whether future treatment
fractions should be reoptimized, readjusted, or replanned to compensate for dosimetric
errors. The clinician will then be able to make decisions about changing margins based on
the difference between the computed and desired treatment. Escalated dosages can then be
administered while maintaining or lowering normal tissue irradiation.

In conclusion, compared to the current existing approaches, the proposed method solves the
challenging problems in image guided radiotherapy, by combining segmentation,
registration, abnormality detection into a unified framework. There are a number of clinical
treatment sites that will benefit from our MR-guided radiotherapy technology, especially
when tumor regression and its effect on surrounding tissues can be significant.
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Fig. 1.
An example of a 3-D IMRT dose plan created for a patient undergoing EBRT for cervical
cancer with tumor outlined in red, bladder outlined in yellow, and rectum outlined in green.
The dose plan was created using the Varian Eclipse Treatment Planning System [6].
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Fig. 2.
Diagram of the proposed method.
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Fig. 3.
Training set: outlines of bladders on six 3-D MR pelvic images (2-D slices shown).

Lu et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Tumor regression: plot of mean relative tumor volume.
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Fig. 5.
Histograms of normal cervix and tumor.
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Fig. 6.
Jacobian constraints: Plot for probability density functions of tumor class and normal tissue
class.
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Fig. 7.
Segmentation results for the bladder, comparing the proposed algorithm (yellow) with
manual segmentation (red). Subplots show the (a) coronal, (b) sagittal, (c) axial, and (d) 3-D
views.
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Fig. 8.
Segmentation results for the uterus, comparing the proposed algorithm (yellow) with manual
segmentation (red). Subplots show the (a) coronal, (b) sagittal, (c) axial, and (d) 3-D views.
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Fig. 9.
Registration results: The (a) treatment day (fixed) MR image and (b) the planning day
(moving) image are quite different, and a large deformation is required. (c) The deformed
moving image using the proposed method. (d) Checkerboard of the fixed image and the
deformed image. (e) The achieved non-rigid transformation visualized by the underlying
grids. (f) Matching of bladder surfaces using the proposed method.
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Fig. 10.
Registration results of image pair from Fig. 9 around the GTV region. (a) Intensity based
nonrigid registration method (NRR). Severe distortion is visible. (b) ICM based nonrigid
registration. Much better than NRR, but some distortion still exists. (c) Proposed method.
No distortion is observed.
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Fig. 11.
Jacobian map shown as percentage of volume expansion/contraction. Bladder contour
(black) and GTV contour (white) are plotted.
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Fig. 12.
Detection results for GTV. Subplots show the (a) coronal, (b) sagittal, (c) axial, and (d) 3-D
views.

Lu et al. Page 33

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
The change of tissue around the GTV leads to the failure of nonrigid registration. Red:
initial GTV contour. Yellow: actual tumor contour after three weeks’ treatment. Blue:
Propagation of GTV using nonrigid registration.
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Fig. 14.
Detection result compared with manual delineation. The change of tissue around the GTV
does not affect the proposed method. Red: initial GTV contour. Yellow: actual tumor
contour after three weeks of treatment (manual delineation). Purple: Detected GTV contour
using the proposed method.

Lu et al. Page 35

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 15.
FROC analysis of the proposed algorithm, with comparison to ICM method and NRR
method.
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Fig. 16.
Detected tumor contours mapped to the planning MRI.
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TABLE I

Evaluation of Segmentation of the Bladder

MAD(mm) HD(mm) Dice

Chan-Vese model [40] 8.13 ± 2.57 9.22 ± 3.04 0.62 ± 0.04

Leventon model [30] 3.67 ± 1.82 4.49 ± 2.10 0.76 ± 0.05

ICM model [12] 1.09 ± 0.13 1.26 ± 0.38 0.85 ± 0.03

Proposed method 1.03 ± 0.16 1.17 ± 0.32 0.88 ± 0.03
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TABLE II

Evaluation of Segmentation of the Uterus

MAD(mm) HD(mm) Dice

Chan-Vese model [40] 10.93 ± 6.54 13.22 ± 5.81 0.53 ± 0.09

Leventon model [30] 6.42 ± 1.56 7.01 ± 1.36 0.72 ± 0.06

ICM model [12] 1.25 ± 0.31 1.97 ± 0.51 0.81 ± 0.04

Proposed method 1.18 ± 0.24 1.86 ± 0.36 0.83 ± 0.04
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TABLE III

Evaluation of Registration: Organ Overlaps/PTP (%)

Bladder Uterus

Rigid Registration 61.03 ± 7.41 64.70 ± 6.89

Nonrigid Registration [43] 77.18 ± 2.94 74.01 ± 4.36

ICM Nonrigid Registration [12] 88.07 ± 1.64 86.91 ± 2.50

Proposed Method 91.12 ± 2.10 88.76 ± 2.08
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TABLE IV

Evaluation of Registration Error: PFP (%)

Bladder Uterus

Rigid Registration 37.24 ± 7.21 33.90 ± 5.22

Nonrigid Registration [43] 21.56 ± 4.29 26.78 ± 4.32

ICM Nonrigid Registration [12] 10.36 ± 1.52 12.72 ± 1.80

Proposed Method 9.04 ± 1.28 10.62 ± 1.87
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TABLE V

Evaluation of Registration: Correlation Coefficient and Mutual Information

CC MI

Rigid Registration 0.7704 ± 0.04 0.7608 ± 0.06

Nonrigid Registration [43] 0.8493 ± 0.03 0.8977 ± 0.04

ICM Nonrigid Registration [12] 0.9072 ± 0.03 1.4527 ± 0.04

Proposed Method 0.9127 ± 0.03 1.5052 ± 0.04
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TABLE VI

Evaluation of Detection: Dice Coefficient

Week 1 Week 2 Week 3 Week 4 Week 5

NRR[43] deformed GTV 0.63 ± 0.02 0.58 ± 0.03 0.48 ± 0.04 0.34 ± 0.02 0.16 ± 0.03

ICM Registration[12] deformed GTV 0.69 ± 0.05 0.63 ± 0.04 0.59 ± 0.03 0.50 ± 0.03 0.45 ± 0.03

Proposed Method detected GTV 0.78 ± 0.03 0.75 ± 0.05 0.82 ± 0.03 0.79 ± 0.03 0.80 ± 0.03
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