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Abstract Receptors for extracellular nucleotides are widely
expressed by mammalian cells. They mediate a large array of
responses ranging from growth stimulation to apoptosis,
from chemotaxis to cell differentiation and from nociception
to cytokine release, as well as neurotransmission. Pharma
industry is involved in the development and clinical testing
of drugs selectively targeting the different P1 nucleoside and
P2 nucleotide receptor subtypes. As described in detail in the
present review, P2 receptors are expressed by all tumours, in
some cases to a very high level. Activation or inhibition of
selected P2 receptor subtypes brings about cancer cell death or
growth inhibition. The field has been largely neglected by
current research in oncology, yet the evidence presented in
this review, most of which is based on in vitro studies, al-
though with a limited amount from in vivo experiments and
human studies, warrants further efforts to explore the thera-
peutic potential of purinoceptor targeting in cancer.
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Introduction

Purinergic signalling, where adenosine 5′-triphosphate (ATP)
and adenosine act as extracellular signalling molecules, was
first proposed in 1972 [1]. Later, receptors for purines and
pyrimidines were cloned and functionally characterised (see
[2]). Four subtypes of P1 (adenosine) receptors (A1, A2A, A2B

andA3), seven subtypes of P2X ion channel receptors (P2X1-7)
and eight subtypes of G protein-coupled receptors (P2Y1,
P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14) have
been identified (see [3]). These receptors are expressed by most
non-neuronal cell types as well as neurons and their physiolog-
ical roles have been explored (see [4]). In recent years, there
have been a number of studies of the pathophysiological roles
of purinergic signalling and its therapeutic potential for a variety
of diseases (see [5, 6]).

There is growing interest in the therapeutic potential of
purinergic signalling for the treatment of cancer (see reviews
by [7–17]). The anti-neoplastic activity of ATPwas first shown
by Rapaport in 1983 [18] (see also [19–21]), who demonstrat-
ed that the addition of exogenous ATP to adenocarcinotomous
pancreatic and colon cancer cells inhibited cell growth by
causing cell cycle arrest in the S phase. In contrast, adenosine
has been suggested to promote tumour growth (see [22]).
Adenocarcinomas are malignant epithelial tumours arising
from glandular structures which are constituent parts of most
organs of the body. Subsequent studies have shown an anti-
neoplastic action of extracellular nucleotides in colorectal can-
cer [23], leukaemia [24, 25], oesophageal cancer [26], Ehrlich
ascites tumour cells [27], squamous cell skin cancer [28], lung
cancer [29], cervical cancer [30], H35 hepatoma cells [31],
prostate cancer [32], bladder cancer [33], retinoblastoma [34],
neuroblastoma [35], glioma [36] and melanoma [37, 38].
Tumour cells have very high ATP content compared to most
healthy cells [39, 40]. ATP-depleting strategies enhance anti-
cancer agent activity [41]. Tumour progression was inhibited
in ecto-5′-nucleotidase (CD73)-deficient mice [42], while
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vascular ectonucleoside triphosphate diphosphohydrolase
(CD39) directly promoted tumour cell growth [43]. It has been
suggested that NTPDase6 may be a tumour suppression gene
and a determinant of cisplatin resistance in testicular cancer
[44].

While it is generally acknowledged that treatment with
ATP or ATP analogues has a strong cytotoxic effect on several
tumours, it is also clear that low ATP doses (as occurs, for
example, during spontaneous release of this nucleotide from
virtually every cell type) have a growth-promoting effect.
Depending on the P2 receptor subtypes expressed, tumour
cells may be more sensitive to the death inducing or to the
trophic effect of ATP. This observation underscores the need
for an in-depth characterization of P2 receptors in tumour
cells, in order to fully recognise the potential of purinergic
signalling in cancer therapy.

Different P2 purinergic receptor subtypes are involved in
the growth inhibitory response observed in the different
malignant cell types challenged with ATP or other nucleo-
tides. The anti-neoplastic action is either due to an inhibition
of cell proliferation, the promotion of cell differentiation
(resulting in inhibition of cell proliferation) and cell death or
a combination of these three processes. It is likely that the final
effect is due to a combination of multiple effects due to
stimulation of more than one P2 receptor subtype. To date,
five P2 receptor subtypes have primarily been implicated in the
growth inhibition of cancer cells, namely P2X5, P2X7, P2Y1,
P2Y2 and P2Y11 [10], with differing cell lines responding to
receptor stimulation in different ways (see Fig. 1 and Table 1).
P2Y1 receptors decrease cell proliferation in melanoma [45]

and squamous cell skin cancer [28]. In human oesophageal and
colorectal cancer cells, P2Y2 receptor stimulation results in
apoptotic cell death [23, 26], while in melanoma, stimulation
of the same receptor increases cell proliferation [45]. The
explanation for these divergent responses remains unclear at
present. Embryonic carcinoma cells are widely used models
for studying the mechanisms of proliferation and differentia-
tion occurring during early embryogenesis. A recent investi-
gation has shown that down-regulation of P2X2 and P2X7
receptor expression by RNA interference affects phenotype
specification of P19 embryonal carcinoma cells [46].

In the HL-60 human leukaemic cell line, P2X receptor-
mediated events result in growth inhibition [25]. P2X7 re-
ceptors induce apoptosis in melanoma [45], squamous cell
skin cancer [28], lung cancer [29] and cervical cancer [30]
(and see [47]). The P2X7 receptor is most widely accepted as
the purinergic receptor mediator of apoptotic or necrotic cell
death, as initially suggested by early experiments in mouse
tumour cell lines where ATP was shown to trigger cell death
via a necrosis or apoptosis, depending on the cell type [48,
49]. Whether this is due to preferential expression by different
mouse tumour cells of different truncated P2X7 splice variants
is not currently known. Analysis of the effect of the P2X7
receptor on tumour growth is made more complex by the
observation that tonic, as opposed to pharmacological, stimu-
lation may have a trophic, growth-promoting, rather than
cytotoxic effect [50]. This intriguing effect of P2X7 receptors
has been recently shown to be present also in mouse embry-
onic stem cells [51] and the intracellular signalling pathways
have been identified [14, 52]. Besides cell growth, there is

Fig. 1 Schematic diagram
illustrating the different
mechanisms by which P2
receptor subtypes might alter
cancer cell function. P2Y1 and
P2Y2 receptors could affect the
rate of cell proliferation through
altering the intracellular levels
of cAMP by modulating
adenylyl cyclase (AC) or by
increasing intracellular calcium
levels through the
phospholipase C (PLC)
pathway. P2X5 and P2Y11

receptor activation might switch
the cell cycle from proliferation
into a state of differentiation.
The P2X7 receptor activates the
apoptotic caspase enzyme
system. (Reproduced from [10]
with permission.)
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evidence from in vitro and in vivo studies that P2X7 might
also participate in metastatic dissemination [53, 54]. In epi-
thelia originating from the ectoderm, urogenital sinus and the
distal paramesonephric duct, decreased expression of P2X7
receptors precedes or coincides with neoplastic development
[55]. An endogenously expressed truncated P2X7 receptor
lacking the C-terminus was shown to be preferentially
upregulated in epithelial cancer cells, but fails to mediate pore
formation and apoptosis [56]. The cell differentiating effects of
P2Y11 receptors in leukaemia cells [57] and P2X5 receptors in
skeletal muscle cells [18] and keratinocytes [58] may induce
alterations to normal cell cycle progression and promote cell
death.

Microarray analysis of lung, breast, prostate and gastric
cancers as well as melanoma revealed a significantly higher
expression of A2B and P2Y receptors [59]. A3 receptors have
also been shown to be highly expressed in tumour compared
to normal cells [60]. Surprisingly, proliferation of most tu-
mour cells is inhibited by adenosine, although it promotes cell
proliferation via A2 receptors in human epidermoid carcinoma
cells. NMR structure and functional characterisation of a
human nucleoside triphosphatase involved in human tumori-
genesis have been described [61]. Neuroendocrine tumours
predominantly express A2A and A2B receptors and their acti-
vation leads to increased proliferation and secretion of
chromogranin A [62]. One of the crucial issues to understand
host–tumour interactions is the biochemical composition of
the tumour microenvironment. In vivo studies show that the
extracellular milieu of solid tumours has high adenosine con-
tent [63]. Due to the well-known immunosuppressive activity
of adenosine, this finding gives a crucial hint for the under-
standing of immunoescape strategies of cancer. The possibil-
ity was raised that adenosine may act as an inhibitor of killer T
cell activation in the microenvironment of solid tumours [64].
More recently, chimeric plasma membrane-targeted luciferase
revealed high extracellular ATP concentrations (in the hun-
dreds micromolar range) in tumours but not tumour-free tis-
sues [65]. Therefore, it seems that the tumour microenviron-
ment is a site of active extracellular ATP release/generation
and conversion to adenosine, thus producing a milieu rich in
growth-promoting and immunomodulatory factors. Not sur-
prisingly, the inflammatory microenvironment is also very
rich in extracellular ATP [66].

It was suggested early that adenosine may regulate the
vascular supply to neoplastic tissue and thereby influence the
growth of tumours [67]. The major blood vessels that supply
tumours are innervated by sympathetic nerves (that release
ATP as a cotransmitter with noradrenaline (NA)), but the
newly formed blood vessels within tumours are not inner-
vated [68–71]. It has been suggested that P2 purinoceptor
antagonists may inhibit neovascularisation in tumour growth
and metastases [72]. Inhibition of tumour angiogenesis by
targeting endothelial surface ATP synthase with sangivamycin,

an anti-tumour agent, was reported [73]. It has been specu-
lated that cancer cells affect endothelial cells during metas-
tasis, perhaps involving P2Y receptor-mediated increases in
[Ca2+]i [74].

There is compelling evidence that tumour cells of various
kinds release substantial amounts of ATP in response to me-
chanical deformation, hypoxia and some agents, as well as
following necrosis and ischaemia [75, 76]. There is a correla-
tion between levels of ATP in tumour cells and the develop-
ment of cancer: ATP-depleting agents can markedly enhance
cancer therapy (see [77, 78]). Cancer therapy by endogenous
or transferred anti-tumour T cells has been used complemen-
tary to conventional cancer treatment by surgery, radiotherapy
or chemotherapy. However, this approach is limited because
tumours can create a hostile immunosuppressive microenvi-
ronment that prevents their destruction by anti-tumour T cells
(see [79]). However, genetic deletion of immunosuppressive
A2A receptors or the use of A2A antagonists can prevent the
inhibition of anti-tumour T cells by the tumours, thus opening
up a novel therapeutic approach to cancer immunotherapy
[63, 80]. Chemotherapy induces ATP release from tumour
cells, which leads to apoptotic cell death [81], probably via
P2X7 receptors. Studies have shown that certain chemother-
apeutic drugs, such as anthracyclines, are potent inducers of
immunogenic cancer cell death, thereby triggering anti-
tumour immune responses [82]. It was hypothesised that the
inflammasome may contribute a third level regulation of
immunogenic chemotherapy and that the release of ATP from
dying tumour cells is involved in the activation of the
inflammasome. Chemotherapeutic drugs such as cadmium,
etoposide, mitomycin C, oxaliplatin, cisplatin, staurosporine,
thapsigargin, mitoxanthrane and doxorubin may trigger re-
lease of ATP from tumour cells before and during apoptosis
[81] and also from dendritic cells (DCs) [83].Mice deficient in
P2X7 receptor-expressing tumours failed to respond to
oxaliplatin treatment and failed to mount tumour-specific
CD8-T cell responses. In this process, the increase of ATP
concentration within the tumour microenvironment is crucial,
as ATP stimulates the P2X7 receptor of DCs to drive secretion
of the key pro-inflammatory cytokine interleukin (IL)-1β.
This cytokine potentiates antigen presentation to CD4+ lym-
phocytes, thus enhancing the anti-tumour immune response.
As emphasised in this ‘Introduction’, the ATP level is a crucial
determinant for the final outcome, since while high ATP doses
will potentiate anti-tumour immunity, low ATP levels are
likely to be immunosuppressive, as shown by the finding that
human DCs stimulated by low ATP concentrations produce
less pro-inflammatory cytokines, more IL-10 and synergize
with interferon to upregulate indoleamine 2,3-dioxygenase
levels [84]. More recently, in vivo experiments have shown
that release of ATP from cancer cells is associated with au-
tophagy, a protective mechanism in cancer, and that the in-
crease in the pericellular environment is essential for a proper
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anti-cancer immunoresponse and for the efficacy of chemo-
therapy [85].

The possibility has been raised that ATP may be used for
the treatment of both a primary tumour and the systemic side
effects of the tumour in patients with advanced disease, as
demonstrated in murine in vivomodels. This could potentially
have a considerable impact on the management of patients
with advanced malignancy.

The ultimate goal of any laboratory-based medical research
is to see translation of this work to treatment in patients with
disease. Intravenous ATP has already been safely trialled in
patients with lung cancer. A phase I trial for extracellular ATP
in patients with advanced cancer was carried out in 1996 with
promising results and acceptable toxicity with a dose rate of
50 μg/kg/min [86]. A phase II trial was later carried out on
patients with non-small cell lung cancer [87]. Agteresch et al.
[88] investigated the pharmacokinetics of intravenous ATP in
28 patients. Treatment was well tolerated with no side effects
in two thirds of the group. Side effects included chest tightness
(15 %) or dyspnoea (10 %), which was mild (level 1 or 2 by
U.S. National Cancer Institute Criteria) and transient, resolv-
ing within minutes of decreasing the infusion rate or stopping
the infusion. Other minor side effects included flushing and
nausea in 5 %, light headedness in 3 %, headache and sweat-
ing in 2 % and palpitations in 1%. In a later trial by this group,
beneficial effects of ATP on nutritional status in advanced
lung cancer patients were reported [89]. A recent review
discusses the use of kinase inhibitors, which interact with
ATP binding sites, in anti-cancer therapeutics [90].

In keeping with murine models, ATP treatment has been
shown to maintain body weight and decrease cancer cachexia
in human studies [91]. In the murine cancer models, intraper-
itoneal ATP inhibited weight loss in the animals with ad-
vanced tumour growth independent of its primary anti-
neoplastic action. This anti-cachectic effect was thought to
occur primarily via the ATP breakdown product, adenosine,
which had little anti-neoplastic activity, but was effective at
reducing weight loss. However, the anti-cachectic effect of
ATP was greater than that seen with adenosine alone, imply-
ing that some other mechanism must be involved, at least in
part [92]. In their trial, Agteresch et al. [91] found intravenous
ATP infusions maintained body weight, muscle strength, se-
rum albumin concentrations and quality of life in cachectic
patients with advanced lung cancer over the 6-month period of
the investigation. In 2003, Agteresch et al. [93] also showed,
in a randomized controlled trial, that ATP infusions in patients
with advanced non-small cell lung cancer significantly in-
creased overall survival (9.3 months ATP-treated vs. 3.5-
months for control), supporting the theory that ATP may treat
the underlying malignancy as well as its systemic effects,
although larger trials are needed to confirm this. A further trial
is currently underway by the same group, investigating the
effects of ATP treatment in combination with radiotherapy for

non-small cell lung carcinoma. This multi-centre, double-
blind, randomized control trial will focus on the effects of
ATP on survival, tumour response, nutritional status and qual-
ity of life [94]. It has been claimed that intravenous ATP
infusions can be safely administered to preterminal cancer
patients in the home setting [95–97].

Protective effects of ATP against radiation-induced injury
in human blood were reported [98]. Ionizing γ-irradiation is
a well-known carcinogen capable of inducing tumours, es-
pecially in children, even though radiation is commonly used
in cancer treatment protocols. Recent papers suggest that γ-
irradiation leads to release of ATP, probably via connexin 43
hemichannels and/or P2X7 receptors, which then acts via
activation of P2Y6 and P2Y12 receptors to mediate repair of
DNA damage [99–102].

Breast cancer

Breast cancer is the most common malignant tumour in
women and a major health problem worldwide. There is a
great emphasis on early diagnosis, but more efficacious
therapies are in urgent demand. Growth inhibition of human
breast cancer cells by exogenous ATP was first shown in
1993, and it was claimed that the growth arrest was mainly
due to elongation of the S-phase of the cell cycle [103].
Chemotherapeutic release of ATP frommurine breast tumour
cells enhanced tumour regression via apoptosis [104]. The
agonist potencies of nucleotides on MCF-7 BCC were
shown to be uridine 5′-triphosphate (UTP) ≥ ATP > adeno-
sine 5′-diphosphate (ADP) [105], suggesting that P2Y2

and/or P2Y4 receptors were involved. This was later demon-
strated with RT-PCR in MCF-7 breast tumour cells and ATP-
activated P2Y2 receptor-linked Ca

2+ signalling was shown to
induce a proliferative response [106]. Extracellular nucleo-
tides co-operate with growth factor to activate c-fos gene
expression linked to the proliferative response of MCF-7
cells through activation of P2Y2 receptors [107]. It has been
suggested that oestrogen, via ERα receptors, promotes pro-
liferation of breast cancer cells by down-regulating P2Y2

receptor expression and attenuating P2Y2 receptor-induced
increase in [Ca2+]i [108]. Expression of CD73 is negatively
regulated by oestrogen acting via the ERα receptor and its
generation of adenosine may relate to breast cancer progres-
sion [109]. Tamoxifen is used for adjuvant treatment of
breast cancer because it prevents growth of cancer cells due
to a range of effects in addition to blocking oestrogen ac-
tions. Hydrolysis of adenine nucleotides is modified in plate-
lets from breast cancer patients taking tamoxifen [110]. ATP
depletion due to hypoxia enhances tamoxifen anti-
proliferative effects in T47D breast carcinoma cells [111].
Radioiodide therapy has been used against breast cancer and
the iodide symporter gene is expressed in breast tumours. ATP
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and UTP, probably via P2Y2 receptors, stimulate sodium/
iodide symporter-mediated iodide transport in breast cancer
cells [112].

There is much interest in K+ transport in human breast
cancer cells, with the strong possibility that alterations in K+

ion transport may regulate tumour cell proliferation and
apoptosis (see [113]). ATP has been shown to increase K+

efflux from cultured human breast cancer cells [114]. Thus, it
would not be surprising that apoptosis was activated given
the profound caspase-3 stimulatory activity of K+ depletion
[115].

Bioluminescence assay of ATP levels in breast tumours
has been proposed to detect levels of cell proliferation and
hence can be used as a marker for the biological aggressive-
ness and metastatic potential of breast carcinoma [116]. It
has been suggested that over-expression of ATP synthase α-
subunit may be involved in the progression of metastasis of
breast cancer, representing a potential biomarker for diagno-
sis, prognosis and therapeutic target for breast cancer [117].
An ATP-based chemotherapy response assay was developed
for predicting cell viability [40] and for predicting responses
to chemotherapy [118–120].

The Walker 256 rat tumour cell line, which initially arose
spontaneously in the mammary gland of a pregnant albino rat,
has been used for studies of cancer pathophysiology. Ecto-
NTPDases 2 and 5 and CD73 have been identified in Walker
256 tumour cells and are likely to be important in reducing the
ratio of ATP/adenosine involved in tumour growth [121, 122].
In a later paper, nucleotide pyrophosphatase/phosphodiesterase
(NPP3) was also identified in Walker 256 tumours [123].

MDA-MB-4355 human breast cancer cells secrete nucle-
oside diphosphate kinase (NDPK) that supports metastases
and evidence has been presented to support the notion that
secreted NDPK mediates angiogenesis via P2Y1 receptors
and suggests that inhibitors of NDPK may be useful as
therapeutics [124, 125]. Mitogen-activated protein kinase
(MAPK) signalling pathways have been implicated in the
regulation of cell proliferation and differentiation. ATP, act-
ing via P2Y2 and/or P2Y4 receptors, activates MAPKs and
the P13K/Akt signalling pathway in breast cancer MCF-7
cells [126, 127]. A study of human breast adenocarcinoma,
MDA-MB-231 cells, suggests that cell surface ATPase plays
important roles in tumour cell migration, drug resistance and
the anti-tumour immunoresponse [128, 129]. CD73 facilitates
the adhesion, migration and invasion of human breast carci-
noma T-47D and MB-MDA-231 cell lines via generation of
adenosine [130]. Anti-CD73 antibody therapy inhibits breast
tumour growth and metastasis [129]. Bisphosphonates are
effective inhibitors of breast cancer as well as for the treatment
of metastatic bone disease in women with bone cancer and
myeloma [131]. A3 receptor agonists inhibited the growth of
breast tumour-derived bone metastasis, raising the possibility
of a therapeutic approach to bone-residing breast cancer [132].

The bisphosphonate, zoledronic acid, had a strong anti-
tumour effect, measured by the ATP tumour chemosensitivity
assay, on primary breast cancer cells in vitro, which was
claimed to be equal or superior to commonly used chemother-
apeutic regimens for treating breast cancer [133] as did anoth-
er bisphosphonate, 5-FdU-alendronate [134].

Proteomic analysis of human breast carcinoma showed that
ATP synthase was upregulated in tumours and aurovertin B,
an ATP synthase inhibitor, was shown to inhibit proliferation
of several breast cancer cell lines [135]. It has been suggested
that malignant breast carcinoma cells release ATP that makes a
pre-metastatic environment suitable for micro-metastasis in
lymph nodes and its nearest afferent lymph vessels [136].
Evidence has been presented that blockade of the action of
nucleotides in the context of newly diagnosed breast cancer
may provide a useful adjunct to current anti-angiogenesis
treatment [137].

ATP enhances epidermal growth factor (EGF) activation of
c-fos in Hs578Tand T47D breast cancer cell lines, c-fos being
an immediate early gene and proto-oncogene that plays a role
in cell proliferation, differentiation and apoptosis; the combi-
nation of ATP and EGF was anti-proliferative and had strong
effects on apoptosis and therefore survival of breast cancer
cells [138]. Modulation of ATP-induced calcium signalling by
progesterone in T47D-Y breast cancer cells has been reported
[139]. ATP induced increase in [Ca2+]i and actin cytoskeleton
disaggregation via P2X receptors in the rat mammary tumour
cell line, WRK-1 [140]. ATP increased [Ca2+]i in breast tu-
mour cells and high concentrations produced apoptosis [141],
in retrospect probably via P2X7 receptors. P2X7 receptor-
mediated activation of the human breast cancer cell line,
MDA-MB-435s, resulted in neurite-like cellular prolonga-
tions, an increase in cell migration and the development of
metastases, suggesting a potential therapeutic role for P2X7
receptor antagonists [54].

The role of hypoxia in regulating tumour progression is
controversial. However, in MCF-7 and MDA-MB-231 breast
carcinoma cell lines (as well as the HeLa cervical cancer cell
line), the expression of P2X7 receptors is increased by hypoxia
and they respond to the P2X7 receptor agonist, 2′(3′)-O-(4-
benzoylbenzoyl) adenosine 5′-triphosphate (BzATP), by acti-
vating extracellular signal-regulated protein kinases 1 and 2
(ERK1/2), to cause nuclear translocation of nuclear factor-κB
[142]. The authors showed further that hypoxia-driven increase
in P2X7 receptors enhances invasion and migration of tumour
cells. Changes in purinergic signalling during EGF-induced
epithelial mesenchymal transition in MDA-MB-468 breast
cancer cells have been reported [143]. There was an alteration
in the calcium signalling response to ATP, an increase in
expression of P2X5 receptor mRNA and a decrease in P2Y13

receptor mRNA. Further, it was shown that silencing of P2X5
receptors, which inhibited cell proliferation, led to a significant
reduction in EGF-induced vimentin protein expression and it
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was suggested that this may represent a novel mechanism for
targeting cancer metastasis. Elevated release of ATP in cystic
fibrosis is associated with inhibition of breast cancer growth
[144].

A1, A2B and A3 receptor mRNA has been identified in
MCF-7 cells with A1 receptor agonists leading to MAPK
activation [145]. A1 and A3 receptor mRNAwas shown to be
expressed by human breast tumours [146]. Adenosine pro-
motes tumour cell migration and proliferation of MCF-7 and
T-47D breast carcinoma cell lines [147]. However, the A3

receptor-selective agonist, N6-(3-iodobenzyl) adenosine-5′-N-
methyluronamide (IB-MECA), down-regulates oestrogen re-
ceptor α and suppresses human breast cancer cell proliferation
[148, 149]. Adenosine reduces apoptosis in oestrogen receptor-
positive (MCF-7 cells) and oestrogen receptor-negative
(MDA-MB-468 cells) human breast cancer cells [150]. RNA
interference targeting of A1 receptors, which are upregulated in
breast cancer (MDA-MB-468) cells, leads to diminished rates
of cell proliferation and induction of apoptosis [151]. The
human breast cancer cell line, MDA-MB-231, expresses A2B

receptors, which probably mediate cell proliferation [152] and
A2B receptor blockade has been shown to slow growth of
breast tumours [153]. Tenascin C is expressed in invasive solid
tumours, although its role is obscure. Tenascin C has been
shown to interact with CD73 to regulate adenosine generation
in MDA-MB-231 breast cancer cells [154]. Assessment of
adenosine deaminase (ADA) and its isoenzymes ADA1 and
ADA2 has been proposed as a reliable test for differential
diagnosis of benign and malignant breast disease [155].

Ehrlich ascites tumour cells appeared originally as a spon-
taneous breast carcinoma in mice and have been widely
studied. An early paper showed that these tumour cells did
not show a deficit of ATP during growth and concluded that
there was no clear relationship between ATP supply and
tumour growth [156]. However, later it was shown that extra-
cellular ATP increased [Ca2+]i [27, 157] and had a growth
inhibitory effect on Ehrlich tumour cells [158, 159]. It was
shown that ATP elicits changes in phosphoinositide metabo-
lism in Ehrlich ascites tumour cells similar to those produced
by a wide variety of Ca2+-mobilizing hormones and growth
factors [160]. ATP-induced tumour growth inhibition in Ehr-
lich ascites tumour-bearing mice was accompanied by a selec-
tive decrease in the content of the tripeptide glutathione within
the cancer cells in vivo [161]. UTP as well as ATP activated
release of Ca2+ from inositol triphosphate (InsP3)-sensitive
stores in Ehrlich cells [162], suggesting that P2Y2 and/or
P2Y4 receptors were involved. Mechanical stress results in
the release of ATP from Ehrlich ascites tumour cells, which
in turn stimulates both P2Y1 and P2Y2 receptors [163]. A
calmodulin inhibitor induced short-term Ca2+ entry and a
pulse-like secretion of ATP in Ehrlich ascites tumour cells
[164]. It was suggested that the increased sensitivity of Ehrlich
ascites tumour cells to ATP during the course of tumour growth

may be associated with a decrease in ecto-ATPase activity
[165].

Prostate cancer

Prostate cancer is the second most common cancer in males
and the third leading cause of cancer death. Surgery is the
treatment of choice, but post-surgery medical treatment is
routinely given. Prostate cancer cells are sensitive to extracel-
lular ATP. Fang et al. [166] first demonstrated that ATP could
inhibit the growth of commercially available human hormone-
refractory (androgen-independent) prostate cancer PC-3 cells
and suggested that this effect was likely to be mediated by P2
receptors. Later, this was shown in DU145 as well as PC-3
prostate cancer cell lines [167, 168]. The potency order of
UTP ≥ ATP > adenosine-5′-(γ-thio)-triphosphate (ATPγS) >
inosine 5′-triphosphate > uridine diphosphate (UDP) ≥ ADP
on human prostate PC-3 cancer cells [169] suggests the pres-
ence of P2Y2 and/or P2Y4 receptors. However, P2Y1 recep-
tors were later identified on PC3 cells [170] and a more recent
paper claims that activation of P2Y1 receptors, identified by
RT-PCR, Western blots and pharmacology, induced apoptosis
and inhibited proliferation of these cells [171]. ATP is a potent
growth inhibitor of tumours and it was suggested that P2X7
receptors mediate cell death in prostate cancer [172]. Northern
blotting showed that both PC-3 and DU145 prostate tumour
cells expressed P2Y2, P2Y6 and P2Y11 receptors, and after
breakdown of ATP to adenosine, there was A2 receptor acti-
vation [173]. It was also shown in this study using RT-PCR
that these tumour cells also expressed P2X4 and P2X5 recep-
tors in the DU145 cells and P2X4, P2X5 and P2X7 in the PC-
3 cells. ATP inhibited the growth of the tumour cells, but this
effect was not mimicked by UTP or adenosine, but BzATP
caused an increase in apoptosis in PC-3 cells, probably via
P2X7 receptors. Multicellular prostate tumour spheroids pre-
pared from the DU145 prostate cancer cell line were exposed
to direct current electrical fields, resulting in ATP release,
which activated purinergic receptors to elicit a Ca2+ wave
leading to stimulation of tumour growth [174]. ATP-induced
inhibition of growth of prostate cancer DU145 cells (as well as
lung cancer (A549) and pancreatic cancer (Panc-1) cells) via
P2X7 receptors was dependent on the P13 kinase pathway
that regulates apoptosis and cell growth [175]. P2Y2 receptors
mediated resistance to ursolic acid-induced apoptosis in
DU145 cells [176]. P2Y receptor agonists stimulated PC-3
prostate cancer cell invasion, via their down-stream ERK1/2
and p38 protein kinases [177]. Both mechanical and hypoton-
ic stress leads to ATP release from DU145 prostate cancer
cells [178]. Calcium waves were elicited by mechanical strain
releasing ATP from DU145 cancer cells and purinergic recep-
tor activation [179]. ATP enhances the motility and invasion
of prostate cancer cells by activating Rho GTPases Racl and
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Cdc42 and upregulates the expression of matrix metallopro-
teinases [180]. A recent study has shown that CD73-deficient
mice are resistant to prostate carcinogenesis and concluded
that CD73 promotes de novo prostate tumorigenesis and
further that anti-CD73 monoclonal antibodies can significant-
ly reduce prostate tumour growth and metastasis [181].

Studies from our own laboratories compared hormone
refractory prostate cancer cell lines (PC-3 and DU145) with
commercially available normal prostate cells (PNT-2) [182].
Despite the similar mRNA expression, the normal prostate
and HRPC cells differed considerably in their response to
cell growth. PNT-2 cells were significantly less sensitive to
the cytotoxic effect of ATP (19±3.2 vs. 45±2.3 % inhibition
of cell growth, after ATP 0.1 mM) and more responsive to
the mitogenic effects of UTP. The order of agonist potency
also differed from HRPC cells, raising the possibility that the
control of growth in normal and cancerous prostate cells is
different. This may be due either to the functional involve-
ment of a different receptor complement or an altered down-
stream response to the stimulation of the same receptor sub-
types. Pharmacological characterization suggested that the
anti-neoplastic action of ATP was likely to be mediated by
P2X5 and/or P2Y11 receptors in DU145 cells. The absence
of P2Y11 receptor mRNA in PC-3 cells made the P2X5
receptor the most likely receptor involved in this cell line.

The discovery of P2X7 receptor mRNA in PC-3 cells raised
hopes of a pivotal role for this pro-apoptotic receptor in the
observed cell death. However, functional studies using the
selective antagonist KN-62 and assessment of P2X7 receptor-
mediated cell membrane pore formation (using lucifer yellow
stain) failed to demonstrate a functional role for these receptors.
Coupled with the presence of P2X7 receptor mRNA in the
normal PNT-2 cells and its absence in DU145 cells, which
despite the absence of this receptor had a similar cytotoxic
response to ATP as PC-3 cells, this left the explanation of the
exact functional role of this receptor subtype uncertain.

The lack of effect of KN-62 at a human P2X7 receptor has
been reported previously, where it failed to block permeabil-
ity lesions to Ca2+ and Ba2+ and subsequent cytotoxic pore
formation [183]. There are known to be many polymor-
phisms of the P2X7 receptor [184, 185], which, in addition
to conferring a loss of function, may alter the activity of the
receptor. Another possibility could be the activation of alter-
native downstream events.

There is a differential expression of P2X7 receptors in
patients with normal prostates compared to those with pros-
tate cancer. Slater et al. [186] found expression of P2X7
cytolytic purinergic receptors in all 116 pathology specimens
of prostate cancer, irrespective of Gleason grade or patient
age. P2X7 receptors were also found in normal epithelial
cells adjacent to tumour margins, but not in normal tissues
from patients with no evidence of cancer, raising the possi-
bility of the appearance of such receptors as an early marker

of prostate cancer. What functional role this may play in the
development or treatment of prostate cancer is unclear, and the
exact underlying mechanism of action of the P2X7 receptor
remains largely unknown. In a later paper, it was shown that
P2X7 receptor expression in the glandular epithelium is a
marker for early prostate cancer and correlates with increasing
levels of prostate-specific serum antigen [187].

The exact control of growth in HRPC is unclear. In
hormone-sensitive normal prostate and prostate cancer cells,
androgen ablation leads to apoptotic cell death. In these cells,
androgen ablation leads to a sustained rise in intracellular
calcium ion concentration ([Ca2+]i), leading ultimately to
programmed cell death [188]. This response to androgen
ablation is lost in hormone refractory cells. However, studies
by Martikainen et al. [189] showed that modest elevations in
[Ca2+]i for sufficient time, achieved using calcium iono-
phores such as ionomycin, induced apoptotic cell death in
HRPC cells, raising the possibility that alterations in calcium
homeostasis could still be the key to apoptosis induction in
HRPC.

ATP has been shown to increase [Ca2+]i in various human
cancer cell lines in vitro, including prostate cancer [166,
182], and this has been proposed as a possible mechanism
for ATP-induced cell death. ATP, acting at P2Y receptors,
induces a biphasic increase in [Ca2+]i, with an immediate
release of endoplasmic reticulum (ER)-stored Ca2+, and sec-
ondary activation of store-operated channels, with resultant
capacitative calcium entry of Ca2+ after depletion of ER Ca2+

stores. ATP and UTP were equipotent at increasing [Ca2+]i in
HRPC cells, while both were shown to have markedly opposite
effects on cell growth (UTP increases viable cell numbers,
whereas ATP induces cell death [182]). Complete blockade of
[Ca2+]i increase was observed after use of the phospholipase C
inhibitor U73122, confirming the role of a G protein-coupled
receptor (i.e. P2Y2) in this response, contrary to the cytotoxic
effects of ATP in HRPC cell growth. Studies by Vanoverberghe
et al. [168] also confirmed this poor correlation between [Ca2+]i
and control of HRPC cell growth. They found that varying the
concentrations of extracellular Ca2+ in culture media had no
significant effect on ATP-induced growth inhibition, thereby
denoting either an alternative mechanism, or secondary mes-
senger, in ATP-induced apoptotic cell death. ATP release from
erythrocytes is increased in blood samples from prostate cancer
patients receiving radiation therapy, which would contribute to
its beneficial effects, since ATP is a potent inhibitor of tumour
growth [190]. A more recent paper claims that activation of
P2Y1 receptors induced cell death and inhibited growth of
prostate cancer PC-3 cells and it was suggested that P2Y1

receptor agonists may be a promising therapeutic strategy for
prostate cancer [171].

Vanoverberghe et al. [168] hypothesized that decreases in
the intracellular Ca2+ pool were more relevant to the observed
cell death, backed up by experiments showing pretreatment
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with thapsigargin, at a level where it had no apoptotic effect
itself (1 nM), prevented ATP-induced growth inhibition
(100 μM) by decreasing the Ca2+ pool content. Interestingly,
while both 1 nM thapsigargin and 100 μM ATP reduced the
Ca2+ pool content to a similar extent, only thapsigargin alone
had no growth inhibitory effects [168]. As thapsigargin and
ATP work on the ER in different ways to lower the Ca2+ pool
(sarcoplasmic reticulum/ER Ca2+ ATPase pump inhibitor vs.
InsP3 receptor activation), they concluded that the secondary
mechanisms involved may be more important than the level of
reduction in the intracellular Ca2+ pool alone. One possibility
could be potential alterations to the intracellular production and
levels of Bcl-2 proteins by extracellular ATP. Overexpression
of Bcl-2 proteins is associated with prevention of apoptosis and
is a common finding in cancer cells. Miyake et al. [191]
previously showed that the treatment of HT1376 bladder can-
cer cells with ionomycin induced apoptosis and decreased the
mRNA and receptor expression of the anti-apoptotic Bcl-2
proteins, while increasing the expression of pro-apoptotic Bax
proteins. At present, no studies have explored the effect of ATP
on Bcl-2 expression in prostate cancer, or any other malignan-
cy, and this would be an interesting avenue for future research.

The in vitro cytotoxic effects of extracellular ATP have also
been confirmed in vivo. We found that daily intraperitoneal
injections of ATP significantly reduced the growth of subcu-
taneously implanted DU145 and PC-3 cells in male nude
athymic mice (57–69 % reduction in the growth of freshly
implanted or established DU145 and PC-3 cells, respectively)
(Fig. 2a, b) [32]. No side effects or complications related to
ATP treatment were seen throughout the experiment. Light
and electron microscopy were used to confirm that the inoc-
ulated tumour cells retained their original phenotype and
cellular characteristics. The endothelium has an important role
in the regulation of malignant tumour growth [192]. It has
been shown recently that secretion of soluble vascular endo-
thelial growth factor (VEGF) receptor-2 by microvascular
endothelial cells from human benign prostate cancer is in-
creased by ATP [193]. Although these experiments validated
the relevance of the in vitro experiments on the primary
growth of HRPC, they gave no information about the effect
of ATP on tumourmetastases. An orthotopicmodel of prostate
cancer would add to our understanding of this process and the
potential effect of ATP (see section on ‘Bone Cancer’).

Proliferation of prostate tumour cells is inhibited by adeno-
sine, whereas normal cells are stimulated by adenosine. 2-
Chloroadenosine (2-ClAdo) has cytotoxic effects on PC-3
prostate tumour cells, probably by entry into the S-phase of
the cell cycle and the induction of DNA strand breaks [194]. It
has been claimed that 2-ClAdo induces apoptosis of PC-3
prostate cancer cells [195]. A3 receptor activity by IB-MECA
inhibited prostate cancer cell proliferation and induced cell
cycle arrest and apoptosis [196, 197]. Activation of A3 recep-
tors also suppressed prostate cancer metastasis by inhibiting

nicotinamide adenine dinucleotide phosphate oxidase activity
[198].

Colorectal, gastric, oesophageal and neuroendocrine
cancer

Colorectal cancer is widespread, but cancer of the oesopha-
gus and gastric and neuroendocrine tumours also occur.
Exposure of two colonic adenocarcinoma cell lines, HT-29
and SW-620, to ATP resulted in substantial inhibition of cell
growth [199].

Colorectal tumours

ATP and ADP increased [Ca2+]i in the HT-29 human colonic
adenoma cell line [200]. HT-29 cells were depolarised by
UTP > ATP > ADP > adenosine [201]. There is a report that
cultured human tumour cells derived from the colon (LoVo)
are resistant to ATP cytotoxicity, but exposure to verapamil
increases sensitivity to ATP [202]. HT-29 cells express P2U
(i.e. P2Y2 and/or P2Y4) receptors [203]. Both P2 and
neurotensin receptors are expressed by HT-29 cells and both

Fig. 2 a Effect of ATP (1 ml of 25 mM i.p.) on the fractional growth of
HRPC DU145 tumour cells in vivo after 60 days initial growth and b
effect of ATP (1 ml of 25 mM i.p.) on the growth of implanted DU145
tumour cells in vivo after 60 days of initial growth; the lower mouse
received ATP treatment vs. no treatment in the upper mouse.
(Reproduced from [32] with permission.)
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increase extracellular acidification, but there was no obvious
interaction between the actions of these receptors [204]. HT-
29-C116E is a highly differentiated sub-clone of the HT-29
colonic cancer cell line and ATP transiently increased Cl−

conductance in these cells [205, 206]. ATP activation of Cl−

conductance was also shown in the T84 human colonic ade-
nocarcinoma cell line [207]. In a later paper, HT-29 cells
showed a decrease of intracellular Cl− and Na+ and an increase
in Ca2+ in response to both ATP and UTP via P2U (P2Y2

and/or P2Y4) receptors [208]. RT-PCR studies confirmed the
presence of P2U mRNA in both primary cultures of human
colorectal carcinoma cells and HT-29 cells and it was sug-
gested that they play a role in the regulation of cell prolifera-
tion and apoptosis [209]. P2Y2 receptors mediated resistance
to ursolic acid-induced apoptosis in HT-29 cells [176].

Extracellular ATP induced apoptosis and inhibited growth of
primary cultures of colorectal carcinomas [209], perhaps via
P2Y2 receptors [210] or by an unidentified ATP receptor, medi-
ating actions on the S-phase of cell cycle by inhibiting protein
kinase C [211]. Purinergic responses of HT-29 cells are mediated
by G protein α-subunits after activation of P2U receptors [212].
mRNA for P2Y receptor subtypes P2Y2, P2Y4 and P2Y6, acting
through MAPK cascades, was located on the apical membranes
of human colonic Caco-2 adenocarcinoma cells [213, 214].
Caveolin-1 facilitates the hypotonicity-induced release of ATP
from basolateral, but not apical, membranes of Caco-2 cells
[215]. Using microphysiometry, to measure extracellular acidifi-
cation rate, P2Y2 receptors were identified on HT-29 colonic
carcinoma cells [216], and in a later study, this group showed
that both P2Y2 and P2Y4 receptors were upregulated in human
colon cancer [217]. Regulation of increase in [Ca2+]i during
P2Y2 receptor activation is mediated by Gβγ-subunits [218]. It
has been claimed that P2Y2 receptors have oncogenic potential
mediating transformation of colorectal RKO cancer cells [219].
ATP induces proliferation of Caco-2 cells via P2Y receptors
[220]. Tissue samples from patients with colorectal cancers
showed increased expression of an ATP-binding cassette super-
family transporter, multidrug resistance protein-2 [221].

Modulatory effects of the ectonucleotidase CD39
(NTPDase1) on colorectal tumour growth and liver metasta-
sis, and on the expression of both P2Y2 and P2X7 receptors,
indicated the involvement of purinergic signalling in these
effects [222]. The activity of both CD73 and ADAwas mark-
edly higher in primary human colorectal tumours; the ADA
level could be correlated with lymph node metastases and
histological type, while CD73 activity could be correlated
with tumour location and grade [223]. A 40 % increase in
ADA activity in human colorectal adenocarcinomas was re-
ported [224]. Dipeptidyl peptidase is a multifunctional cell
surface protein which is a binding protein for ADA. Adeno-
sine that is present in increased levels in the hypoxic tumour
microenvironment down-regulates the surface expression of
this protein in HT-29 cells [225]. RT-PCR showed that gene

expression of adenosine kinase is significantly increased in
human colorectal cancer [226].

Heterogeneity of chemosensitivity of colorectal adenocar-
cinoma was determined by a modified ex vivo ATP-tumour
chemosensitivity assay, and it was suggested that this could be
used to identify patients who might benefit from specific
chemotherapeutic agents alone or in combination [227–229].
For years, surgeons have washed the abdominal cavity with
distilled water to lyse colorectal cancer cells left after surgery.
A study has shown that water induces autocrine release of
ATP from epithelial cells, which then causes cell death of
tumour cells via P2X7 receptors [230].

Adenosine accumulates in solid tumours and stimulates
tumour growth and angiogenesis, while imparting tumour
resistance to the immune system, thereby facilitating tumour
survival [22, 231]. Adenosine promotes cell proliferation in
poorly differentiated HT-29 cells via A1 receptors; cell growth
inhibition was observed in the presence of ADA and A1

receptor antagonists [232]. In contrast, adenosine had less
effect on more differentiated cells with lower proliferation
rates (e.g. Caco-2, DLD-1 and SW 403 cell lines) [233], but
was still found to stimulate proliferation of such cells (includ-
ing the colorectal carcinoma human cell lines T84, HRT-18,
Caco-2, Colo 320 HSR and MCA-38, the murine liver-
derived colon carcinoma cell line) at concentrations present
within the tumour extracellular environment; RT-PCR showed
that all four P1 (adenosine) receptor subtypes were expressed
in all the human carcinoma cell lines studied, but it was
speculated that A2B receptors might make a major contribu-
tion [234]. A more recent paper claims that adenosine sup-
presses growth of CW2 human colonic cancer cells by induc-
ing apoptosis via A1 receptors [235]. There is enhanced A2B

receptor expression in proliferating colorectal cancer cells,
suggesting that A2B receptor antagonists may be a promising
target for colorectal cancer therapy [236].

A single low level intravenous dose of [32P]ATP significantly
inhibited the growth of established xenografted subcutaneous
human colon adenocarcinoma cell line, HCT116, in nude mice
[237]. 8-ClAdo inhibited growth of colorectal cancer cell lines
HCT116 and 80514 in vitro and in vivo [238]. Inhibition of
primary colon carcinoma growth was elicited by A3 receptor
agonists [239, 240]. However, subsequent papers claimed that
A3 receptors mediate a tonic proliferative effect on Caco-2,
DLD1 and HT-29 colorectal tumour cell lines [241]. A phase
II, multi-centre study showed that an A3 receptor agonist
(CF101) stabilized the tumour in 35 % of the patients with
refractory metastatic colorectal cancer [242]. Elevated expres-
sion of A3 receptors was shown in human colorectal cancer and
it was suggested that this could be used as a diagnostic
marker and a therapeutic target for colon cancer [243]. 2′-
Deoxyadenosine caused apoptotic cell death in the human colon
carcinoma cell line, LoVo [244]. Adenosine has also been
claimed to induce apoptosis in Caco-2 colonic cancer cell [245].
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The chemokine receptor, CXCR4, plays a crucial role in
determining the ability of cancer cells to metastasize from the
primary tumour. Adenosine upregulates CXCR4 and en-
hances the proliferative and migratory responses of HT-29
cells [246]. Adenosine down-regulates the cell surface pro-
tein CD26, which binds to ADA, on HT-29 colorectal carci-
noma cells, thereby facilitating tumour survival [247]. Evi-
dence has been presented that adenosine can stimulate mi-
gration of colon cancer cells and that caffeine significantly
inhibits this effect [248].

Gastric cancer

The human gastric signet ring cell carcinoma cell line (JR-1)
responds to ATP with hyperpolarisation, probably mediated
by P2Y receptors [249]. ATP and adenosine reduced prolifer-
ation and induced apoptosis in the human gastric carcinoma
cell line (HGC-27) [250, 251]. An ATP-based chemotherapy
response assay has been used to predict and enhance the
benefits of chemotherapeutic drugs in patients with gastric
cancer [252, 253]. Helicobacter pylori infection of the gastric
body contributes to the progression of gastric carcinoma,
perhaps by regulation of H,K-ATPase [254]. RT-PCR showed
that gastric cancer cells showed a loss of A3 receptors [255].

Oesophageal cancer

The human oesophageal squamous carcinoma cell line,
Kyse-140, and primary cancer cell cultures from patients
expressed P2Y2 receptors, which mediated inhibition of
growth [26]. A marked heterogeneity of chemosensitivity
in oesophageal cancer has been described using the ATP-
tumour chemosensitivity assay [256].

Neuroendocrine tumours of the gastrointestinal tract

Neuroendocrine tumours are a heterogeneous group of neo-
plasms originating from enteric chromaffin cells. RT-PCR
showed that these tumours express A2A and A2B receptors
and their activation leads to increased proliferation [257],
suggesting that they are potential targets for therapy [62].

Biliary cancer

P2Y2 receptors have been identified in human biliary epi-
thelial cancer cells (Mz-Cha-1) [258].

Lung cancer

Lung cancer is the most common cancer in terms of incidence
and mortality in the developed world. In males, it is
undisputedly the most frequent malignant tumour, but the

incidence in females is also rising rapidly. A549 human lung
epithelial-like adenocarcinoma cells express P2U (i.e. P2Y2

and/or P2Y4) receptors, which when occupied lead to an
increase in [Ca2+]i [259] which does not inhibit forskolin-
evoked cyclic adenosine monophosphate (cAMP) accumula-
tion in these cells [260]. Calcium-dependent release of ATP
and UTP (with subsequent increase in adenosine levels) from
A549 cells has been reported [261].

A phase II study of intravenous ATP in patients with
previously untreated non-small cell lung cancer led to the
authors concluding that ATP, at least at the dose and admin-
istrative schedule employed, was an inactive agent in pa-
tients with advanced non-small cell lung cancer [87].

Erythromycin is widely used in the treatment of respira-
tory tract infections. It has also been shown to selectively
inhibit Ca2+ influx induced through P2X4 receptor activation
of A549 human lung tumour cells [262]. In this study, it was
also shown with RT-PCR that A549 cells express P2Y2,
P2Y4 and P2Y6, as well as P2X4 receptors. Transforming
growth factor β1 augments ATP-induced Ca2+ mobilization,
which leads to an acceleration of migration of A549 cells,
but it markedly reduces endogenous ATP release [263].

Cachexia is a common feature of lung cancer patients and
is associated with metabolic alterations, including elevated
lipolysis, proteolysis and gluconeogenesis. An increase in
glucose turnover during high-dose ATP infusion in patients
with advanced non-small cell lung cancer occurs, perhaps
contributing to the reported beneficial effects of ATP on
body weight in patients with advance lung cancer [88]. Later
randomized clinical trials led to the conclusion that ATP has
beneficial effects on weight, muscle strength and quality of
life in patients with advanced non-small cell lung cancer as
well as enhancing median survival from 3.5 to 9.3 months
[89, 97, 264, 265]. ATP infusion restores hepatic energy
levels in patients with advanced lung cancer, especially in
weight-losing patients [266]. ATP has been claimed to re-
duce radiation-induced damage [98] and clinical trials are
underway to assess the effect of concurrent ATP and radio-
therapy treatment on outcome in non-small cell lung cancer
patients [94].

ATP induced a significant dose-dependent growth inhibition
of five different cell lines: human large cell lung carcinoma
(H460), human papillary lung adenocarcinoma (H441), human
squamous cell lung carcinoma (H520), human small cell lung
carcinoma (GLC4) and human mesothelioma (MERO82) [93].
ATP also had cytotoxic effects on the PC14 lung adenocarci-
noma cell line and further enhanced the anti-tumour effect of
etoposide (VP16) in both PC14 and theA549 cell line, a human
alveolar epithelial cell carcinoma [267]. ATPγS regulated the
production of cyclooxygenase-2 and synthesis of prostaglandin
E2 in A549 cells [268].

It has been claimed that extracellular ATP, UTP and UDP
stimulate proliferation of A549 lung tumour cells via P2Y2
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and P2Y6 receptors as well as an ADP-sensitive receptor that
was not the P2Y1 subtype [29]. ATP and ADP strongly
inhibited proliferation of the human lung adenocarcinoma
cell line, LXF-289, via P2Y receptors [269]. ATP-based
chemotherapy response assay has been used to guide the
outcomes of platinum-based drug chemotherapy for un-
resectable non-small cell lung cancer [270, 271]. Cisplatin,
a platinum complex, is a widely used anti-cancer agent for
the treatment of lung cancer. ATP increases the cytotoxicity
of cisplatin in a human large cell lung carcinoma cell line
(H460) [272, 273]. Blockade of ATP synthase, located on the
plasma membrane, suppresses adenocarcinoma growth
[274].

It has been suggested that tumour-infiltrating immune cells
can benefit the tumour by producing factors that promote
angiogenesis and suppress immunity and because adenosine
levels are high in tumours. It has been proposed that A2B

receptors on host immune cells may participate in these effects
and confirmed when A2B receptor knock-out mice exhibited
significantly attenuated growth in a Lewis lung carcinoma
(LLC) isograft model [275]. Exposure of human lung cancer
cell lines A549 and H1299 to 8-ClAdo induced cell arrest at
the G2/M phase and mitotic catastrophe followed by apoptosis
[276–278]. 3-Deoxyadenosine (cordycepin) exerted inhibito-
ry effects on the growth of the mouse LLC cell line by
stimulating A3 receptors [279]. The A3 receptor agonist,
thio-Cl-IB-MECA, inhibited cell proliferation through cell
cycle arrest and apoptosis of A549 human lung carcinoma
cells [280]. Adenosine induced apoptosis via A3 receptors in
A549 cells [281], SBC-3 [282] and Lu-65 [283] human lung
cancer cells. Stanniocalcin-1, a secreted pleiotrophic protein,
regulates extracellular ATP-induced calcium waves in mono-
layers of A549 cancer cells by stimulating ATP release [284].
Lung cancer has been reported to alter the hydrolysis of
nucleotides and nucleosides by ecto-nucleotidases in platelets
[285].

Cisplatin is widely used for the treatment of cancer, in-
cluding non-small cell lung cancer. Expression of copper-
transporting P-type adenosine triphosphatase, which is asso-
ciated with platinum drug resistance in tumours, is claimed
to be a useful chemoresistance marker for cisplatin actions
[286].

Nasopharyngeal cancer

Micromolar concentrations of ATP activated a chloride cur-
rent that led to shrinking of human nasopharyngeal carcino-
ma cells [287]. In a later study of human nasopharyngeal
carcinoma CNE-2Z cells, it was suggested that the volume-
sensitive chloride current is activated via P2Y receptors after
autocrine/paracrine release of ATP [288].

Liver cancer

Primary liver malignant tumours are almost always carcino-
mas and can be further subdivided in hepatocarcinoma, bile
duct carcinoma (cholangiocarcinoma) and hepatocho-
langiocarcinoma. Hepatoma cells have been extensively
used to investigate ATP effects. ATP increases calcium up-
take by rat hepatoma cells [289]. Nucleotide receptors acti-
vate cation, potassium and chloride currents in HTC cells
from a rat liver tumour line [290]. CD39 knock-down mice
show an increased incidence of spontaneous and induced
hepatocellular carcinoma [291]. The hepatoma cell line
N1S1-67 has been used to study the signal transduction sys-
tem activated by ATP, probably P2Y2 or P2Y4 subtypes [292].
An increase in intracellular calcium is followed by the open-
ing of Ca2+-activated K+ channels leading to membrane
hyperpolarisation. Direct intra-arterial injection of a potent
inhibitor of ATP production has been proposed as a novel
therapy for liver cancer [293]. Vesicular exocytosis plays an
important role in release of ATP from HTC cells and a Cl−

channel inhibitor can be used to specifically stimulate ATP
release through exocytotic mechanisms [294]. Tumour necro-
sis factor-α (TNFα) was the first cytokine used for cancer
therapy. It has been shown that healthy liver cells are tran-
siently protected from TNFα-mediated cell death by fructose-
induced ATP depletion, while malignant cells are selectively
eliminated through TNFα-induced apoptosis [295, 296].
Chrysophanol, a member of the anthraquinone family that is
one of the components of a Chinese herb including rhubarb
recommended for the treatment of cancer, induces necrosis of
J5 human liver cancer cells via reduction in ATP levels [297].
Curcumin, a herbal extract, has been reported to inhibit the
growth of a variety of cancer cells, and a recent paper suggests
that it acts by inhibiting ecto-ATPase activity leading to in-
creased extracellular ATP in hepatocellular carcinoma HepG2
cells [298]. Further, ATP induces ATP release from HepG2
cells [299]. The in vivo effects of ATP infusions on rat
hepatocarcinomas have been investigated [300].

Inhibition of hepatoma cell growth by adenosine was
reported [301]. In vivo experiments show that the A3 recep-
tor agonist, CF101, causes inhibition of liver metastasis
(following colon carcinoma) [302]. Human hepatocellular car-
cinoma HepG2 cells express high affinity A1 receptors, which,
when occupied, result in decreased adenosine monophosphate
(AMP) and erythropoietin production [303]. ATP and adeno-
sine induce cell apoptosis of the human hepatoma cell line Li-
7A via the A3 adenosine receptor [302, 304]. CF102, a selec-
tive A3 receptor agonist, was claimed to have anti-tumour and
anti-inflammatory effects on the liver [305] and has been
investigated in a clinical trial for patients with hepatocellular
carcinoma [306]. A2B receptors are highly expressed in human
hepatoma cellular carcinoma [307].
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NTPDase1 (CD39) expression on regulatory T cells in-
hibits the activity of natural killer cells and promotes hepatic
metastatic tumour growth in mice [308]. CD39 deletion,
resulting in higher concentrations of extracellular nucleotides,
promotes the development of both induced and spontaneous
autochthonous liver cancer in mice [309]. Liver metastasis
from colorectal cancer is a leading cause of cancer-related
morbidity. It is claimed that tailored-chemotherapy, based on
ATP-chemotherapy response assay, could be effective for the
treatment of initially un-resectable colorectal liver metastasis
[310]. The upregulation of ATP-binding cassette transporter
genes in hepatocellular carcinoma is mediated by cellular
microRNAs [311].

Pancreatic cancer

There are only a few reports about purinergic signalling in
pancreatic cancer. Adenocarcinoma arising from pancreatic
ducts is responsible for more than 90 % of pancreatic cancers
and survival is less than 5% over a 5-year period. Insulinomas
are relatively rare and have a much better prognosis. What we
know about purinergic signalling in these cancer cells is
mostly from cultured cancer cell lines, which are often used
as model systems. An early paper by Rapaport et al. [199]
showed growth inhibition of two human pancreatic adenocar-
cinoma cell lines (CAPAN-1 and PANC-1) in soft agar cul-
tures by treatment with low levels of ATP. A later paper
showed that dipyridamole, that prevents uptake of adenosine
leading to increased extracellular levels, prevented human
pancreatic cancer cell-induced hepatic metastasis in nudemice
[312]. Insulinoma cell lines are often compared to isolated
islets or β-cells in the same studies and similar conclusions
have been reached. For example, ATP at low concentrations
promotes insulin secretion from the INS-1 insulinoma cell line
and rat islets via P2Y receptors, but inhibits insulin release at
high concentrations after being metabolised to adenosine
[313]. Also in the CAPAN-1 cell line, derived from human
pancreatic adenocarcinoma of ductal origin, ATP and UTP
applied to the apical membranes decreased cellular pH indi-
cating HCO3

− secretion, but were inhibitory when applied to
the basolateral membranes [314]. CD39 and P2X7, P2Y2 and
P2Y6 receptors are significantly increased in biopsies of pan-
creatic cancer [315]. High levels of mRNA for CD39 signif-
icantly correlated with better, long-term survival after tumour
resection in patients with pancreatic cancer. It was claimed
that extracellular ATP is cytotoxic for pancreatic cancer cells
because of its induction of cell cycle arrest at S-phase and cell
death by apoptosis [316]. P2Y2 receptors are functionally
expressed on human pancreatic cancer cells mediating cell
proliferation [317]. Solid pseudopapillary tumours of the pan-
creas are rare, comprising only 0.3 % of all pancreatic

tumours. The in vitro ATP-based chemotherapy response
assay has been used effectively for assessing the chemother-
apy for these tumours [318].

Bone cancer, osteosarcoma, myeloma and fibrosarcoma

Interest in bone tumours is motivated not only for the treat-
ment of primary tumours, which are relatively rare, but also
for the treatment of metastases. Secondary bone metastases
arising from prostate and breast cancer are common, but
some primary osteosarcomas occur in children. In addition,
there is malignant disease of bone marrow (myeloma) and
fibrosarcoma, which can arise from bone.

Bone cancer

Bonemetastases are radiographically classified as osteoblastic
or osteolytic, resulting from imbalances between osteoblast-
mediated bone formation and osteoclast-mediated bone re-
sorption. Osteoblastic lesions, characteristic of prostate can-
cer, are caused by an excess of osteoblast activity leading to
abnormal bone formation. In breast cancer, osteolytic lesions
are found in 80 % of patients with stage IV metastatic disease
[319] and are characterized by increased osteoclast activity
and net bone destruction [320]. Breast cancer bone lesions
span a spectrum; most are osteolytic, but up to 15 % are
osteoblastic or mixed. Bonemetastasis can result in significant
bone loss, fractures, pain and hypercalcaemia and spinal cord
compression. ATP has been reported to inhibit the growth of
bone tumour cells (see [10]).

Significant inhibition of bone tumours by an ADPase,
APT102, in combination with aspirin has been demonstrated
in two experimental models of bone metastases [321]. APT102
is not directly cytotoxic on the tumour cells, but rather acts via
platelets, which are known to contribute to the development of
metastasis, since cancer cells travel from a primary site to a
distant metastatic site co-existing with platelets in thrombi
located in organs and the circulatory system [322]. Prostate
cancer primarily metastasizes to bones in the axial skeleton.
Bisphosphonates, such as zolendrenic acid, licensed for use in
the treatment of bone metastases in patients with HRPC, have
previously been shown to inhibit prostate carcinoma cell adhe-
sion to bone [323]. Bisphosphonates inhibit growth, attachment
and invasion of cancer cells in culture and promote apoptosis. A
recent study has shown that this is, in part, due to the formation
of a novel ATP analogue (ApppI) which is able to induce
apoptosis [324]. Further assessment of this phenomenon and
its possible interaction with functional P2X7 receptors found on
osteoclasts [325] may help further our understanding of ATP
treatment and purinergic receptor pathways in prostate cancer
and metastases. Expression of cathepsin L, a cysteine protease
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associated with cancer metastasis, which activates heparanase,
is predominately enhanced in primary bone tumours, such as
osteosarcoma, chrondrosarcoma and multiple myeloma, and
tumours which preferentially metastasise to bone (i.e. breast
and prostate cancer) and in bone metastases [326]. ATP, ADP
and adenosine were most effective in stimulating secretion of
active heparanase by tumour cells [327]. Further, heparanase
secretion was inhibited by antagonists to P2Y receptors,
probably the P2Y1 subtype.

Osteosarcoma

This is the most common primary tumour of bone in children
and adolescents. It is characterised by poor differentiation and
dysregulation of the genes involved in differentiation. P2X5
receptors, which mediate tumour cell differentiation [328],
may be involved in this mechanism. Purinergic regulation of
cytosolic Ca2+ and phosphoinositide metabolismwas reported
in rat osteosarcoma cells [329, 330] and human osteoblast-like
tumour cells [331]. P2U (i.e. P2Y2 and/or P2Y4) receptors
have been implicated in this effect [332]. Modulation of
[Ca2+]i and activation of ERK1/2 and P38 MAPK by ATP,
acting via P2Y2 receptors, have been described in osteoblast-
like osteosarcoma ROS-A 17/2.8 cells [333]. Butyl benzyl
phthalate suppresses the ATP-induced cell proliferation in
human osteosarcoma HOS cells, perhaps via P2X receptors
[334]. Osteosarcoma cell lines SaOs2 and MG63 express
P2X7 receptors; however, another osteosarcoma cell, Te85,
did not express P2X7 receptors, but rather P2X5 > P2X4 >
P2X6 receptor mRNA, showing that the anti-proliferative
effect of ATP on these cells was not via P2X7 receptors [335].

Myeloma

Myelomas are a malignancy of plasma cells, e.g. antibody-
producing, differentiated B lymphocytes in bone marrow. 8-
Aminoadenosine is an effective cytotoxic agent against mul-
tiple myelomas [336]. RPMI 8226 multiple myeloma cells
express P2X7 receptor mRNA and protein, as well as P2X1,
P2X4 and P2X5 mRNA [337]. A2A adenosine and β-2
adrenergic receptors have synergistic anti-proliferative activ-
ity in multiple myeloma models [338]. Heat shock protein 90
(HSP90) is over-expressed in multiple myeloma and 8-
chloro-adenosine is currently in clinical trials as an enhancer
of inhibition HSP90 to treat multiple myeloma [339].

Fibrosarcoma

Fibrosarcoma is a malignant tumour derived from fibrous
connective tissue of the bone. In vivo data show that intra-
peritoneal ATP slows the growth of spontaneous murine
fibrosarcomas without adversely affecting bone marrow ra-
diation tolerance [340]. When fibrosarcoma NCTC 2472

cells were co-cultured with nodose neurons, the sensitivity
of P2X2/3 and P2X2 receptors to opioid inhibitory control
was decreased and it was suggested that this may contribute
to the decreased sensitivity of cancer pain to opioids [341].
Cl− channels play an important role in ATP release from
human fibrosarcoma HT-1080 cells; release does not appear
to involve hemichannels [342]. However, in recent papers, it
was claimed that maxi-anion channels and pannexin 1 hemi-
channels are separate pathways for swelling-induced ATP
release from murine L929 fibrosarcoma cells [343, 344].
Adenosine A3 receptor activation elicited inhibition of fibro-
sarcoma G:5:113 cells [345].

The presence of bone metastases is a major cause of pain
[346, 347]. The most common primary sites for bone metasta-
ses are breast and prostate with incidence rates for either at
70 % followed by lung at 35 % [348]. Up to 83 % of bone
cancer pain patients reported pain that is significantly worse on
movement [349]. Despite the availability of bisphosphonates to
treat bone cancer pain specifically by preventing bone resorp-
tion in addition to NSAIDs and opioids, no new pharmacother-
apy has merged in over a decade and patients continue to have
bone cancer pain undermanaged [349].

A unifying purinergic hypothesis for the initiation of pain
was proposed by Burnstock [350]. One component of the
hypothesis was that high concentrations of ATP can be re-
leased upon damage of the expanding tumours by bone and
connective tissue (see also [351]). It would then stimulate
P2X3 receptor-expressing nociceptors present in the afferent
nerve endings and result in cancer pain. P2X3 and P2X2/3
receptors have been the most studied purinergic receptors for
their role in ATP-mediated nociception since they are highly
expressed in a selective subpopulation of nonpeptidergic
isolectin B4-positive primary afferents on peripheral and cen-
tral terminals [352, 353]. Tumour cells contain an abnormally
elevated amount of ATP. Spontaneous and evoked release of
ATP from cancer cells by mechanical, hypotonic, electrical
stimulation and cell swelling has also been demonstrated (see
[342]). Upregulation of P2X3 receptors is found on epidermal
nerve fibres in models of bone cancer pain [354]. Minodronic
acid, which is a third generation of bisphosphonates, was
found to exert antagonistic properties on P2X2/3 receptors
and showed analgesic effects in non-cancer pain models
[355]. Complementary to its inhibition of bone resorption,
the compound is proposed to be effective in relieving bone
cancer pain. Radiotherapy is effective in relieving bone cancer
pain and P2X6 receptors have been implicated in the under-
lying mechanism [356].

Thyroid cancer

Thyroid cancers are relatively rare and often only found
following a post-mortem examination. However, incidence
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may vary in different geographical areas, and a steady in-
crease in the incidence has occurred since World War II. P2Y
receptors were shown to be expressed on thyroid cancer
cells, but the ATP-induced Ca2+-phosphatidylinositol signal-
ling cascade was found to be impaired [357]. ATP released
from human thyroid ARO tumour cells controls the intracel-
lular levels of apurinic apyrimidinic endonuclease redox
effector factor-1, a protein involved in repair of DNA lesions
[358], thereby controlling HSP90 expression via P2Y1 and
P2Y2 receptors [359]. In addition, extracellular ATP was
shown to trigger release of IL-6 from human thyrocytes
[360]. This observation is of particular relevance as IL-6 is
a well-known growth factor for thyroid cells. Increased ex-
pression and function of P2X7 receptors have been reported
in thyroid papillary cancer [361], and a loss of function
polymorphism in the P2X7 receptor (1513A>C) was shown
to have a strong association with the follicular variant of this
thyroid cancer histotype [362]. It has been claimed that the
expression of X-linked inhibitor of apoptosis and P2X7
receptors may predict the aggressiveness of papillary thyroid
cancer [363]. The tumour suppressor gene PTEN plays an
important somatic role in both hereditary and sporadic can-
cer. ATP regulates PTEN subcellular localisation in thyroid
as well as breast and colon carcinomas [364]. Clodronate is a
bisphosphonate used to improve survival of breast cancer
patients and prevent bone metastasis. Clodronate-induced
apoptosis in human papillary thyroid carcinoma is mediated
via the P2Y receptor signalling pathway [365].

PKA-independent inhibition of proliferation and induc-
tion of apoptosis of human thyroid cancer cells by 8-ClAdo
have been reported [366]. A3 agonists inhibit thyroid cancer
cell proliferation, but apparently independently of receptor
activation [367]. Enhanced expression of A1 receptors in
human thyroid carcinoma has been reported [368].

Skin cancer

Ultraviolet (UV) light has been implicated in the genesis of
several tissues of cutaneous malignancies, including basal
cell carcinoma, melanoma and squamous cell carcinoma.
The UV-B component has been identified to have the most
severe effects and UV-B irradiation was shown to decrease
the amount of P2X1 and P2Y2 receptors and destroy P2X7
receptors, possibly contributing to the malignant transforma-
tion of keratinocytes [369].

Basal cell and squamous cell carcinomas

Basal cell and squamous cell carcinomas are tumours that
usually arise after 50 years of age, squamous cell carcinoma
being more frequent and more aggressive than basal cell
carcinoma. Local administration of nucleoside analogs

inhibited growth of basal cell carcinomas [370]. The
A431 human cutaneous squamous cell (epidermal) car-
cinoma cell line expressed P2 receptors [371], which when
occupied led to an increase in [Ca2+]i [372, 373]. Stimulation
of A431 cells by ATP caused production of InsP3 [374],
suggesting that P2Y receptors were involved. A mechanism
based on the release of ATP, perhaps acting at P2X
receptors, was shown to be involved in human lymphokine-
activated killing of human carcinoma and melanoma cells
[375].

An investigation of purinergic signalling on the non-
melanoma skin cancers, basal cell carcinoma and cutaneous
squamous cell carcinoma was carried out [28]. Immunohisto-
chemical analysis of both frozen and paraffin sections of these
human skin carcinomas showed expression of P2X5, P2X7,
P2Y2, P2Y2 and P2Y4 receptors. P2X5 and P2Y receptors
were heavily expressed on both basal cell and squamous cell
carcinomas, and P2X7 receptors were expressed in the necrot-
ic centre of nodular basal cell carcinomas and in apoptotic
cells in superficial multifocal and infiltrative basal cell carci-
nomas. P2Y1 receptors were only expressed on the stroma
surrounding tumours. P2Y4 receptors were found in basal cell,
but not squamous cell carcinomas. Functional studies on the
A431 squamous carcinoma cell line supported the view that
low concentrations of ATP and UTP caused an increase in cell
number, whereas high concentrations caused a significant
decrease, while the potent P2X7 receptor agonist, BzATP, also
caused a significant decrease.

In addition to ATP causing apoptosis of cultured A431
cells via P2X7 receptors, it was shown that UTP and aden-
osine (following breakdown of ATP) also induced cell death
[376]. In in vivo experiments in mice, skin papillomas
followed by squamous spindle cell carcinomas induced by
local treatment with 7,12-dimethyl-benz(a)anthracene
(DMBA), followed by tumour promotion with 12-O-
tetradecanoylphorbol-13-acetate (TPA) were used to show
that application of BzATP, a potent P2X7 receptor agonist,
inhibited the formation of DMBA/TPA-induced skin papil-
lomas and carcinomas [377]. At the completion of the study
at week 28, the proportion of living animals with cancers in
the DMBA/TPA group was 100 % compared to 43 % in the
DMBA/TPA + BzATP group. γ-Irradiation, which causes
growth arrest and death of tumour cells, induces P2X7
receptor-dependent ATP release from B16 melanoma cells
[99]. Skin cancer can be induced by drinking water contain-
ing arsenic. A recent paper claimed that arsenic may induce
malignancies by reducing calcium release from ER by P2Y4-
mediated ATP actions in human primary keratinocytes [378].

It is concluded that P2Y2 receptors mediate proliferation,
P2X5 receptors mediate differentiation (and are therefore
anti-proliferative) and P2X7 receptors mediate cell death.
ADA in saliva has been identified as a diagnostic marker of
squamous cell carcinoma of the tongue [379].
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Melanoma

Malignant melanoma is an aggressive cancer with a high
potential for metastasis that originates from melanocytes, the
pigment-producing cells of the skin. ATP inhibited the
growth of both animal and human melanoma cells in vivo
[18, 380, 381]. Amelanotic hamster melanoma A-Mel3 cells,
grown subcutaneously in hamsters, have been used to study
ATP levels in relation to blood flow [382, 383]. CD39 is
over-expressed in differentiated human melanomas com-
pared to normal melanocytes [384]. Extracellular ATP has
growth-inhibiting properties in a highly metastatic liver-
colonising murine B16 melanoma cell line in vitro [385].

Increased expression of P2X7 receptors in 80 patients with
superficial spreading melanomas was reported [386]. Label-
ling of P2X7 receptors also extended 2 μm from the melano-
ma into the keratinocyte layer of the adjacent epidermis.
Conversely, P2X1-3 and P2Y2 receptors (found on normal,
but not neoplastic skin) were fully de-expressed within 2 μm
of the melanoma. A later paper from another group confirmed
that human melanomas express functional P2X7 receptors,
which produce apoptosis, and it was suggested that they
may represent a novel target for melanoma therapy [37].
Overexpression of P2X7 receptors was produced when
P2X7 receptor cDNAwas transfected into B16 murine mela-
noma; tumour growth was significantly enhanced in vivo, but
not in vitro [387]. A low pH environment (mimicking the
hypoxia and acidosis commonly seen in solid tumours) was
shown to induce ATP release from B16 melanoma cells to act
via P2X7 receptor to increase proliferation and the P2X7
receptor antagonist, oxidised ATP, significantly inhibited tu-
mour growth [388]. Expression of P2Y1, P2Y2 and P2Y6

receptor mRNA and protein in human melanomas was report-
ed [45]. This study also showed that incubation of A375
melanoma cells with the P2Y1 agonist, 2-methylthio ADP,
caused a dose-dependent decrease in cell number, while the
P2Y2 receptor agonist, UTP, caused an increase in cell num-
bers. Melanoma is characterised by apoptosis resistance
connected to irradiation- and chemo-resistance, and it was
claimed that the P2X7 receptor has an anti-apoptotic function
in melanoma cells, since ATP activation suppresses induced
apoptosis, while with knock-down of P2X7 receptor gene
expression, ATP-induced apoptosis was enhanced [389].

Athymic mice, injected with A375 human melanoma cells,
were treated daily with intraperitoneal injections of ATP. The
in vivo tumour volume and animal weight were measured
over the course of the experiment and the final tumour nodule
weight was measured at the end of the experiment. Tumour
volume decreased by nearly 50 % by 7 weeks in treated mice.
Weight loss in untreated animals was prevented by ATP.
Histological examination of the excised tumour nodules
showed necrosis in the ATP-treated tumours only. The pres-
ence of P2Y1 and P2X7 receptors, previously proposed as

extracellular targets for melanoma treatment with ATP, was
demonstrated in the excised specimens by immunohistochem-
istry. This paper provides further support for the use of ATP as
a treatment for melanoma [38].

ATP released by murine B16 melanoma cells up-regulates
the expression of CD39 on tumour-resistant regulatory T
cells; the upregulated CD39 degrades ATP to adenosine,
which then contributes to the immunosuppressive environ-
ment of the tumour [390]. It has been claimed that ATP
production by B16 melanoma tumour cells may contribute
to recruitment and stimulation of regulatory T cells, resulting
in an immunosuppressive environment [391]. They showed
further that implanting B16 melanomas into CD73 knock-
out mice, which are impaired in adenosine production, led to
a significant slowing down of the growth of the tumours.

Adenosine has also been investigated in relation to mela-
nomas. For example, administration of adenosine was shown
to potentiate the actions of chemotherapeutic agents in vivo.
In mice inoculated with B-16 melanoma cells, adenosine
(268 mg/kg) was injected 5 days before administration of
cyclophosphamide (50 mg/kg). This combined treatment re-
duced the number of melanoma foci by 60 %, while the
chemotherapy alone only reduced them by 45 %. Moreover,
a protective effect of adenosine against chemotherapy-induced
decrease in leukocyte counts was seen in this study [392]. Cell
motility, an essential component of tumour progression and
metastasis, is mediated by adenosine in humanmelanoma cells,
probably via the A1 receptor subtype and the possibility of anti-
metastatic therapies based on inhibition of A1 receptor activa-
tion was raised [393]. A1, A2A, A2B and A3 receptor subtypes
were all identified in the human malignant melanoma A375
cell line with RT-PCR and pharmacological evidence [394].
Adenosine, arising from released ATP, acts on adenosine re-
ceptors that are mediators of both reduction of cell proliferation
(probably via A3 receptors) and promotion of cell death (prob-
ably via A2A receptors) of cultured human melanoma A375
cells [395]. A later paper, from another group, confirmed that
A3 receptor activation led to growth inhibition of melanoma
cells and showed that this occurs both in vitro and in vivo
[396]. A3 receptor activation inhibits cell proliferation via
phosphatidylinositol 3-kinase 1/2 phosphorylation in A375
human melanoma cells [397]. An A3 receptor agonist, 2-
chloro-N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine,
produces an effective anti-tumour immune response in
melanoma-bearing mice, involving the activation of natural
killer cells and T cells [398]. However, a recent report claims
that adenosine, acting via A3 receptors, promoted cell prolifer-
ation of human C32 malignant melanoma cells [399]. A review
of adenosine receptors and human melanoma was published in
2003 [400]. A2B receptor blockade can impair IL-8 production,
which is elevated in patients with malignant melanoma, while
blocking A3 receptors decreases VEGF, which promotes an-
giogenesis and metastasis of human carcinoma cells [401].
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Evidence has been presented to suggest that adenosine could be
a potent immunoregulatory factor affecting both cytokine pro-
duction and cytotoxic activity of anti-melanoma-specific Tcells
[402]. Serum and peritoneal fluid ADA levels were higher in
malignant ovarian neoplasms and it was suggested that this
may be a useful biomarker in diagnosis and management of
ovarian tumours [403].

It has been proposed that extracellular ATP released by
dying tumour cells accumulates in high concentrations that
not only act as danger signals in the immune system, but can
also directly kill adjacent tumour cells via P2X7 receptors
[43]. Using a genetically modified melanoma cell line, they
showed that the anti-tumour effect of ATP can be amplified
by inhibition of the ectonucleotidase CD39. In another recent
paper, it was shown that in a melanoma model, tumour
growth is impaired in CD73-deficient mice [42].

Cervical, ovarian and uterine cancer

Cervical cancer

Cervical cancer today can be effectively diagnosed in the
very early phases of the disease, thus reducing by three to
four times the death rate compared to pre-early diagnosis
times. However, due to its high incidence, an efficacious
medical treatment, besides surgery, is needed. HeLa cells,
derived from human cervical cancer cells, have been widely
used in studies of the involvement of purinergic signalling in
cancer. Extracellular ATP was shown to activate K+ move-
ments in HeLa cells [404] and to elevate [Ca2+]i following
interaction with a nucleotide receptor [405]. Activation of
P2Y2 receptors with UTP and ATP caused proliferation and
inhibited the activity of Na+/K+-ATPase in HeLa cells [406].
It has been claimed that P2Y6 and P2Y4 receptor expression
on HeLa cells increases during their proliferation [407]. UDP
activation of P2Y6 receptors also induced proliferation of
HeLa cells, but via a different second messenger pathway
from that produced by the P2Y2 receptor [408]. Oestrogen
reverses the apoptotic effects mediated by P2X7 receptors in
normal cervix, but not in human cervical epithelial cancer
cells [30]. The authors suggest that oestrogen may have a
permissive effect for the development and growth of cervical
cancer. A truncated P2X7 receptor variant (P2X7-j), endoge-
nously expressed in cervical cancer cells, antagonises the full-
length P2X7 receptor through hetero-oligomerization [409].
ATP induced Ca2+ mobilization and cell proliferation of four
different human cervical cancer cell lines via the activation of
nuclear factor κB, a transcription factor implicated in regula-
tory genes involved in neoplastic transcription [410]. The ATP
cell viability assay has been recommended for the measure-
ment of intrinsic radiosensitivity in cervical cancer, which
shows how well a tumour is responding to radiotherapy [411].

Most human cancers derive from epithelia and the prolif-
eration and differentiation of epithelial cells are crucially
dependent on EGF receptor function. Stimulation of P2Y1

receptors on HeLa cells, for as little as 15–10 min, triggers
EGF receptor mitogen signalling and P2Y1 antagonists re-
duced basal cell proliferation [412]. OppA, the ecto-ATPase
ofMycoplasma hominis, induced ATP release and cell death
of HeLa cells [413]. Human connexin 30.2/31.3 mediates
enhanced ATP release from HeLa cells [414]. Gentle me-
chanical stimulation also released ATP from HeLa cells
[415].

ADP and AMP hydrolysis, as well as ADA activity, were
enhanced in the early (NIC I) stage of cervical intraepithelial
neoplasia and uterine invasive cancer [416]. They also
showed that the ADA isoform, ADA 1, was present in
platelets from neoplastic patients, suggesting platelet partic-
ipation in tumour development.

Ovarian cancer

Epithelial ovarian tumours represent about 25 % of female
organ malignancies and have a higher mortality rate than
cervical or uterine cancers. Extracellular ATP raised [Ca2+]i
and stimulated growth of human ovarian carcinoma OVCAR-
3 [417] and SKOV-3 cells [418]. ATP enhances the penetration
into human ovarian cancer cell lines (OC-109, OC-238 and
OC-7-Nu) of adriamycin, a drug used as a cytotoxic agent to
reduce tumour progression [419]. It has been suggested that
ATP may act as an extracellular messenger in controlling the
ovarian epithelial cell cycle through P2Y2 receptors on EFO-
21 and EFO-27 human ovarian cancer cells [420]. ATP tumour
chemosensitivity assays have been recommended to assess the
viability of chemotherapy for the treatment of primary recur-
rent platinum-resistant epithelial ovarian cancer [421–426]. A
combination of zoledronic acid and fluvastatin has been
claimed to have activity against ovarian (and breast) cancer
based on this assay [427]. A2 receptor antagonism inhibits
angiogenic activity of human ovarian cancer cells [428]. Var-
iants of the RB1 gene have been implicated as risk factors for
invasive ovarian cancer [429]. A recent study has shown that
the presence of ATP during the treatment of human ovarian
carcinoma with cisplatin leads to additive cytotoxicity [430].

Uterine cancer

P2Y2 receptors were claimed to participate in control of the cell
cycle and suppression of proliferation of HEC-1A and Ishikawa
human endometrial carcinoma cells [431]. Expression of
copper-transporting P-type ATPase has been proposed as a
prognostic factor for human endometrial carcinoma [432]. The
P2X7 receptor has been claimed to be a novel biomarker for
uterine epithelial cancers [433]. Tissue levels of P2X7 mRNA
and protein differentiate between normal and hyperplastic from
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pre-cancerous and cancerous endometrium; there is decreased
expression of P2X7 receptors on endometrial epithelium in pre-
cancerous and cancer cells [434]. The reduced expression of
P2X7 receptors in uterine cancer cells was claimed to be the
result of increased expression of micro RNAs that regulate
P2X7 expression [435], but the pathophysiological significance
of this phenomenon is unclear.

It was shown, using an ATP tumour chemosensitivity assay
(see [436]), that topotecan has a significant cytotoxic effect on
uterine squamous cancer cell lines A-431, CaSki and C-33,
which appeared to be superior to cisplatin [437]. A reduction
in ectonucleotide pyrophosphatase/phosphodiesterase and
ADA activities in patients with uterine cervix neoplasia have
been reported [438].

Leukaemia

Leukaemia consists of a group of malignant diseases that
start in the bone marrow and cause overproduction of blood
cells that are massively released into the bloodstream. There
are four common types of leukaemia: chronic lymphocytic
(or lymphoid) leukaemia (CLL), chronic myeloid leukaemia
(CML), acute lymphocytic (lymphoblastic) leukaemia and
acute myeloid leukaemia (AML). These basic types can
further be subdivided into subtypes. In particular, AML can
be further subdivided into myeloblastic, promyelocytic,
myelo-monocytic, monocytic, megakaryoblastic leukaemia
and erythroleukaemia. Uncontrolled proliferation of lym-
phoid cells can also start in lymphoid organs, with little spill
over of neoplastic cells into the blood, until the late stages of
the disease. These tumours are classified into Hodgkin’s or
non-Hodgkin’s lymphomas.

Lymphocytic leukaemia

The enzymes concerned with purine degradation, CD73,
ADA and purine nucleoside phosphorylase, were measured
in the bone marrow or blood of patients with both CML and
CLL [439]. The levels of these enzymes varied with the type
of leukaemia.

ATP and UTP activated superoxide formation in HL-60
promyelocytic leukaemic cells [440] and ATP also increased
[Ca2+]i in these cells [441, 442] probably via P2Y2 receptors
[443, 444]. Reduced proliferation was produced by ATP and
UTP in both HL-60 promyelocytic and U937 promonocytic
human cell lines [445], perhaps via A3 receptors [446]. Two
different P2Y receptor subtypes were proposed to be responsi-
ble for the increase in [Ca2+]i in HL60 cells, a P2Y2 (or P2Y4)
receptor and probably a P2Y1 receptor [447]. ATP enhanced
the adherence of HL-60 cells to bovine pulmonary artery
endothelial cells [448]. ATP increased cAMP production in
undifferentiated HL-60 cells [449] and induced differentiation

and suppressed cell growth via an unknown receptor (not
P2Y2) [450]. Histamine inhibits ATP-induced rise in [Ca2+]i
through the activation of PKA in HL-60 cells [451]. Adeno-
sine, after breakdown of ATP, contributes to the inhibitory
effect of ATP on proliferation of HL-60 cells [25]. It was
claimed that ATP-dependent suppression of proliferation was
largely via adenosine receptors, while ATP induction of differ-
entiation was via P2X receptors [452]. It was proposed that
P2Y11 receptors mediated ATP-induced differentiation of both
myeloblastic HL-60 and promyelocytic NB4 cells into reactive
neutrophil-like cells [57, 453]. RT-PCR analysis showed ex-
pression of P2X5, P2X7 and P2Y1-11 receptors (except for
P2Y6) mRNA in HL-60 cells during the course of differentia-
tion and CD39 and CD73 were upregulated during maturation
[454]. P2Y2 and P2Y11 receptors were upregulated during
granulocytic differentiation of HL-60 cells [455]. ATP induced
apoptotic cell death of both HL-60 and F-36P leukaemia cell
lines [456]. Static magnetic field exposure of HL-60 cells
increased the increase in [Ca2+]i produced by ATP [457, 458].
A3 receptor agonists were shown to inhibit proliferation and
induce apoptosis of HL-60 leukaemia cells [459, 460]. ADP
and ATP increased [Ca2+]i in CB1 cells, isolated from a patient
with T-acute lymphoblastic leukaemia [461], probably via
P2Y1, P2Y12 or P2Y13 receptors. Apoptotic cells release ATP,
which is an early signal to recruit phagocytes. Pannexin 1
channels have been identified that mediate ATP release in
Jurkat T lymphoblastoma leukaemia cells [462].

P2X7 receptors have been described in human leukaemic
lymphocytes [463, 464]. B cell CLL is one of the most
common haemopoietic tumours. Evidence has been presented
to suggest that expression and function of P2X7 receptors,
which can mediate cell death or proliferation depending on the
level of activation, may correlate with the severity of B cell
CLL [463]. A 1513C polymorphism of the P2X7 receptor
gene has been associated with an increased risk of developing
CLL [465], but later studies showed that this might only be
relevant in the rare familial form of the disease [466]. P2X7
receptor expression was significantly higher (relative to bone
marrow mononuclear cells) in cells from patients with lym-
phoblastic leukaemia (as well as acute and chronic myeloge-
nous leukaemia) [467]. It has been claimed that the P2X7
receptor-mediated cytotoxic effects on KGla and J6-1 leukae-
mia cell lines may occur independently of the calcium re-
sponse [468]. In paediatric acute leukaemia, RT-PCR and
Western blots showed that P2X1, P2X4, P2X5 and P2X7
receptors were upregulated, while P2X2, P2X3 and P2X6
receptors were absent or marginally expressed and the highest
expression of P2X7 receptors was found in relapsed patients
[469]. They also showed a significant decrease in the expres-
sion of P2X4, P2X5 and P2X7 receptors after complete re-
mission after chemotherapy.

Adenosine was shown to have cytotoxic effects on mouse
leukaemia L1210 cells [470]. In the human leukaemia cell
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line, U-937, ATP-induced cytotoxicity was biphasic, the initial
response due to ATP, while the later response was due to
adenosine, after ectoenzymic breakdown of ATP [471]. A3

receptors were also identified on Jurkat cells, a human leu-
kaemia cell line [472]. Guanosine and deoxyguanosine are
toxic to Jurkat cells through two mechanisms: ATP depletion,
causing necrosis, and the accumulation of dGTP, resulting in
apoptosis [473]. 2-ClAdo produced cell death of leukaemic B
cells [474]. Adenosine was shown to suppress the growth of
the human T lymphocyte leukaemic cell line MOLT-4 [475].
A1 and A2-like receptors exert opposite effects on 5-
hydroxytryptamine release from a mastocyte tumour cell line,
rat basophilic leukaemic RBL cells [476].

Lymphomas

Adenosine, acting via A2 receptors, and CD39 have been
suggested as novel targets for augmenting human follicular
lymphoma immunotherapy [477]. It has been suggested that
increased CD39 expression on CD4+ T lymphocytes has clin-
ical and prognostic value in CLL [478]. CD73-generated extra-
cellular adenosine favoured growth and survival of CLL cells
[479]. 8-ClAdo has been evaluated in phase I clinical trials for
the treatment of CLL using the mantle cell lymphoma cell lines,
Granta 519, JeKo, Mino and SP-53 [480]. 8-ClAdo inhibited
the rates of DNA synthesis and depleted ATP resulting in cell
death and inhibition of growth. It has been suggested that the
ATP-CD39-A2A receptor pathway is one mechanism for T cell
hyporesponsiveness in follicular lymphoma [477]. Purine nu-
cleoside analogs, including clofarabine, nelarabine and
forodesine, are being explored for the treatment of CLL
[481]. A3 receptors were shown to mediate inhibition of lym-
phoma cell growth [482]. ADA was immunolocalized on hu-
man B cell lymphomas [483]. Extracellular ATP increased
cation permeability of CLL lymphocytes [484].

Iron complexed by ATP induces lymphomas in mouse
organs [485]. Anaplastic large cell lymphomas are a distinct
subset of non-Hodgkin’s lymphomas and multikinase inhibi-
tors have been recommended for the treatment of these tu-
mours [486]. Inhibition of the expression and function of
P2X7 receptors attenuated the metastatic capability of murine
P388D1 lymphoid neoplasm cells [487]. Activation of P2X7
receptors caused depletion of intracellular ATP in T lympho-
ma cells [488]. Yac lymphoma cells actively secrete ATP in
response to P2X7 receptor activation and the ATP amplifies
P2X7 receptor signalling or acts on other purinoceptor sub-
types to modulate tumour growth and the anti-tumour immune
response [489].

Myeloid (myelogenous) leukaemia

Myeloid leukaemias consist of any of the blood cells origi-
nating in the blood-forming (myeloid) tissue of the bone

marrow and K562 is a leukaemic cell line established from
the pleural effusion of a patient with chronic myelogous
leukaemia. ADP was shown to be a potent stimulus for
calcium mobilization in K562 cells probably acting via
P2T (i.e. P2Y12) receptors [490]. ATP, UTP, BzATP and
adenosine were cytotoxic on K562 cells [491].

A frameshift polymorphism of the P2X5 receptor elicits
an allogeneic cytotoxic T lymphocyte response associated
with remission of CML [492]. Mouse myelomonocytic
leukaemic M1 cells were established from spontaneous my-
eloid leukaemia mouse strains and ATP was shown to en-
hance differentiation in these cells [493]. 4-Aminopyridine, a
voltage-gated potassium channel blocker, induced apoptosis
of human AML cells via increasing [Ca2+]i through P2X7
receptor pathways [494]. P2X7 receptor activation induces
reactive oxygen species formation in murine erythro-
leukaemia cells and it was suggested that this may be involved
in downstream events of P2X7 receptor activation, other than
apoptosis, in erythroid cells [495]. P2X7 receptor agonists
mediate cation uptake into human myeloid leukaemic KG-1
cells [496]. Adenosine analogues have been proposed as a
possible differentiation-inducing agent against AML in B4
cells [497]. ATP depletion triggers AML differentiation
(and is therefore anti-proliferative) through an ATR/Chk1
protein-dependent and a p53 protein-independent pathway
and therefore is a promising strategy for treatment of AML
[498]. AML cells express P2X1, P2X4, P2X5 and P2X7
and all P2Y receptor subtypes [499]. However, in con-
trast to that observed in normal human leucocytes, P2 recep-
tor stimulation induced a significant inhibition of both prolif-
eration and migration in vitro and engraftment in immuno-
deficient mice.

Differences were detected in ATP-binding cassette sub-
family B member 1 (ABCB1) mRNA expression in leuko-
cytes, polymorphonuclear and mononuclear cells in patients
with de novo CML [500].

Erythroleukaemia

Extracellular ATP inhibited the growth of murine erythro-
leukaemia MEL cells [24]. P2X7 receptors mediate cell
death and microparticle release in MEL cells [501]. ATP and
UTP increased [Ca2+]i in the HEL human erythroleukaemia
cell line [502]. It was later proposed that HEL cells expressed
both P2Y2 (and/or P2Y4) and probably P2Y1 receptors [503].
The P2U receptor engages the heterotrimeric G protein G16 to
mobilize Ca2+ in HEL cells [504].

ATP causes lysis of the monocytic leukaemic cell line
THP-1, probably via P2Z (i.e. P2X7) receptors [505].
P2X7 receptor-mediated pore formation was described in
THP-1 cells [506]. Adenosine, via cAMP, was shown to
inhibit differentiation (and therefore increase proliferation)
of mouse erythroleukaemic MEL cells [507].
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Bladder cancer

Three main types of bladder cancer are described: transition-
al cell carcinoma (TCC), squamous cell carcinoma and ade-
nocarcinoma. Bladder cancer is more common in industrial-
ized countries; however, it is also frequent where bilharzial
(Schistosoma hematobium) infections occur (i.e. Egypt). The
effect of ATP has been investigated in high grade 3 (G3)
superficial TCC of bladder where the tumour is confined to
the mucosa or submucosa [33]. Commercially available HT-
1376 cells were found to express the same purinergic recep-
tor mRNA as PC-3 prostate cancer cells (P2X4,5,7 and
P2Y1,2,4,6,11). ATP reduced cell growth in a concentration-
dependent manner, via the induction of P2 receptor-mediated
apoptosis. Pharmacological profiling implicated P2X5
and/or P2Y11 receptors in this anti-neoplastic response, al-
though a possible contributory effect of P2X7 receptors could
not be discounted. This functional receptor profile and the
order of agonist potency were the same as that seen in HRPC
cells, although G3 TCC cells were more sensitive to the
cytotoxic effects of ATP (reduction of growth by 88.5±4.4
vs. 45±2.3 % for PC-3 cells at ATP 0.1 mM). These results
suggest that the two most common advanced urological ma-
lignancies may have a common therapeutic purinergic target
despite their differing cellular type and origin (transitional
cells in the bladder vs. prostate adenocarcinoma).

Although studies have demonstrated a potential differen-
tiating role for P2X5 [58, 508] and P2Y11 receptors [57], no
studies have implicated these receptors in the induction of
apoptosis. Apoptosis has classically been linked to the P2X7
receptor, although, despite the presence of P2X7 receptor
mRNA, a significant functional role for this receptor subtype
could not be elicited. ATP significantly increased apoptosis
after 72 h [33]. Ryten et al. [508] demonstrated that the
activation of P2X5 receptors mediated the stimulation of cell
differentiation markers and thereby inhibited proliferation in
skeletal muscle cells. It is therefore possible that activation of
P2X5 receptors in bladder cancer leads to cellular differen-
tiation, resulting in cells unable to continue the cell cycle,
which subsequently undergo apoptosis. This may explain the
delay in apoptosis detection, with no significant increase
noted after 24 h incubation with ATP. Assessment of cell
differentiation using markers would help define the contri-
bution of this process to the observed growth inhibition and
further clarify the anti-neoplastic mechanism of ATP in
bladder cancer.

In vivo experiments mirrored the in vitro findings, with a
reduction in mean implanted tumour volume by 64.3 % after
daily intraperitoneal treatment with ATP (Fig. 3). No obvious
side effects relating to treatment were noted in any experi-
mental group. Histological analysis of the neoplasms in
control mice using hematoxylin and eosin staining and trans-
mission electron microscopy (TEM) showed tumours

maintained the classical characteristics of urinary TCCs.
While ATP-treated tumours were significantly smaller, light
microscopy revealed no other histological changes. TEM
detected an increase in both apoptotic bodies and necrosis
in treated tumours [33]. There is high correlation between
adenine nucleotide content and bladder tumour progression
[509]. There was upregulation of P2Y receptors in T24, a
transitional cell carcinoma cell line [510].

Growth of bladder carcinoma J82 cells was inhibited and
apoptosis was induced by adenosine [511]. In the human
bladder T24 cell line, adenosine increased [Ca2+]i and cAMP
production as well as IL-8 secretion, via A2B receptors [512].
It has been reported that A2B receptor blockade slows the
growth of bladder tumours [153].

A differential pattern of ectonucleotidases in the more
malignant human bladder cancer cells compared with cells
derived from an early stage of bladder cancer has been
described [513].

The distinct advantage with bladder tumours is that direct
instillation of chemotherapeutic agents via a urinary catheter
is easily achievable and allows drugs to be given at more
concentrated levels locally to induce a sufficient response,
while reducing systemic side effects. This may benefit the
use of ATP either alone or in combination in future trials. The
primary principle of combination chemotherapy is to maxi-
mize anti-neoplastic activity while minimizing toxic side
effects of treatment. This is best achieved by combining drugs,
which have different mechanisms of action with an additive or
synergistic effect and with different patterns of resistance to
minimize cross-resistance. In bladder cancer, the combination
of ATP with the established anti-tumour antibiotic mitomycin
C significantly increased its effect on cell death, reducing the
chemotherapeutic drug concentration at which 50 % of cells
were killed by a factor of 10 [33] (Fig. 4a). The same effect was
seen with ATP and mitoxantrone, an anti-tumour antibiotic
approved for use in the treatment of HRPC [32] (Fig. 4b).
However, the cytotoxic effect of these combinations was

Fig. 3 Effect of daily intraperitoneal ATP (1 ml of 25 mM i.p.) from
day 0 on the growth of freshly implanted human bladder TCC HT-1376
tumour cells in vivo. (Reproduced from [33] with permission.)
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additive only and not synergistic. This is probably explained by
the respective mechanisms of action. Both anti-tumour antibi-
otics are cell cycle non-specific, whereas ATP has previously
been shown to induce checkpoint defects leading to S-phase
arrest, preventing further progression in the cell cycle, and
eventual apoptosis [18]. Cell cycle non-specific drugs work
effectively on all cancer cells. With ATP thought to work
primarily only in the S-phase, the decrease in the surviving
fraction of cells after exposure to the chemotherapeutic drug
would decrease the number of viable cells for ATP to induce its
cytotoxic effect. With this in mind, ATP would be better in
combination with a chemotherapeutic drug known to work in a
different phase of the cell cycle, to prevent any overlap and to
increase the chance of synergism. To this effect, the addition of
docetaxol, active in the G2/M phase and on bcl-2 phosphory-
lation, would theoretically be more advantageous in combina-
tion with ATP. Hemorrhagic cystitis is an adverse effect of
cancer therapy with cyclophosphamide. Pretreatment of mice
with the selective P2X7 receptor antagonist, A438079, reduced

the nociceptive behaviour score and virtually abolished the
increases in bladder myeloperoxidase activity, an indicator of
neutrophil migration, induced by cyclophosphamide [41].

Brain tumours

Neuroblastoma/neuroma

Neuroblastomas are malignant tumours comprised of embry-
onic nerve cells. They may originate in any part of the sym-
pathetic nervous system, most commonly in the medulla of the
adrenal gland and secondary tumours are often widespread in
other organs and in bone. Neuromas refer to any tumours
derived from cells of the nervous system, often categorised
more specifically, e.g. neurofibroma, neurilemmona and reac-
tive neuroma.

Early studies showed that ATP and adenosine stimulated
the production of cAMP in the cloned line NS20 of mouse
neuroblastoma [514–517]. Later, the mouse neuroblastoma
N18TG-2 × rat C6BU-1 glioma hybrid cells, NG108-15, were
used to study the effect of nucleotides [518–526], probably via
P2U (P2Y2 and/or P2Y4) receptors [527–529]. Later P2Z (=
P2X7) receptors were identified on NG108-15 cells
[530–534] and maybe also P2Y6 receptors [535]. Subsequent-
ly, RT-PCR analysis detected transcripts for both P2Y2 and
P2Y6 receptors in NG108-15 cells, but not for P2Y1 or P2Y4

[536]. UDP arrests the cell cycle and induces apoptosis in
human neuroblastoma SH-5Y5Y cells over-expressing the
P2Y6 receptor [537]. Ecto-alkaline phosphatase was shown
to be important for the metabolism of nucleotides by NG108-
15 cells [538, 539].

ATP applied to mouse neuroblastoma Neuro-2A cells
resulted in a selective enhancement of plasma membrane
permeability for Na+ relative to K+, but also inward Cl−

pumping [540], probably via P2Y receptors [541]. ATP and
UTP were shown to increase [Ca2+]i in the murine neuroblas-
toma cell line NIE-115 [542], perhaps via P2Y2 and/or P2Y4

receptors. Later, P2X7 receptor mRNA and protein were
shown to be present on NIE-115 cells, mediating apoptosis,
perhaps via breakdown to adenosine [543], but more likely by
direct activation [544]. P2U (i.e. P2Y2 and/or P2Y4) receptors,
as well as P1(A2) receptors, have been identified on NCB-20
mouse neuroblastoma × Chinese hamster brain explant hybrid
cells [545]. ATP was shown to inhibit atrial natriuretic peptide
binding to R1-type receptors on human neuroblastoma NB-
OK-1 cell membranes [546]. Neuropeptide Y was shown to
modulate ATP-induced increase in [Ca2+]i via the adenylate
cyclase/PKA system in the CHP-234 cell line derived from a
human neuroblastoma [547].

Extracellular ATP evoked two excitatory responses in
hippocampal neuroblastoma cells (HN2): one opened
receptor-operated, non-selective cation channels, perhaps

Fig. 4 a Dose–response curve of the effect of combining ATP with
mitomycin C (MMC) vs. MMC alone on the viability of human bladder
TCC HT1376 cells in vitro. b The effect of combining mitoxantrone
and ATP on the viability of HRPC PC-3 cells in vitro. All points are the
mean (S.E.M.) unless occluded by the symbol. ***P<0.001. (a
Reproduced from [33] and b from [182] with permission.)
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via P2X7 receptors, and the other caused a leftward
(negative) shift in the Na+ channel activation curve, probably
via P2Y receptors [548]. The human SH-SY5Y neuroblas-
toma cell line expresses a functional P2X7 receptor that
modulates voltage-dependent Ca2+ channel function [549].
Extracellular guanosine and guanosine triphosphates pro-
mote the expression of differentiation markers and induce
S-phase cell cycle arrest in SH-SY5Y cells [550]. Agonist-
induced stimulation of both A1 and A2A receptor induced
neurite outgrowth and differentiation of SH-SY5Y neuro-
blastoma cells in vitro [551].

mRNAs for P2Y1, P2Y4 and P2Y6 receptors were
expressed in SK-N-BE(2)C human neuroblastoma cells,
but Northern blot analysis revealed that P2Y6 receptors were
the predominant subtype [552]. In an abstract, the presence
of functional P2Y1 and P2X4 receptors (in addition to P2Y6,
P2Y11, P2X5, P2X6 and P2X7 receptor protein) was claimed
in human SK-N-MC neuroblastoma cells [553].

Neuroblastoma is the most common tumour in infancy and
early childhood. Neuroblastoma and the sympathetic nervous
system share a common embryological origin, the neural crest.
C-1300 neuroblastoma arose spontaneously in mouse and
resembles human neuroblastoma in many respects. Evidence
has been presented that the sympathetic nervous system se-
cretes a mitogenic trophic factor that enhances growth of C-
1300 neuroblastoma cells in vivo [554]. It is now well
established that ATP is released as a cotransmitter with NA
in sympathetic nerves and that it often has powerful trophic
actions (see [555]). Uridine induces differentiation of LAN-5
human neuroblastoma cells [556]. P2Y4 receptors were
claimed to participate in differentiation and cell death of
human neuroblastoma SH-SY5Y cells [557]. Glucocorticoids
inhibit P2X receptor-mediated Ca2+ influx via a PKA-
dependent pathway in HT4 mouse neuroblastoma cells
[558]. P2X7 receptors expressed by primary human neuro-
blastoma cells are uncoupled from their well-known cytotoxic
effect, but rather support cell growth. This paradoxical effect
seems to be due to an inability to induce caspase-3 activation
[559]. The growth stimulation was partially due to the release
of substance P from nucleotide-activated neuroblastoma cells.
Adenosine is claimed to induce apoptosis in mouse neuro-
blastoma NIE-115 cells, but uptake of adenosine and its
subsequent phosphorylation is required [560]. ATP can stim-
ulate neurite outgrowth in mouse neuroblastoma neuro2a cells
independent of other neurotrophic factors [561].

Mouse neuro-2a cells differentiated into neuronal-like
cells after exposure to retinoic acid, which was associated
with a decrease in expression of functional P2X7 receptors
[562]. It was further shown that P2X7 receptor antagonists
induced neurite outgrowth as did P2X7 receptor knock-outs
and it was concluded that decreases in the expression of
P2X7 receptors are associated with neuronal differentiation
and that ATP release-activated P2X7 receptors are important

in maintaining cell survival of N2a neuroblastoma cells. A
study of neuro-2a cells from another laboratory [35] also
showed that P2X7 receptor inhibition led to an increase in
neurite formation and that P2X7 receptors are involved in the
maintenance of neuroblastoma cells in the non-differentiated
state. P2X7 receptors are expressed in human lingual nerve
neuromas [563]. It has been suggested that there is a positive
feedback mechanism mediated by P2X7 receptor-stimulated
exocytotic release of ATP that would act on P2X7 receptors
on the same or neighbouring cells to further stimulate its
own release and negatively control mouse neuroblastoma
Neuro2-a cells [564]. The therapeutic potential of P2X7 re-
ceptor antagonists for the treatment of neuroblastoma has been
reviewed [565].

Benzodiazepines modulate adenosine A2 receptor binding
sites on 108CC15 neuroblastoma × glioma hybrid cells
[566]. Prolonged exposure to A2 receptor agonists was asso-
ciated with a small, but significant degree of differentiation
of IMR32 human neuroblastoma cells [567]. A1 receptors
have been identified in peritumoural zone around experi-
mental F98 and C6 rat brain tumours [568].

In summary, P2Y2, P2Y6 and P2X7 receptors, which
mediate cytotoxic effects, appear to be the dominant
purinoceptor subtypes in most neuroblastoma cell lines.

Gliomas

Glioma is a general term for malignant tumours of glial cells
and includes astrocytomas, oligodendrogliomas, medullo-
blastomas, Schwannomas, ependymonas and glioblastomas.

Adenosine triphosphatase was found to be localised on
the cell membranes of gliomas over 35 years ago [569].
Later, an ecto-nucleotide pyrophosphatase (ectoNPPase)
was identified for ATP metabolism by C6 glioma cells
[570, 571] and ecto-5-nucleotidase [572]. Thyroid hormone
upregulates ecto-5′-nucleotidase (CD73) in C6 cells [573].
CD73 has also been identified in human U138MG glioma
cells [574]. CD73, a producer of extracellular adenosine,
modulates U138MG glioma cell adhesion and tumour cell–
extracellular matrix interactions [575]. Medulloblastoma is
the most common malignant brain tumour in children and
occurs mainly in the cerebellum. ATPwas secreted from three
malignant human cell lines and absence of CD73 in the D283
cell line, a metastatic medulloblastoma phenotype, suggested
that high expression of CD73 could be correlated with a poor
prognosis in patients with medulloblastomas [576]. Selective
expression of NTPDase 2 modulates growth of rat C6 and
COS-7 glioma cell lines in vivo [577]. Overexpression of
NTPDase2 in C6 glioma cells promotes systemic inflamma-
tion and pulmonary injury [578]. Intracarotid, but not intrave-
nous, administration of adenosine and ATP into intracerebral-
ly transplanted RG-C6 tumours in rats selectively increased
blood flow in the tumour, suggesting that they may be used to
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enhance the delivery of anti-cancer agents to malignant brain
tumours [579, 580].

Rat glioma C6 cells have been widely used for studies of
gliomas. ATP was shown to stimulate phosphoinositide hy-
drolysis in C6 cells [581], suggesting that P2Y receptors
were involved, as was supported by thapsigargin blockade
of ATP-mediated increase in [Ca2+]i [582]. It was suggested
that the P2 receptor subtype in C6 cells was comparable to
the P2T receptor of platelets, i.e. the P2Y12 receptor [583].
UTP and ATP were equipotent in increasing [Ca2+]i in C6
glioma cells, suggesting mediation via P2U (i.e. P2Y2 and/or
P2Y4) receptors [584, 585]. There appeared to be two differ-
ent signal transduction pathways for P2Y receptors in C6
cells, one is involved in inhibition of adenyl cyclase and the
other in the induction of phosphoinositide turnover, indicat-
ing the involvement of two P2Y receptor subtypes [586,
587]. A later paper identified both P2Y1 and P2Y2 receptors
involved in calcium signalling in C6 cells [588]. In addition
to P2Y2 receptors on C6 cells, ADP acts via P2Y1 and P2Y12

receptors, the former linked to PLC, while the latter is
coupled to adenylate cyclase [589]. Cross-talk between
P2Y1 and P2Y12 receptors has been implicated in growth
and differentiation of C6 cells [590, 591]. A shift in receptor
expression from P2Y1 to P2Y12 in long-term serum-deprived
C6 cells appears to be a self-regulatory mechanism that pro-
motes cell growth rather than differentiation and is a defense
mechanism against the effects of serum deprivation [592].
Bradykinin increased resensitization of P2Y receptor signal-
ling in glioma cells [593]. siRNA silencing of P2Y1 recep-
tors alters calcium signalling in C6 cells [594]. In recent
papers, P2Y14 receptor activity has been described in C6
cells [595].

Rat C6 glioma cells express functional P2X7 receptors
[596] and ATP-induced cell death in mouse GL 261 glioma
cells was claimed to be mediated by P2X7 receptors [597].
P2X7 receptor agonists produced cell death in the glioma
radiosensitive cell line M059J, but the radioresistant glioma
cell line, U138-MG, presented resistance to death when
treated with either ATP or BzATP [598]. ATP released from
glioma tumour cells may act as the regulator, via P2X7
receptor signalling, that increases macrophage inflammatory
protein-1α and monocyte chemoattractant protein-1 expres-
sion in tumour-infiltrating microglia [599]. It was claimed
that BzATP-mediated calcium signalling in C6 cells was
mediated by P2Y (perhaps P2Y2), rather than P2X7 recep-
tors [36]. P2X4 receptors were identified in glioma tumour
growth areas, but immunostaining showed that they were
largely, if not entirely, localized on infiltrating macrophages
and activated microglia [600].

The ATP-forming capacity at the surface of glioma cells
was several times greater than that of normal cells [601] and
evidence for ectopic aerobic ATP production in C6 glioma
cell membranes has been presented recently [602].

Adenosine uptake and ATP release from C6 cells were
demonstrated [603], probably via pannexin 1 channels in
response to mechanical stress [604]. ATP stimulates chemo-
kine production in C6 glioma cells via a store-operated
calcium entry pathway, which was suggested to enhance
tumour cell mobility and promote recruitment of microglia
into developing tumours, thereby supporting tumour growth
[605].

ATP induces c-fos expression in C6 cells by activation of
P2Y receptors [606]. The P2Y1 receptor agonist, 2-methythio
ADP, markedly increased C6 glioma cell migration, while the
selective P2Y1 receptor antagonist, MRS2179, significantly
inhibited migration [607]. The authors suggested that P2Y1

receptor antagonists could be a novel therapeutic procedure to
slow glioma progression. UTP and ATP, mediated by P2Y2

receptors, elicited proliferation of C6 glioma cells via activa-
tion of the Ras/Raf/MEK/MAPK pathways [608] (see also
[609]). Both adenosine and ATP were claimed to induce
proliferation in human glioma cell lines U87MG, U251MG
and U138MG [610]. cAMP-dependent differentiation of C6
glioma cells into astrocyte type II is characterised by inhibi-
tion of cell growth and induction of glial fibrillary acidic
protein synthesis. Activation of the P2Y12 receptor inhibited
β-adrenergic receptor-induced differentiation and a P2Y12

receptor antagonist abolished this effect [611]. ERK 1/2 ac-
tivity was positively correlated with cell proliferation evoked
by both P2Y1 and P2Y12 receptor agonists, but in serum-
starved cells, the effect of ADP on ERK 1/2 was primarily
mediated by P2Y12 receptors [612]. The mechanisms under-
lying P2Y12 receptor activation of C6 cells have been studied,
and it was concluded that PKB activation proceeds through
insulin growth factor I receptor cross-talk and requires activa-
tion of Src, Pyk2 and Rap1 [613]. A review discussing P2Y
receptor-mediated proliferation and differentiation of glioma
cells is available [614].

Growth inhibition has been reported for human WF glio-
ma cells by 8-ClAdo [615] and for C6 glioma cells by N6-
substituted cAMP analogs [616]. mRNA and protein for A1,
A2 and A3 receptors were shown to be expressed by C6 cells
[617]. It has been suggested that adenine nucleotides inhibit
C6 cell growth via adenosine after breakdown by CD73
[618]. Hypoxia has been claimed to decrease adenosine A1

receptors, but to increase A2A receptors in C6 cells [619].
U138-MG human glioma cells and C6 rat glioma cells
showed greater resistance to death induced by ATP when
compared to normal hippocampal organotypic cell cultures,
indicating that released ATP can induce cell death of the
normal tissue surrounding the tumour, potentially opening
space to the fast growth and invasion of the tumour [620]. On
the other hand, extracellular ATP might also exert a trophic
effect on glioblastoma growth, as shown by the observa-
tion that in vivo C6 glioblastoma growth is reduced by
co-injection of apyrase [621].
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Temozolomide (TMZ) is a DNA-damaging agent, which
is widely used for treating primary and recurrent high-grade
gliomas. It has been shown that TMZ induces an autophagy-
associated ATP surge in U251 cells that protect them and
may contribute to drug resistance [622]. Carnosine inhibits
growth of cell isolates from human malignant glioma, and
recently, carnosine has been shown to inhibit ATP produc-
tion in both cells from freshly resected gliomas and from the
T98G human glioma cell line [623].

Glioblastomas are mainly, but not exclusively, undiffer-
entiated anaplastic cells. This is the most aggressive type of
brain tumour derived from glial cells and is characterised by
having a cancer stem cell subpopulation essential for tumour
survival. It includes astrogliomas, which are undifferentiated
cells, but also astrocytomas, which are differentiated cells.
Their rapid enlargement destroys brain cells and raises intra-
cranial pressure, causing headache, vomiting and drowsi-
ness. ATP, acting via P2Y receptors, increased [Ca2+]i in
primary cultures of human glioblastoma cells [624]. It was
claimed that ATP induces IL-1β release from T98G glio-
blastoma cells through a purinoceptor-independent mecha-
nism [625]. Human U87 glioma cultures presented tumour
spheres that express the markers of glioma cancer stem cells.
Extracellular ATP reduced tumour sphere growth and cancer
stem cell population in the glioblastoma cells [626].

An A2 receptor agonist increased the release of IL-8, an
angiogenic factor, from the glioblastoma cell line U87MG,
and while mRNA transcripts for A1, A2A and A2B were
identified in these cells, only A2B receptors appeared to be
functional; further, hypoxia increased A2B receptor mRNA
and A2B antagonists inhibited tumour angiogenesis [627].
Adenosine attenuates growth of mouse glioblastoma G1361
cells acting via A1 receptors on microglia [628]. Adenosine
modulates VEGF expression via hypoxia-inducible factor-1 in
human hypoxic U87MG and A172 glioblastoma cells via A3

receptors [629]. Modulation of metalloproteinase-9 in
U87MG cells via A3 receptors has been reported [630]. Pulsed
electromagnetic field exposure significantly increased the
anti-tumour effect mediated by A3 receptors in a human
glioblastoma cell line [631]. Data have been presented to
suggest that A3 receptor agonists may be potential therapeutic
agents for the induction of apoptosis in human glioma cells
[632].

ATP, after breakdown to adenosine, increases intracellular
cAMP in human 1321NI astrocytoma cells [633, 634]. How-
ever, later papers showed that high concentrations of ATP,
acting via P2 receptors, stimulate proliferation of SKMG-1
and U373 human astrocytoma cells [635] or inhibition of
proliferation of 132NI astrocytoma cell [636]. P2Y1 recep-
tors mediate stimulation of MAPKs and induction of apo-
ptosis in 132NI astrocytoma cells [637]. The P2X7 receptor
agonist, BzATP, induced ERK 1/2 phosphorylation in human
astrocytoma cells over-expressing the recombinant rat P2X7

receptor [638]. P2Y6 receptors mediate activation of PKC to
protect 132N1 astrocytoma cells against tumour necrosis
factor-induced apoptosis [639]. P2Y12 receptors were shown
to be expressed in 132N1 cells mediating Ca2+ signals,
which may be crucial for regulating cell proliferation and
differentiation [640]. An enhanced green fluorescent protein-
tagged human P2Y2 receptor was expressed in 1321N1
astrocytoma cells [641]. P2Y14 receptors were also identified
on 1321N1 cells, leading to the release of UDP-glucose
[642]. Extracellular osmolarity modulates G protein-
coupled receptor-dependent ATP release from 1321N1 as-
trocytoma cells [643].

A2B receptors mediate an increase in IL-6 mRNA and
protein synthesis in the human astrocytoma cell line
U373MG [644]. An A3 receptor mediates cell spreading and
reorganisation of the actin cytoskeleton in human ADF astro-
cytoma cells [645, 646]. A3 receptor agonists mediated desen-
sitization, internalization and down-regulation of the A3 re-
ceptors in human astrocytoma ADF cells [647]. Extracellular
adenosine, acting via A1 receptors, activates caspase-9 and
then caspase-3 via two independent pathways, leading to cell
death of RCR-1 rat astrocytoma cells predominately by apo-
ptosis [648]. ADA inhibition induces apoptosis in a human
astrocytoma cell line [649].

Phaeochromocytoma

Phaeochromocytoma describes a tumour of adrenal medulla
(or sympathetic nervous system), characterised by an excess
of NA and hypertension. PC12 cells are a clonal line of rat
phaeochromocytoma and have been extensively studied.
They secrete NA, dopamine (DA) and acetylcholine (ACh)
by a Ca2+-dependent process.

Extracellular ATP stimulated NA secretion from PC12
cells [650, 651], but also uptake of NA [652, 653]. ATP-
activated inward current in PC12 cells was demonstrated with
an agonist potency order of ATP > ATPγS > ADP, while
adenosine and α,β-methylene ATP were inactive [654].
Suramin antagonised the ATP-activated current [655] and
catecholamine secretion [656]. ATP stimulated the release of
DA from PC12 cells [657, 658], which was suppressed by
reactive blue 2 [657]. ATP and nicotine both activate an
inward current, but the binding sites and the open states of
the channels appear to be different [659].

The next step was to try to identify the purinoceptor sub-
type(s) located on PC12 cells (see, for example, [651,
660–663]). It was proposed that PC12 cells express at least
two P2Y receptor subtypes: a P2Y subtype that leads to
depletion of intracellular Ca2+ and NA release and a P2U
(i.e. P2Y2 and/or P2Y4) receptor [664, 665]. The presence of
P2X receptors on PC12 cells was first suggested in 1996
[666, 667]. Imipramine, a tricyclic antidepressant, inhibited,
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via P2X2 receptors, the ATP-evoked increase in [Ca2+]i and
DA release by PC12 cells [668]. In a later paper, fluoxetine,
another antidepressant, was also shown to inhibit ATP-
induced increase in [Ca2+]i in PC12 cells [669]. Data have
been presented to suggest that in undifferentiated PC12 cells,
ATP acts via P2X4 receptors, but after nerve growth factor
(NGF) treatment, the differentiated cells respond largely via
P2Y2 receptors [670]. Both P2X2 and P2X4 receptor mRNA
was shown to be present on PC12 cells and ATP, acting via
both P2X and P2Y receptors, elevated [Ca2+]i, thereby facil-
itating catecholamine secretion [671]. Further, they showed
that Na+ entry through P2X2 receptors effectively activated
L-type voltage-sensitive Ca2+ channels. Transcriptional reg-
ulation of P2X2 receptors on PC12 cells by retinoic acids has
been reported [672]. Dehydroepiandrosterone sulphate, the
major circulating steroid in humans, suppresses P2X, but
not P2Y, receptor-coupled responses of PC12 cells [673].
ATP triggers catecholamine release from PC12 cells via
P2 receptors that desensitize; thus, habituation is in-
creased by UTP [674]. It has been suggested that ATP-
induced increase in [Ca2+]i is mainly due to the release
of mitochondrial Ca2+ through Na+–Ca2+ exchangers in
PC12 cells [675]. The membrane localization of PKCα
is regulated by Ca2+ influx through P2X channels and phos-
phatidylinositol 4,5′-biphosphate in NGF-differentiated PC12
cells [676].

An RT-PCR and electrophysiological study of P2X recep-
tors in PC12 cells showed that only functional P2X2 recep-
tors were expressed in undifferentiated cells, but all seven
P2X receptor subtypes were expressed in NGF-differentiated
cells [677]. Another paper was consistent with these findings
showing that NGF-stimulated differentiation of PC12 cells
induced changes in P2 receptor expression and nucleotide-
stimulated catecholamine release [678]. In particular, P2X
receptor-selective agonists caused greater NA release from
differentiated compared to undifferentiated cells, and recep-
tor protein expression was increased for P2X1-4 receptors,
but not P2Y receptors. P2Y receptors on PC12 cells mediate
the actions of ATP and UTP to activate MAPK activity and
promote the tyrosine phosphorylation of RAFTK, the epi-
dermal growth factor receptor [679]. High concentrations of
free fatty acids increased the expression of P2X7 receptors in
PC12 cells via activation of the p38 MAPK signalling path-
way, enhancing the release of IL-6 [680].

PC12 cells were claimed to express P2Y1-like receptors
that mediate inhibition of voltage-activated Ca2+ currents in
PC12 cells [681]. It has been reported that processes of
differentiated PC12 cells possess P2Y12 receptors mediating
inhibition of stimulation-evoked calcium entry [682]. Atten-
uation of P2Y receptor-mediated control of Ca2+ channels in
PC12 cells by anti-thrombotic drugs has been claimed [683].
ADP-activated P2Y1 and P2Y12 receptors on PC12 cells
are activated by spontaneous release of nucleotides, while

ATP/UTP-sensitive P2Y2 receptors require an excess of
depolarisation-evoked release to become activated [684]. A
later paper showed that spontaneous release of nucleotides
may occur independently of vesicle exocytosis, whereas
depolarization-evoked release of ATP relies predominantly
on exocytotic mechanisms [685]. It has been suggested that
regulation of differentiation and cell survival of PC12 cells is
mediated by the P2Y-like G protein-coupled GPR17 receptor
[686]. ATP enhanced differentiation of PC12 cells by activat-
ing PKCα interactions with cytoskeletal proteins [687].
Sustained elevation of [Ca2+]i via P2X receptors causes
changes in gene expression via activation of the transcription
factor nuclear factor of activated T cells in PC12 cells [688].

Adenosine appears to be an endogenous regulator of
tyrosine 3-monooxygenase activity in cell suspensions pre-
pared from transplantable rat phaeochromocytoma [689], but
this is defective in adenosine kinase-deficient PC12 cells
[690]. Adenosine, acting through P1 receptors coupled to
stimulation of adenylate cyclase, enhances the release of NA
and ACh from PC12 cells [691]. 2-ClAdo increases the
specific activity of choline acetyltransferase in PC12 cells
[692]. Later, an A2A receptor was identified on PC12 cells
[693–695], which inhibited ATP-induced Ca2+ influx [696].
Chronic hypoxia reduced A2A receptor-mediated inhibition
of calcium currents in PC12 cells [697] and induced neurite
outgrowth [698]. Adenosine increased DA metabolism in
PC12 cells, which may have implications in relation to dopa-
minergic deficit in Parkinson’s disease [699]. A1 receptor
activation was reported to inhibit neurite formation in PC12
cells [700]. Induction of neurite outgrowth in PC12 cells by
the bacterial nucleoside, N6 methyldeoxyadenosine, was me-
diated by A2A receptors [701]. A2A receptor ligands and
proinflammatory cytokines induce PC12 cell death through
apoptosis [702]. Adenosine is an active component of
Antrodia cinnamomea, a medicinal fungus in Taiwan, which
prevents PC12 cells from serum deprivation-induced apopto-
sis through the activation of adenosine A2A receptors [703].
AMP N1-oxide, a unique compound of royal jelly, induces
neurite outgrowth of PC12 cells via A2A receptors [704].
Adenosine potentiates ATP-evoked DA release from PC12
cells [705].

Facilitation of the ATP-activated current in PC12 cells by
5-hydroxytryptamine and DA has been reported [667, 706]
and enhancement of ATP-evoked DA release by zinc [707]
and cadmium [708]. Reduction of ACh-activated current by
ATP has also been observed [709]. ATP, acting through P2Y
receptors, leads to the release of arachidonic acid from PC12
cells [710]. Diadenosine tetraphosphate, probably acting via
a P2Y receptor, increased [Ca2+]i in PC12 cells [711].

Both catecholamines and ATPwere released from PC12 cells
in response to elevated intracellular concentrations of calcium
[712]. There is enhancement of ATP levels in PC12 cells by the
actions of extracellular adenosine [713]. Autoinhibition of
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transmitter release from PC12 cells (and sympathetic neurons)
through P2Y12 receptor-mediated inhibition of voltage-gated
Ca2+ channels has been reported [714]. Small transient
inward currents were caused by quantal release of endogenous
ATP by depolarised PC12 cells in close juxtaposition to the
recorded cells [715]. There was enhancement of cellular
ATP levels in PC12 cells by 2,5-dideoxyadenosine, a P-
site inhibitor of adenylate cyclase [716]. Endothelin-1
inhibited the release of ATP from PC12 cells via ETB

receptors by attenuation of the influx of extracellular
Ca2+ through L-type channels [717].β-Nicotinamide adenine
dinucleotide was released together with ATP and DA from
PC12 cells, but probably with different sites of vesicular
release [718].

CD73 activity was inhibited in PC12 cells and was stim-
ulated by treatment with NGF [719]. It was reported that
CD73 played a crucial role in differentiation and survival of
PC12 cells [720]. Extracellular ATP enhanced lipid peroxi-
dation in PC12 cells and it was suggested that ATP may
contribute to cell death by an oxidative mechanism involving
lipid peroxidation [721]. Guanosine triphosphate and guano-
sine synergistically enhance NGF-induced neurite outgrowth
from PC12 cells [722–724]. A later paper showed that gua-
nosine stimulated neurite outgrowth in PC12 cells via activa-
tion of heme oxygenase and cyclic guanosine monophosphate
[725]. ATP activates transcription factor AP1, a regulatory
protein that converts extracellular signals into changes in gene
expression programs and may modulate expression of target
genes involved in cell death pathways in PC12 cells [726].
ATP inhibited starvation-induced apoptosis via P2X2 recep-
tors in differentiated PC12 cells [727]. L-type Ca2+ channels
and P2X2 receptor cation channels participated in calcium-
tyrosine kinase-mediated PC12 growth cone arrest [728].
Uridine enhances neurite outgrowth of NGF-differentiated
PC12 cells, perhaps through UTP as an agonist at P2Y2

receptors [729]. Neurite outgrowth in PC12 cells is also en-
hanced by ATP released into the medium through connexin
hemichannels [730].

PC12 cells develop normal characteristics of sympathetic
neurons after treatment with NGF and P2 receptor antago-
nists prevent NGF-dependent neuritogenesis [731]. P2 re-
ceptor agonists can behave as neurotrophic factors and in-
teract with NGF signalling in neurite outgrowth and survival
of PC12 cells [732, 733]. ATP-induced mitogenesis is
inhibited by PLD2 in PC12 cells [734]. 2-ChloroATP exerts
anti-tumoural actions (cell cycle arrest or cell death) in PC12
cells, although it was claimed that this was not mediated by
P2 receptors [735]. Ca2+ influx through P2X receptors in-
duces actin cytoskeleton reorganisation by the formation of
cofilin rods in neurites of PC12 cells [736].

The parkin gene is one of the eight genes responsible for
Parkinson’s disease. Parkin has been shown to potentiate
ATP-induced currents via activation of P2X receptors in

PC12 cells, suggesting that parkin may play a role in synap-
tic activity [737].

Phthalates are environmental pollutants and buylben-
zylphthalate blocks purinoceptor-mediated Ca2+ signalling in
PC12 cells [738]. Toluene disocynate, another toxic pollutant,
suppresses calcium signalling produced via P2X receptors in
PC12 cells [739].

Cancer pain

There are an increasing number of reports implicating the
involvement of purinergic signalling in cancer pain. It was
suggested that the exceptionally high levels of ATP contained
in tumour cells may be released by mechanical rupture to
activate P2X3 receptors on nearby sensory nerve fibres
[350]. P2X3 receptor antagonists are one of the targets being
explored against cancer pain [740]. Increased expression of
P2X3 receptors on calcitonin gene-related peptide (CGRP)-
immunoreactive epidermal sensory nerve fibres in a bone
cancer pain model was reported [354] and in other tumours
that are responsive to mechanical stress. In bone tumours, the
mechanical strength of the bone is reduced and antagonists
that block ATP receptors in the richly innervated periosteum
might reduce movement-associated pain. The hyperalgesia
associated with tumours appears to be linked to increase in
expression of P2X3 receptors in nociceptive sensory neurones
expressing CGRP by analogy with that described for in-
creased P2X3 receptor expression in a model of inflammatory
colitis. Increased expression of P2X3 receptors was also
shown to be associated with thermal and mechanical
hyperalgesia in a rat model of squamous cell carcinoma of
the lower gingival [741]. Responses mediated by both P2X3
and P2X2/3 receptors on sensory neurones are inhibited by μ-
opioid receptor agonists showing that P2X and μ-opioid re-
ceptors are functionally coupled on sensory neurones [742]. In
a later paper, it was shown that P2X3 receptors on sensory
neurones co-cultured with cancer cells exhibit a decrease in
opioid sensitivity [341].

Radiotherapy is effective in relieving bone pain and it has
been claimed from studies of a hind paw model of cancer
pain by transplanting a murine hepatocarcinoma into the
periosteal membrane of the foot that P2X6 receptor expres-
sion in the spinal cord was increased fivefold in the tumours,
but that this was reversed following radiation [356].

Orthotopic inoculation of B16-BL6 melanoma cells into
the hind paw of mice produced spontaneous licking of the
tumour-bearing paw, an indication of pain [743]. P2X3 re-
ceptor antagonists suppressed the spontaneous licking and it
was concluded that P2X3 receptors were involved in skin
cancer pain, due to the increased release of ATP and in-
creased expression of P2X3 receptors in the sensory neurons.
In an elegant study, systemic blockade of P2X3 and P2X2/3
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receptors was shown to attenuate bone cancer pain behaviour
in rats [744], and in a later paper, the P2X3 and P2X2/3
antagonist, A317491, was shown to transiently attenuate
cancer-induced bone pain in mice [745]. A recent review
that discusses the role of purinergic receptors in cancer-
induced bone pain is available [746]. μ- and δ-Opioid recep-
tors are expressed on isolectin (IB) 4− (that expresses some
P2X3 receptors) and IB4+ (that expresses most P2X3 recep-
tors) neurons, respectively, which control thermal and me-
chanical pain, and it was shown that IB4+ and IB4− neurones
were differentially involved in oral squamous cell carcinoma-
related pain [747]. Using δ-opioid agonists and P2X3 receptor
antagonists, it was shown that IB4+ neurones play a key role in
cancer-induced mechanical allodynia, but not in thermal
allodynia.

It has been shown that P2X7 receptor knock-out mice
were susceptible to bone cancer pain and had an earlier onset
of pain-related behaviours compared with cancer-bearing,
wild-type mice [748]. They showed further that the P2X7
receptor antagonist, A-438079, failed to alleviate the pain-
related behaviours and concluded that P2X7 receptors play a
negligible role in bone cancer pain. Evidence has been
presented that P2Y1 receptors in the spinal cord and DRG
may mediate bone cancer pain through the ERK pathway
[749].

Concluding comments

Overwhelming clinical evidence supports the notion that the
approach to a cancer cure must be based on targeting multiple
receptors and pathways, and that the best results are obtained
when physiological mechanisms for cancer cell elimination
are seconded (as in the case of immunochemotherapy) rather
than being ignored. Purinergic signalling is a ubiquitous,
crucial, pathway responsible for cell-to-cell communication
in physiology and more so in pathology. Recent developments
in the construction of reliable molecular probes for the mea-
surement of extracellular ATP have unequivocally demon-
strated that ATP at sites of inflammation or neoplasia can
reach hundreds of micromolar concentrations [65, 66, 750].
The different P1 and P2 receptor subtypes expressed to a
different extent by different cells and the large change in
concentration that adenosine and ATP may undergo in phys-
iological and pathological conditions offers an enormous
plasticity to purinergic signalling. We are now starting to
harvest the therapeutic potential of this system, but it is clear
that only a deep knowledge of the molecular and biochemical
details of involved pathways will allow us to exploit it in full
to our benefit. In particular, it will be crucial to identify those
conditions where trophic effects on tumour cells due to extra-
cellular ATP overweight the well-known cytotoxic activity
due to activation of specific P2 receptors such as P2X7. This

is a crucial issue since several in vitro data and scattered
in vivo evidence show that ATP may stimulate tumour cell
growth [50, 751]; in addition, some tumours seem to be
refractory to killing via the P2X7 receptor [559]. It will be
necessary to thoroughly investigate in pre-clinical settings the
effect of the administration of ATP (or P2X7-selective ago-
nists or antagonists) via routes that better mimic the current
procedures of anti-cancer drug administration in humans, e.g.
intravenous infusion (see [14, 751–753]).

The picture is made even more complex by the growing
awareness that P2 receptor activation/inhibition has a pro-
found immunomodulatory function and thus shapes in a
crucial fashion the type and number of tumour-infiltrating
inflammatory cells (see [17, 63, 82, 83, 85, 754–758]).
Therefore, it will be necessary to monitor the possible ad-
verse effects caused by the systemic administration of P2-
targeted drugs. Nevertheless, as our understanding of
purinergic signalling increases, so does the range of malig-
nancies found to be dependent on this messenger system.
The discovery of purinergic receptor-mediated apoptotic
pathways in advanced urological malignancies, irrespective
of the cellular type or origin, has raised the possibility of
possible future therapies for these aggressive malignancies,
although significant differences between tumour types must
be recognised. Much of the evidence has so far been derived
from in vitro studies, with less information from in vivo
animal experiments and little from human observational
studies and randomized, controlled trials; thus, the need for
more such studies to be performed is great, since it is not
possible, based on existing in vitro and in vivo studies, to
predict clinical effects. Nevertheless, studies have shown
functional roles for the P2X5 and/or P2Y11 receptors, while
a contributory effect of P2X7 receptors cannot be discounted.
Selective targeting of these aberrant pathways would allow for
the development of novel therapeutic agents that could not
only treat the primary malignancy, but also improve the sys-
temic symptoms associated with advanced malignancy. Both
irradiation and chemotherapy appear to induce the release of
ATP from tumour cells, which could exert cytotoxic effects by
causing cell death via P2X7 receptors. Recent studies have
shown that high levels of ATP are released from tumour cells
that activate inflammasomes, thereby triggering a pro-
inflammatory cascade leading to the activation of immune
responses. ATP secretion from tumour cells is claimed to be
involved in immunogenic cancer cell death [759].

One of the most important immunosuppressive regulatory
pathways is the phosphohydrolysis of extracellular ATP to
adenosine by the high levels of ectonucleotidase expressed by
tumour cells (e.g. CD73), a possible novel target for cancer
therapy. CD73 is a potent suppressor of anti-tumour immune
responses [760]. Blockade of A2A receptors has been pro-
posed as a target for tumour immunotherapy that synergizes
with other immunomodulatory approaches currently in
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clinical trials [761]. A2A receptor signalling is required for T
cell homeostasis and control of tumour growth [762]. A2B

receptor signalling in antigen-presenting cells suppressed anti-
tumour adaptive immune responses [763]. CD73-deficient
mice have increased anti-tumour immunity and are resistant
to experimental metastasis [764] (see also [754, 765]).

The serine-threonine kinase, Akt, plays a central role in
propagating growth signals, metabolism and cell survival,
making it a potential therapeutic target for cancer [766]. It
was shown in this paper that ATP competitive inhibitors
induced increased phosphorylation of Akt, suggesting amech-
anism for regulating kinase activity through nucleotide bind-
ing. Since ATP is a naturally occurring small molecule, its
radiolabelled form, [32P]ATP, poses advantages as a potential
anti-cancer therapeutic agent and it was shown to inhibit the
growth of xenografted tumours in nude mice [767]. Collec-
tively, these evidences highlight the crucial role of purinergic
signalling in cancer growth and dissemination and underline
the, as yet, largely unexploited therapeutic potential of P2
receptor targeting. A3 receptors have been proposed as a
therapeutic approach in cancer [768].

Hematopoietic stem cell transplantation is being devel-
oped as a therapeutic option for patients with hematologic
malignancies; release of ATP from CD4 cells in whole blood
was increased, which contributed to the clinical management
of patients with hematologic malignancies [769]. A single
cell, enhanced fluorescence ATP biosensor was developed
recently to monitor ATP release from heterogeneous cancer
populations in real time [770].
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