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Abstract Adenosine is a potent endogenous anti-inflammatory
and immunosuppressive metabolite that is a potent modulator of
tissue repair. However, the adenosine A2A receptor (A2AR)-me-
diated promotion of collagen synthesis is detrimental in settings
such as scarring and scleroderma. The signaling cascade from
A2AR stimulation to increased collagen production is complex
and obscure, not least because cAMP and its downstream mol-
ecules PKA and Epac1 have been reported to inhibit collagen
production. We therefore examined A2AR-stimulated signaling
for collagen production by normal human dermal fibroblasts
(NHDF). Collagen1 (Col1) and collagen3 (Col3) content after
A2AR activation by CGS21680 was studied by western blotting.
Contribution of PKA and Epac was analyzed by the PKA
inhibitor PKI and by knockdowns of the PKA-Cα, -Cβ, -Cγ,
Epac1, and Epac2. CGS21680 stimulates Col1 expression at
significantly lower concentrations than those required to stimu-
late Col3 expression. A2AR stimulates Col1 expression by a
PKA-dependent mechanism since PKA inhibition or PKA-Cα
and -Cβ knockdown prevents A2AR-mediated Col1 increase. In
contrast, A2AR represses Col3 via PKA but stimulates both Col1
and Col3 via an Epac2-dependent mechanism. A2AR stimulation
with CGS21680 at 0.1 μM increased Col3 expression only upon
PKA blockade. A2AR activation downstream signaling for Col1
and Col3 expression proceeds via two distinct pathways with
varying sensitivity to cAMP activation; more highly cAMP-
sensitive PKA activation stimulates Col1 expression, and less
cAMP-sensitive Epac activation promotes both Col1 and Col3
expression. These observations may explain the dramatic change

in Col1:Col3 ratio in hypertrophic and immature scars, where
adenosine is present in higher concentrations than in normal skin.
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Introduction

Adenosine, a product of ATP catabolism [1], is present inmost
biological fluids and is elevated during tissue or organ stress
when it acts as a potent endogenous modulator of inflamma-
tion and tissue repair [2, 3]. Under basal conditions, the
extracellular adenosine concentration is constant (30–300
nM). In contrast, its concentration increases dramatically to
micromolar ranges when there is increased ATP catabolism, as
in tissue or cellular necrosis and hypoxia [4]. It has been
previously reported that adenosine, acting via adenosine 2A
receptor (A2AR), promotes wound healing [5] and excisional
wound closure in both normal and diabetic mice, and the
enhancement in dermal wound healing is accompanied by
an increase in matrix (collagen) in the wounds [6, 7]. In
addition, the A2AR plays an important role in the pathogenesis
of fibrotic malignancies of the skin such as dermal fibrosis and
scleroderma [8–10] and liver [11]. Thus, blockade or deletion
of adenosine A2AR prevents dermal fibrosis in mice treated
with bleomycin [12], and A2AR blockade prevents scarring by
reducing collagen content and misalignment [10]. Similarly,
deletion or blockade of adenosine A2AR prevents liver fibrosis
in mice treated with CCl4 or thioacetamide [11]. Adenosine
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A2AR ligation directly stimulates collagen production by stim-
ulated dermal fibroblasts [13, 14] and stellate cells [15].

The A2AR belongs to the G-protein-coupled receptor
(GPCR) superfamily [16, 17] and signals via Gs signal trans-
duction proteins which activate adenylate cyclase, increasing
cytosolic cAMP [18]. Elevated intracellular cAMP activates
both protein kinase A (PKA) and Epac [19–21]. Because the
A2AR is the only Gs-coupled adenosine receptor subtype
which has not been reported to also couple to the Gq protein
[22, 23], it is likely that A2AR-mediated increases in collagen
expression are related to either PKA or Epac activation by
cAMP. However, a prior study suggests that both PKA and
Epac activation diminish collagen1 (Col1) and collagen3
(Col3) expression [24]. In support of the hypothesis that
cAMP diminishes collagen production, the profibrogenic ag-
onist transforming growth factor β (TGFβ) decreased Epac1,
but not Epac2, expression in fibroblasts from multiple tissues
and stimulated Col1 and Col3 expression; activation of both
Epac1 and PKA inhibited Col1 and Col3 expression [25].
Moreover, targeting an increase in cAMP has been proposed
as an antifibrotic strategy [24]. Since the adenosine A2AR is a
Gs-coupled receptor that stimulates an increase in cAMP in
nearly every cell tested, the mechanism by which A2AR reg-
ulates collagen production remains a paradox.

There is a marked decrease in the ratio of Col1 to Col3 in
the matrix of scars or in the fibrous matrix of cirrhotic liver
as compared to normal tissues, and blockade of adenosine
A2AR appears to affect Col3 more than Col1 expression in
scars [10]. In scars, matrix composition dictates both the
strength and the appearance of the resulting scar so it is
important to understand how agents that may alter the
wound healing or scarring process regulate the composition
of the wound matrix. Interestingly, the intracellular signal-
ing pathways by which adenosine A2ARs signal for expres-
sion of Col1 and Col3 differ in hepatic stellate cells; A2AR
stimulation promotes an increase in Col1 expression via the
PKA/ERK pathway but increases Col3 expression via a
pathway involving activation of p38MAPK in the LX-2
hepatic stellate cell line [15]. We therefore asked how acti-
vation of A2AR promotes an increase of both Col1 and Col3
favoring dermal fibrosis and scarring. Here we report that
A2ARs differentially regulate Col1 and Col3 expression via
a complex mechanism dependent on cAMP but proceeding
via either PKA- or Epac-dependent signaling pathways.

Results

The dose–response relationship for A2AR-stimulated
increases in Col1 and Col3 differ

To better define the effects of A2AR-mediated stimulation on
synthesis of wound matrix by dermal fibroblasts, we

examined the dose–response relationship for the selective
A2AR agonist CGS21680-mediated stimulation of collagen1
(Col1) and collagen3 (Col3) by normal human dermal fibro-
blasts (NHDF). Since the well-known profibrotic peptide
TGF-β1 increased both Col1 and Col3 after 24 h
(Supplemental Figure 1), NHDF were also incubated with
CGS21680 for 24 h. We were surprised to find that the
concentrations of CGS21680 required to stimulate increased
production of Col1 (both components: 1α1 and 1α2) and
Col3 differed markedly, even though stimulation was mediat-
ed by the A2A receptor since SCH58261, a highly selective
A2AR antagonist, reverses the effect of CGS21680 on both
collagens (Fig. 1). Moreover, when we analyzed the ratio of
Col1:Col3 expression in NHDF stimulated with CGS21680,
we found that the ratio of Col1:Col3 production decreased
significantly from 4.2±0.5 to 2.9±0.3 as the concentration of
CGS21680 increased from 0.1 to 10 μM. The change in
Col1:Col3 ratio at differing A2AR agonist concentrations is
likely to be physiologically and pharmacologically important
since, in normal skin, where adenosine concentration varies
from 30 to 300 nM, there is a Col1 to Col3 ratio of 4:1, but in
hypertrophic and immature scars, where adenosine concentra-
tion is at micromolar ranges, the ratio decreases to 2:1 [4].
That A2AR activation increases Col1 and Col3 expression was
further corroborated by quantitation of mRNA for these pro-
teins (Fig. 1c); these results were in agreement with previously
published results obtained in studies of hepatic stellate cells
and the human hepatic stellate cell line LX-2 [15].

PKA activates Col1, but inhibits Col3 production
after A2AR activation

Adenosine receptors are all members of the large family of
G-protein-coupled receptors, and the A2AR signals almost
exclusively via GαS signal transduction proteins, which
activate adenylate cyclase and mediate downstream signal-
ing via cAMP, which leads to activation of two divergent
pathways activated by protein kinase A (PKA) and the
guanine nucleotide exchange factor Epac1/2. As expected,
A2AR activation by the specific agonist CGS21680 in-
creased the intracellular levels of cAMP in a dose-
dependent fashion (Fig. 2a). To follow, we studied the
impact of PKA inhibition on the CGS21680 activation of
Col1 and Col3. The PKA inhibitor, PKI, dramatically de-
creased PKA activity (95.83±4.16 % inhibition, P<0.01
Student's t test; Fig. 2b) and completely blocked the effect
of adenosine A2AR stimulation by CGS21680 on Col1
expression (Fig. 2c). In contrast, PKI alone enhanced the
effect of CGS21680 0.1 μM on Col3 expression (170.2±
18.1 % of control, P<0.001 Student's t test).

Since three different PKA catalytic subunits have been
discovered [26], we next silenced PKA-Cα, PKA-Cβ, and
PKA-Cγ (Fig. 3a) which, interestingly, increased basal Col1
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Fig. 1 A2AR activation increase collagen I and III with different
potency. a NHDF cells were incubated with increasing concentrations
of the A2AR agonist CGS21680 during 24 h, with or without pre-
incubation with the A2AR selective antagonist SCH58261 0.1 μM.
Black triangle represents the increasing concentrations of CGS21680
0.1–1–10 μM. b Densitometry of bands showing percent change and
Col1:Col3 ratio. Data represent means±SEM of more than ten inde-
pendent experiments, and statistics was performed by ANOVA

followed by Newman–Keuls post-test, Col1 **P<0.01 and Col3 ##P
<0.01 vs. non-stimulated control; *P<0.05 CGS21680 0.1 vs. 10 μM;
or by two-way ANOVA, &&&P<0.001 and &&P<0.01 SCH58261 vs.
control. c mRNA for collagen1α1 and collagen3α1 was measured by
real-time RT-PCR after a 24-h stimulation with CGS21680 1 μM. Data
represent means±SEM of four independent experiments, and statistical
analysis was performed by Student's t test, collagen1α1 ***P<0.001
and collagen3α1 ##P<0.01 vs. non-stimulated control
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and Col3 expression. Col1 expression was unaffected by
CGS21680 treatment in PKA-Cα and PKA-Cβ knockdown
cells, but it was markedly increased by CGS21680 in PKA-
Cγ-depleted cells. Col3 expression after A2AR activation
was increased when compared to basal expression in all
three knockdowns, although the difference was not signifi-
cant in PKA-Cβ-depleted cells (Fig. 3b).

Epac2 is required for Col1 and Col3 production
following A2AR activation

Prior studies indicate that Epac plays a significant role in
regulating collagen synthesis and fibroblast migration,
suggesting that Epac1 is a negative regulator of both Col1
and Col3 [25]. Therefore, we also investigated the impact of
Epac on Col1 and Col3 production after A2AR activation by
CGS21680, which robustly increased Epac activity
(Fig. 4a). Next, we silenced Epac1 or Epac2 (Fig. 4b).
Interestingly, Epac1 silencing increased basal expression of
both Col1 and Col3 (Col1 142.2±19 %, P<0.05 vs. nega-
tive control; Col3 150.4±10 %, P<0.001 vs. negative con-
trol), and levels were also elevated upon increasing concen-
trations of CGS21680. However, Epac2 depletion prevented
the CGS21680-induced increase in both Col1 and Col3
(two-way ANOVA, P<0.001), and double knockdown of
Epac1/2 prevented Col3 but not Col1 increase after A2AR
activation (Fig. 4c). These results confirm previous reports
in which Epac1 was found to negatively regulate Col1 and
Col3 [25] and suggest that Epac2 is required for the expres-
sion of Col1 and Col3 following adenosine A2AR
stimulation.

Discussion

Collagen is the principal building block of connective tissue,
and its upregulation in malignancies such as scleroderma is
a critical event in the development of tissue fibrosis [27]. In
normal skin, types I and III collagen exist in a ratio approx-
imately 4:1, whereas in hypertrophic and immature scars,
the percentage of type III collagen may be as high as 33 %,
altering the ratio of Col1 to Col3 to as low as 2:1 [4].
Adenosine is present in most biological fluids and is elevat-
ed during tissue stress when it acts as a potent endogenous
modulator of inflammation and tissue repair [2, 3] so that
physiological interstitial levels of adenosine of 30 to 300
nM are found in normal tissues, while adenosine concentra-
tions can reach micromolar levels during hypoxia, ischemia,
inflammation, and other types of injury [28]. We therefore
sought to analyze the impact of the A2AR agonist
CGS21680 ranging from nanomolar to micromolar concen-
trations. It has previously been reported that adenosine,
acting via the A2AR, promotes an increase in collagen in

wounds [6, 7] and in vitro [12, 14]. In fact, we have previ-
ously shown that A2AR stimulation promotes dermal fibro-
sis, as both A2AR antagonism and knockdown protect mice
from developing bleomycin-induced dermal fibrosis and
A2AR antagonism prevents excessive scarring by hampering
Col3 overproduction compared to Col1 [10] and protects
from dermal fibrosis in a model of elevated tissue adenosine
[29]. We therefore hypothesized that Col1 production is
more sensitive to A2AR activation than Col3 so that increas-
ing concentrations of CGS21680 would decrease the
Col1:Col3 ratio. Interestingly, hypoxia increases adenosine
extracellular levels by suppressing both adenosine uptake
and metabolism [30–33] and, at the same time, conditions of
hypoxia promote fibrogenesis [34]. Moreover, HIF-1α in-
duces A2BR expression [35] indicating that the A2BR exerts
a tissue protective function [36, 37], but the A2AR may also
contribute to the functions of adenosine in ischemic settings
[35, 36]. Therefore, further studies will be needed to fully
understand the interplay between hypoxia, HIF-1α, and
adenosine in skin fibrosis. In this regard, and highlighting
the hypoxia–inflammation relationship [30], it has been
recently shown that hypoxia elicits a potent anti-
inflammatory mechanism to limit tissue damage in condi-
tions of reduced oxygen availability [38].

Among the most well-known effects of adenosine A2AR
receptor stimulation is increasing intracellular cAMP [28,
39, 40], and A2AR stimulation activates both PKA [20] and
Epac [19]. Moreover, the A2AR has been shown not to
couple to the Gq/PLC/PKC pathway [22, 28]. In fact, direct
activation of PKC with phorphol 12-myristate 13-acetate
(PMA) dramatically inhibits both Col1 and Col3
(Supplemental Figure 2), strongly indicating that A2AR
promotion of collagen signals via cAMP. Paradoxically,
both Epac and PKA have been reported to decrease Col1
and Col3 synthesis in human fibroblasts [25], and others
have suggested that stimulating increased cAMP levels or
activating Epac could be used to inhibit fibrosis [24]. Thus,
Yokoyama et al. showed that mRNA expression of both
Col1 and Col3 is decreased by activation of both enzymes
PKA and Epac using cAMP analogs that specifically acti-
vate PKA or Epac at 50 μM [25]. The work reported here
clearly confirms the role of cAMP/PKA/Epac activation in
adenosine A2AR-mediated stimulation of collagen produc-
tion, which is in agreement with the finding that collagen is
increased by activation of other adenyl cyclase-coupled re-
ceptors such as the angiotensin AT-1R [41].

Previous reports suggest that differences in cAMP affin-
ities between PKA isoforms contribute to specificity in the
cAMP pathway [42, 43], and our results are consistent with
this hypothesis. Moreover, inhibition of PKA by PKI dra-
matically reduced PKA activity (Fig. 2b) and prevented
A2AR-mediated stimulation of Col1 expression but potenti-
ated Col3 expression. In agreement with previous findings,
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and Col3 expression analysis. Black triangle represents the increasing
concentrations of CGS21680 0.1–1–10 μM. Statistical analysis was
performed by two-way ANOVA, **P<0.01 PKI vs. control. Data
represent means±SEM of three or more independent experiments

Purinergic Signalling (2013) 9:573–583 577



knockdown of the PKA catalytic subunits increased basal
Col1 and Col3 expression (Fig. 3b) [25]. To our knowledge,
the present work is the first description of a differential
regulation of Col1 and Col3 by PKA following A2AR acti-
vation: we found that the increase in Col1 following
CGS21680 incubation was prevented in PKA-Cα and
-Cβ-depleted cells and that, similar to the impact of the
PKI inhibitor, Col3 was further increased by A2AR by
knockdown of the catalytic subunits of PKA. These results
are most consistent with the hypothesis that activation of
PKA after A2AR activation stimulates Col1 expression but
inhibits Col3 expression.

Although PKA was initially thought to be the exclusive
mediator of cAMP action [44], it was subsequently

recognized that Epac mediates many of the effects of
cAMP on cellular function [45]. To determine whether
Epac signaling mediates collagen expression in response to
adenosine A2A stimulation, we knocked down both Epac1
and 2 (Fig. 4b) and found that Epac1, but not Epac2,
silencing increased basal Col1 and Col3 expression
(Fig. 4c), which is consistent with the observation that
TGF-β1 promotes collagen synthesis by repressing Epac1
but not Epac2 in fibroblasts from different tissues [25].
Interestingly, the effect of A2AR stimulation on both Col1
and Col3 expression was lost in Epac2-silenced cells. These
findings suggest that after A2AR activation, Epac2 is neces-
sary for Col1 and Col3 expression, and its regulation by Gs

linked receptors.
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The results of the studies presented here further highlight
the dependence of A2AR signaling on activation of adenylate

cyclase and the role of cAMP in A2AR signaling for fibroblast
collagen production, suggesting that submaximal activation of
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the A2AR selectively activates PKA, favoring Col1 pro-
duction but repression of Col3. However, stronger activa-
tion of A2AR activates Epac2 to stimulate both Col1 and
Col3 expression. In accord with this hypothesis, it has
previously been described that although cAMP affinities
for Epac and PKA are similar, cAMP binds cooperatively
to PKA but not to Epac, and thereby increases the respon-
siveness of PKA to a slight change of cAMP in the intact
cell [46]. Similarly, it has been previously described that a
slight intracellular cAMP increase activates cardiac fibro-
blast migration, which is, nonetheless, inhibited upon
micromolar cAMP [25]. By highlighting the importance
of intracellular cAMP levels on collagen production, our
results shed some light into how a GαS-coupled receptor,
the A2AR, increases both Col1 and Col3.

In summary, our work indicates that in NHDFs, aden-
osine mediates complex regulation of the Col1:Col3 bal-
ance, a determinant of the collagen quality in wounded
versus normal skin, by fine-tuning intracellular cAMP
levels. In Table 1, we have summarized our results
showing that at nanomolar concentrations of the A2AR
agonist (CGSlow), PKA activates Col1 but represses
Col3, since the latter is only increased by CGSlow in
the presence of PKI. In agreement, upon PKA C-α/C-β
knockdown, basal Col1 and Col3 are increased, and
CGS21680 further increases Col3 but not Col1.
Similarly, Epac1 depletion increases Col1 and Col3, but
Epac2 is needed at nanomolar and micromolar (CGShigh)
concentrations for Col1 expression and at micromolar for
Col3 expression. Taken together, our results suggests that
at nanomolar concentrations of the A2AR agonist, the
PKA-mediated induction of collagen I and repression of
collagen III expression increases the Col1:Col3 ratio but at
higher concentrations of the A2AR agonist, and subsequent
higher intracellular cAMP concentrations, the PKA inhibition
of Col3 is overcome by Epac2 activation. Moreover, the
observation that there is differential regulation of Col1 and
Col3 by A2AR provides an attractive explanation for the
observation that in normal skin, where adenosine concentra-
tion varies from 30 to 300 nM, there is a Col1 to Col3 ratio of
4:1, but in hypertrophic and immature scars, where adenosine
concentration is likely to be present at higher concentrations,
the ratio decreases to 2:1 [4], a decrease prevented by A2AR
blockade [10].

Methods

Antibodies, reagents, and cell line

CGS21680 and SCH58261 were purchased from Tocris
Bioscience (Ellisville, MO, USA). The PKA inhibitor
(TTYADFIASGRTGRRNAIHD; PKI) was purchased from

Promega (Madison, WI, USA). Purified collagen1 and colla-
gen3 and antibodies to collagen1 and collagen3 were pur-
chased from SouthernBiotech (Birmingham, AL, USA). The
RIPA buffer, protease inhibitor cocktail, the phosphatase in-
hibitor cocktail, phorbol 12-myristate 13-acetate (PMA), and
the antibody to actin (H-196) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Secondary antibodies and
Epac1 (sc-25632), PKA-Cβ, and PKA-Cγ antibodies were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Epac2 and PKA-Cα antibodies were from Cell
Signaling Technology (Boston, MA, USA). TGF-β1 was
from R&D systems (Minneapolis, MN, USA). NHDFs was
purchased from Lonza (Walkersville, MD, USA).

Stimulation and preparation of cellular extracts and Western
blot

Passage 1 to 5 of 75 % confluent NHDF cells was stimulat-
ed during 24 h with the A2AR agonist CGS21680 at 0.1, 1,
or 10 μM. When indicated, the A2AR antagonist SCH58261
(0.1 μM) was added 15 min or the inhibitor of PKA (PKI;
10 μg/ml) 1 h before CGS21680. For all the experiments
with inhibitors/antagonists, a dose–response from 0.1 to
10 μM of CGS21680 was run in parallel. After stimulation,
cells were washed with cold PBS and lysed RIPA buffer
containing protease inhibitor cocktail and phosphatase in-
hibitor cocktail. The protein content was measured by the
BCA protein assay (Thermo Fisher Scientific, Pittsburgh,
PA, USA). Three micrograms of protein extract for Col1,
PKA-Cα, PKA-Cβ, and PKA-Cγ and 10 μg for Col3,
Epac1, and Epac2 were separated on SDS-polyacrylamide
gels. Then, proteins were transferred to PVDF membranes
for immunoblotting. Prior to antibody incubation, mem-
branes were blocked in Tris-buffered saline with 0.1 %
Tween 20 (TBST) plus 3 % BSA (albumin from bovine

Table 1 Summary of the results: roles of PKA and Epac on Col1 and
Col3 regulation after A2AR activation

Treatment Col1 Col3 Pathway

CGSlow ↑ ≈ A2AR

CGShigh ↑ ↑

PKI+CGSlow ≈ ↑ PKA

PKI+CGShigh ≈ ↑

PKA C-α/-β siRNA+CGS ≈ ↑

Epac1/2 siRNA+CGSlow ≈ ≈ Epac

Epac1/2 siRNA+CGShigh ≈ ≈

The A2AR agonist CGS21680 was tested at 0.1 μM (CGSlow) and 1–
10 μM (CGShigh) concentrations, which promoted an increase (↑), a
decrease (↓), or did not affect (≈) collagen production
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serum, Sigma-Aldrich). Primary antibodies were incubated
overnight at 4 °C at 1/500 dilution for Col1, Col3, Epac1,
PKA-Cβ, and PKA-Cγ while at 1/1,000 for Epac2, PKA-
Cα, and actin. Membranes were then washed with TBST,
incubated with an anti-goat IgG alkaline phosphatase-
conjugated secondary antibody at 1/3,000, anti-Mouse IgG
alkaline phosphatase-conjugated 1/3,000, or anti-rabbit IgG
alkaline phosphatase-conjugated 1/2,000 for 1 h at room
temperature, and detection was performed using the ECF
substrate for Western Blotting (GE Healthcare, London).
Images were captured by the Typhoon Trio (GE
Healthcare). Data was analyzed and quantified with Scion
Image software (Scion Corporation, Frederick, MD, USA).
Band quantification was first normalized to actin and then
percentage was calculated to the non-stimulated control
blotted in the same membrane. For collagen1, the upper
band corresponding to collagen1α1 [47, 48] is represented,
and calculations for collagen1α2 provided nearly identical
results. Prior to Col1:Col3 ratio calculation, standard curves
with purified collagen1 and collagen3 and a loading curve
with cellular extracts for both types of collagen were ana-
lyzed showing that Col1 is more abundant than Col3 in
NHDF (Supplemental Figure 3).

Quantitative RT-PCR

NHDF were serum starved for 24 h and stimulated with
CGS21680 1 μM for 24 h. Total RNA was extracted and
purified using the RNeasy Mini Kit (QIAGEN, 74704,
Valencia, CA, USA) according to the manufacturer's protocol.
Relative quantification of gene expression was performed
using real-time RT-PCR on Mx3005P Real-Time PCR
System (Strategene, Agilent Technologies, Santa Clara, CA,
USA) with SYBR Green (Agilent Technologies, 600548,
Santa Clara, CA, USA) according to the manufacturer's proto-
col. The following primers were used in real-time PCR ampli-
fication: ACTIN forward: 5-TCACCCACACTGTGCCCATC
TACGA-3, reverse: 5-CAGCGGAACCGCTCATTGCCAAT
GG-3; Collagen1α1 forward: 5′-TGTTCAGCTTTGTGGAC
CTCCG-3′, reverse: 5′-CCGTTCTGTACGCAGGTGATTG-
3′; Collagen3α1 forward: 5′-GAAGATGTCCTTGATGT
GC-3′, reverse: 5′-AGCCTTGCGTGTTCGATAT-3′. mRNA
abundance was determined relative to that of ACTIN.

cAMP measurement

Intracellular cAMP was measured with the Amersham
(Arlington Heights, IL, USA) cAMP Biotrak Enzyme im-
munoassay system. Briefly, 75 % confluent NHDF were
starved for 24 h and incubated at the indicating concentra-
tions of CGS21680 for 20 min. cAMP levels were analyzed
by using the non-acetylation EIA procedure according to the
manufacturer's protocol.

Protein kinase A assay

The non-radioactive PepTag PKA assay (Promega, Madison,
WI, USA) was used to measure PKA activity from cell
lysates. The PepTag PKA assay is based on the phosphor-
ylation of the fluorescent PKA substrate peptide, Leu-
Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) (PepTag A1 pep-
tide) which, upon phosphorylation by PKA, acquires a
negative charge and can be separated from the non-
phosphorylated peptide by agarose gel electrophoresis.
Ninety percent confluent NHDF in 100-mm culture wells
were serum starved for 24 h and stimulated for 15 min with
CGS21680 (1 μM). When indicated, the PKA inhibitor PKI
(10 μg/ml) was added 1 h before CGS21680. Positive and
negative controls and spectrophotometric quantification of ki-
nase activity following agarose solubilization were performed
according to the manufacturer's protocol.

Rap1 activation assay

Ninety percent confluent NHDF in 100-mm culture wells
were serum starved for 24 h and stimulated for 15 min with
CGS21680 (1 μM). Rap1 activation assays using a GST-
tagged fusion protein corresponding to amino acids 788–
884 of the human Ral-GDS-Rap binding domain bound to
glutathione agarose (Ral GDS-RBD agarose) were
performed using a Rap1 activation assay kit according to
the manufacturer's directions (Millipore, Billerica, MA,
USA).

RNA interference (siRNA)

Double-stranded siRNAs to Epac1 (s20360), Epac2 (s21816),
the catalytic subunits PKA-Cα (s11065), PKA-Cβ (s11068),
and PKA-Cγ (s11071) and negative siRNA (4390844) used
as a control were purchased fromAmbion (Life Technologies,
Grand Island, NY, USA). Cells were transfected with siRNA
(5 pmol for Epac1; 50 pmol for Epac2, PKAα, PKAβ, and
PKAγ; and 25 pmol of each for the double knockdown, with
the negative control at the respective concentrations), using
Lipofectamine RNAiMAX (Invitrogen, Life Technologies,
Grand Island, NY, USA). After 24 h, CGS21680 was added
for 24 h, and cellular extracts were prepared as described
above.

Statistical analysis

Statistical differences were determined using two-way
ANOVA, repeated measures ANOVA followed by
Newman–Keuls post-test, or Student's t test carried out
using GraphPad software on a PC. The alpha nominal level
was set at 0.05 in all cases. A P value of <0.05 was
considered significant.
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