
Novel Approach for Differentiating Shigella Species and Escherichia
coli by Matrix-Assisted Laser Desorption Ionization–Time of Flight
Mass Spectrometry

Prasanna D. Khot,a Mark A. Fishera,b

ARUP Laboratories, Salt Lake City, Utah, USAa; Department of Pathology, University of Utah, Salt Lake City, Utah, USAb

Shigella species are so closely related to Escherichia coli that routine matrix-assisted laser desorption/ionization–time of flight
mass spectrometry (MALDI-TOF MS) cannot reliably differentiate them. Biochemical and serological methods are typically used
to distinguish these species; however, “inactive” isolates of E. coli are biochemically very similar to Shigella species and thus pose
a greater diagnostic challenge. We used ClinProTools (Bruker Daltonics) software to discover MALDI-TOF MS biomarker peaks
and to generate classification models based on the genetic algorithm to differentiate between Shigella species and E. coli. Sixty-
six Shigella spp. and 72 E. coli isolates were used to generate and test classification models, and the optimal models contained 15
biomarker peaks for genus-level classification and 12 peaks for species-level classification. We were able to identify 90% of E. coli
and Shigella clinical isolates correctly to the species level. Only 3% of tested isolates were misidentified. This novel MALDI-TOF
MS approach allows laboratories to streamline the identification of E. coli and Shigella species.

Shigella species and Escherichia coli are very closely related
Gram-negative bacteria belonging to the family Enterobacteri-

aceae. Phenotypically, Shigella species and E. coli species share
many common characteristics; genotypically, they could be con-
sidered the same species (1–4). Due to this close relatedness, the
differentiation of Shigella species from E. coli species can be diffi-
cult. In particular, variants of E. coli termed “inactive” (e.g., non-
motile, non-lactose-fermenting, or non-gas-producing isolates)
are biochemically very similar to Shigella species and such isolates
can pose a significant diagnostic challenge. Currently, methods
based on biochemical tests and serotyping are preferred for iden-
tification of these species; however, these approaches may have
suboptimal diagnostic performance. Unfortunately, advanced
molecular methods such as sequencing the 16S rRNA gene and
routine matrix-assisted laser desorption/ionization–time of flight
mass spectrometry (MALDI-TOF MS) are unable to reliably dif-
ferentiate between Shigella species and E. coli (5, 6).

There are four commonly recognized Shigella species (S. son-
nei, S. flexneri, S. boydii, and S. dysenteriae), all of which may cause
the well-characterized disease known as shigellosis (bacillary dys-
entery) (7). In contrast, E. coli strains in the human gut are typi-
cally commensal, although some can be pathogenic. Shigellosis is
endemic throughout the world and is responsible for nearly 165
million cases of severe dysentery each year (7, 8). Since shigellosis
is highly communicable (�100 viable cells can produce disease in
healthy adults), it is a serious health concern at childcare centers
and in developing countries with poor sanitation conditions. In
the United States, approximately 14,000 cases of shigellosis occur
each year, with S. sonnei and S. flexneri identified as the predom-
inant pathogens (9). The Shiga-toxin-producing species S. dysen-
teriae, although infrequently isolated in the United States, may
produce more-serious disease that can be fatal if left untreated.

We used a novel approach based on MALDI-TOF MS and
ClinProTools (Bruker Daltonics) software to discover biomarker
peaks that distinguish Shigella species from E. coli species. Clin-
ProTools is a data-mining software program that helps identify
potential biomarkers in complex mass spectra (10, 11). It also

allows calculation of mathematical models based on biomarker
peaks to develop “classifiers” of unknown isolates. Three strategies
to identify biomarker peaks were evaluated: first, a semiauto-
mated approach which relied on the presence or absence of peaks;
second, a fully automated approach that relied on both differences
in intensity and masses of biomarker peaks; and third, a hybrid
approach which used a combination of biomarker peaks from the
first two strategies.

MATERIALS AND METHODS
Bacterial strains. A total of 138 archived clinical isolates identified by a
consensus approach of biochemical, serological, and genetic testing (12–
14), including 66 Shigella species (35 S. sonnei, 23 S. flexneri, 4 S. boydii,
and 4 S. dysenteriae) and 72 E. coli species (31 typical and 41 inactive), were
chosen for analysis by MALDI-TOF MS. Of the 138 isolates, 131 were
collected from 2006 to 2012 from diverse body sites (blood, tissue, genital,
respiratory, stool, urine, and wound) and originated from at least 17 states
across the United States. Five of the 138 isolates were ATCC reference
strains of E. coli (25922), S. sonnei (25931), S. flexneri (12022), S. boydii
(8700), and S. boydii (BAA-1247). Two of four S. dysenteriae isolates were
genetically related strains lacking Shiga toxin expression: CVD 1254
(�stxAB) and CVD 1255 (�guaBA �sen �stxAB; gifts from Eileen Barry,
University of Maryland) (15). E. coli isolates were characterized as “inac-
tive” if they displayed two or more of the following properties: lack of
lactose fermentation, lack of motility, and lack of gas production (13).
Within a species or biotype (e.g., normal or inactive E. coli), half of the
available isolates were randomly assigned to groups used either to gener-
ate classification models or to test the models (16). In other words, there
was no overlap between the isolates used to develop and test the classifi-
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cation models. All three MALDI-TOF MS data analysis approaches used
the same cohort of isolates for model generation and testing.

Biochemical methods. Isolates were identified by routine phenotypic
and biochemical methods (13), including lactose fermentation character-
istics on MacConkey agar, MIO (motility, indole, and ornithine decar-
boxylase), LIA (lysine iron agar), and TSI (triple sugar iron) agars (Hardy
Diagnostics, Santa Maria, CA), as well as by the use of a BD Phoenix
Automated Microbiology System (Phoenix NID panel; BD Diagnostics,
Sparks, MD).

Serotyping. Shigella species and inactive E. coli were serotyped using
antisera A to D (BD Diagnostics and Remel, Lenexa, KS). Isolates were
cultivated in pure culture on Columbia sheep blood agar (Hardy Diag-
nostics) at 35°C, and a heavy suspension of organisms was made in 0.5 ml
of 0.85% saline solution. Single drops of antisera for antigens A, B, C, and
D were mixed with single drops of the organism suspension using wooden
applicator sticks. After gentle rocking for 1 min, reactions were observed
for strong agglutination which indicated the specific serotype. If aggluti-
nation was negative or weak for isolates that resembled Shigella species by
other methods, then a 1-h boiling step was performed to remove any
blocking envelope antigens prior to retesting, as recommended by the
manufacturer.

Quantitative PCR (qPCR) assays. Two PCR assays were developed to
target the lacY (�-galactoside permease) and ipaH (invasion plasmid an-
tigen H) genes which were previously shown to distinguish E. coli from
Shigella species (12, 14). Genomic DNA was extracted from pure cultures
using a MagaZorb DNA Mini-Prep kit (Promega, Madison, WI) and
quantified by spectrophotometry. Quantitative PCR was performed on a
SmartCycler real-time PCR instrument (Cepheid, Sunnyvale, CA) using
the double-stranded DNA (dsDNA) binding dye LCGreen Plus� (Bio-
Fire Diagnostics, Salt Lake City, UT) as described below using genomic
DNA of known E. coli and S. sonnei (lacY) or S. flexneri and E. coli (ipaH)
clinical isolates as positive and negative controls, respectively, with every
run.

lacY gene qPCR. A 102-bp segment of the lacY gene was amplified
using forward primer 5=-CTGCTTCTTTAAGCAACTGGCGA-3= and re-
verse primer 5=-ACCAGACCCAGCACCAGATAAG-3=. Each 25-�l PCR
mixture contained 1� Colorless GoTaq Flexi DNA polymerase (Pro-
mega), 3 mM MgCl2, a 0.3 mM (each) deoxynucleoside triphosphate
(dNTP) blend (Promega), 0.5 �M (each) forward and reverse primer,
0.5� LCGreen Plus� (BioFire Diagnostics), and 20 ng genomic DNA.
PCR cycling conditions consisted of a premelt at 95°C for 2 min and then
30 cycles of 95°C for 20 s, 58°C for 30 s, and 72°C for 20 s followed by final
extension of 72°C for 5 min and a melt curve analysis step to confirm the
PCR product. A test isolate was considered positive for the presence of the
lacY gene when the threshold cycle (CT) value was within 10-fold of
the value for the positive control (�CT � 3.32) and had a characteristic
melt peak (melting temperature [Tm] � 83.5°C) and was considered neg-
ative when the CT value differed from the positive-control value by less
than 0.001 (�CT 	 9.97).

ipaH gene qPCR. A 147-bp segment of the ipaH gene was amplified
using forward primer 5=-TCGATAATGATACCGGCGCTC-3= and re-
verse primer 5=-CTGCGAGCATGGTCTGGAA-3=. PCR and data inter-
pretation conditions were identical to those for the lacY PCR except for
use of 100 ng genomic DNA, a 55°C annealing temperature, and a char-
acteristic melt peak of 85.7°C.

MALDI-TOF MS data acquisition. Isolates were cultivated in pure
culture on MacConkey agar (Hardy Diagnostics) at 35°C. Organisms were
harvested at 18 to 24 h. The formic acid-acetonitrile extraction method
was employed on all isolates, and mass spectra were acquired as previously
described on triplicate spots of each isolate extract (5). Data were collected
between 2 K and 20 K m/z in linear positive-ionization mode (microflex;
Bruker Daltonics, Billerica, MA). Each spectrum was a sum of 500 shots
collected in increments of 100. When identification scores from the initial
automated data collection were �1.9 for E. coli in the Biotyper analysis
(Bruker Daltonics), new spectra were collected in manual acquisition

mode. Spectra were further analyzed with FlexAnalysis 3.3 (Bruker Dal-
tonics) and ClinProTools 2.2 (Bruker Daltonics) as described below. If
spectra did not give satisfactory values for the default recalibration param-
eters in ClinProTools, isolates were regrown and extracted and new spec-
tra collected as described above.

MALDI-TOF MS data analysis. Three approaches were used to gen-
erate biomarker-based classifiers (also called models). In all approaches,
spectra from the model generation cohort were used to create a peak list to
distinguish between classes of isolates (e.g., species) and test cohort spec-
tra were then classified by the model to evaluate its performance. The
classification algorithm in ClinProTools involved two steps. The first step
distinguished between 2 classes (Shigella species and E. coli), and the sec-
ond step distinguished among 5 classes (S. sonnei, S. flexneri, S. boydii, S.
dysenteriae, and E. coli). If results from the 2-class (genus-level) and
5-class (species-level) models were consistent (e.g., if the results showed
agreement with respect to genus identification), then the species-level
identification was accepted. If results were inconsistent, the isolate was
flagged for further workup, which in a typical laboratory would involve
additional testing by serotyping, biochemical methods, and/or PCR. Ac-
curacy was calculated with respect to agreement between MALDI-TOF
MS identification and the reference identification based on serotyping,
biochemical methods, and PCR.

Semiautomated approach. Biomarker peaks were identified by pair-
wise comparison of classes using the “Peak Statistic Table” function in
ClinProTools followed by manual confirmation that peaks were distin-
guishable using FlexAnalysis. Mass lists for each spectrum were exported
into Excel (Microsoft, Redmond, WA), and frequencies of biomarker
peaks were calculated by class using custom code (available upon request)
written in MATLAB (Mathworks, Natick, MA). The resulting “reference
peak profiles” were compared with mass lists for each test isolate, and a
Pearson’s correlation coefficient was calculated. The profile that resulted
in the highest correlation coefficient score was designated the identifica-
tion of the unknown test isolate.

Automated approach. The automated approach was performed using
three ClinProTools functions: data preparation, model generation, and
spectra classification. Data preparation involved baseline subtraction (top
hat; 10% minimal baseline width), normalization (total ion current),
recalibration (1,000 ppm maximal peak shift and 30% match to calibrant
peaks, with exclusion of spectra that could not be recalibrated), average
spectrum calculation (resolution � 800), average peak list calculation
(signal-to-noise threshold � 5), peak calculation in the individual spectra,
and normalization of peak lists. Model generation using the genetic algo-
rithm (17) was performed using the following settings: �15 peaks, auto-
matic detection of initial number of peak combinations, �50 generations,
0.2 mutation rate, 0.5 crossover rate, no varying random seed, and 3
neighbors. Classification of unknown spectra was achieved by using the
“Classify” function in ClinProTools. If �2 of 3 spectra per isolate were
assigned to the same class, the identification was accepted.

During automated model generation, two parameters called “Cross
Validation” and “Recognition Capability” were calculated by ClinProTools.
Cross Validation is a measure of the model’s reliability and may be used to
predict its future performance. It is calculated by randomly splitting the
model generation spectra into a model subset and a test subset. A model is
generated and subsequently tested for its ability to correctly classify spec-
tra in the test subset. This process is repeated multiple times to calculate a
normalized Cross Validation value (18). Recognition Capability is a mea-
sure of the model’s ability to correctly classify the spectra that were used to
generate the model. It is calculated by testing each spectrum used to gen-
erate the model against the model itself and dividing the number of cor-
rectly classified spectra by the total. In other words, it is the percentage of
model generation spectra that were correctly classified by the model.

Automated-hybrid approach. The data analysis used the same set-
tings as the automated approach, except the “Force Peak into Model”
command in ClinProTools was used to generate a hybrid model by inclu-
sion of peaks from the semiautomated approach. Peaks were empirically
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chosen for inclusion in the hybrid model if they improved the Cross Val-
idation and Recognition Capability scores in comparison to those deter-
mined using the automated model.

Statistical analysis. Associations between categorical variables were
analyzed by Fisher’s exact test using statistical computing software R
(v.2.15.0; http://www.R-project.org). P values � 0.05 were considered to
represent statistical significance.

RESULTS
Accuracy of MALDI-TOF MS. The semiautomated approach was
based upon statistical analysis of peaks by class (species) in Clin-
ProTools followed by manual review to identify a set of biomarker
peaks. This process resulted in 14 peaks that were potentially use-
ful in distinguishing among the five species (S. sonnei, S. flexneri, S.
boydii, S. dysenteriae, and E. coli, Table 1). The rationale for devel-

oping this model was to determine if the simple presence or ab-
sence of peaks could distinguish among the species. The accuracy
of this approach among the 69 test cohort isolates was 94% (31 of
33) for detecting Shigella species but only 56% (20 of 36) for E. coli.
Most (14 of 16) of the incorrect identifications were E. coli isolates
identified as S. sonnei.

The automated approach, based on the genetic algorithm (17),
resulted in 15 and 11 biomarker peaks for the genus- and species-
level models, respectively (Table 1). In contrast to the semiauto-
mated approach, peak selection using this approach considered
differences in both intensity and mass. This model generation
method improved the ability to distinguish isolates at both the
genus and species levels compared to the semiautomated ap-
proach. Analysis of the test cohort resulted in 94% (65 of 69)
accuracy with the genus model and 91% (63 of 69) accuracy with
the species model. When the two-step testing algorithm that re-
quires agreement between the models was implemented, 59 of the
69 test isolates (86%) were correctly identified. Of the remaining
10 isolates, nine were flagged for additional testing due to model
disagreement; thus, only 1 of 69 (1.4%) isolates was misidentified
(S. flexneri as S. boydii) at the species level.

ClinProTools allows peaks to be manually included in classifi-
cation models. Eight distinguishing peaks from the semiauto-
mated approach (five from the genus- and three from the species-
level model) were selected for inclusion in the hybrid models
(Table 1), which yielded improved performance relative to both
the semiautomated and the automated approaches. The genus-
and species-level hybrid models correctly classified 96% (66 of 69)
and 91% (63 of 69) of the test cohort isolates, respectively, and the
two-model testing algorithm yielded 90% (62 of 69) accuracy (Ta-
ble 2). Five isolates were flagged for further workup, and only two
isolates were misidentified (Table 3). One of the two misidentified
isolates (isolate 102) was a typical lactose-fermenting E. coli isolate
which, during the routine bacterial identification workflow,
would likely not be tested with this specialized MALDI-TOF MS
assay. Although the two-step classification algorithm resulted in
slightly fewer correct identifications compared to the species-level
model alone (Table 2), it resulted in fewer misidentifications (2
versus 4; Table 3).

TABLE 1 Biomarker peaks used in the 3 MALDI-TOF MS approaches

Peak (m/z)
determined by
the
semiautomated
approach

Peak (m/z) determined by
the automated approach

Peak (m/z) determined by
the automated-hybrid
approach

Genus-level
model

Species-level
model

Genus-level
model

Species-level
model

2,400 2,848 2,701 2,400a 2,400a

3,792 3,577 3,673 3,577b 3,578b

4,162 3,673 5,096 3,673b 3,673b

4,856 5,120 5,136 3,792a 5,096a,b

4,869 5,326 8,324 4,162a 5,136b

5,096 6,507 8,444 4,856a 6,668b

5,752 6,668 9,533 5,326b 8,324b

7,288 6,825 10,135 6,507b 8,444b

7,302 6,857 12,222 6,668b 8,455a

8,323 7,157 13,601 7,157b 9,533b

8,455 8,349 14,725 8,349b 10135b

9,711 9,223 9,223b 13,601b

9,736 9,264 9,448b

10,458 9,448 9,711a

11,706 11,731
a Peak from the semiautomated approach selected for inclusion in the ClinProTools
model.
b Peak from the automated approach selected for inclusion in the ClinProTools model.

TABLE 2 Accuracy of the hybrid MALDI-TOF MS assay, serotyping, and Phoenix with reference identification for the test isolate cohort

Organism (no. of isolates
tested)

No. (%) correctly identified

MALDI-TOF MS

Serotyping PhoenixGenus-level model Species-level model Two-step classificationa

S. sonnei (18) 18 (100) 17 (94) 17 (94) 13 (72) 16 (89)
S. flexneri (11) 11 (100) 10 (91) 10 (91) 11 (100) 8 (73)
S. boydii (2) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100)
S. dysenteriae (2) 1 (50) 1 (50) 1 (50) 2 (100) 1 (50)
Shigella species (33)b 32 (97) 30 (91) 30 (91) 28 (85) 27 (82)
E. coli, typical (16) 15 (94) 15 (94) 15 (94) NDc 16 (100)
E. coli, inactive (20) 19 (95) 18 (90) 17 (85) 15 (75) 16 (80)
E. coli (36)d 34 (94) 33 (92) 32 (89) ND 32 (89)

Total (69) 66 (96) 63 (91) 62 (90) 43 (81)e 59 (86)
a Final MALDI-TOF identification was accepted when results were consistent between the genus-level and species-level models.
b All Shigella species combined.
c ND, not determined.
d Typical and inactive E. coli combined.
e A total of 53 isolates were tested by serotyping.
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During model generation, ClinProTools software calculates
“Cross Validation” and “Recognition Capability” values, which
are indicators of the model’s performance and may be useful pre-
dictors of the model’s ability to classify test isolates. The auto-
mated approach generated Cross Validation values, which reflect
the model’s ability to handle variability among test spectra, of
99.4% for the genus-level model and 90.3% for the species
level model, whereas the hybrid models showed improved per-
formance at 99.8% and 97.2%, respectively (Table 4). The Rec-
ognition Capability value, which reflects the model’s ability to
correctly identify its component spectra, was 100% for the genus-
level model in both approaches and improved from 99.8% (auto-
mated) to 100% (hybrid) for the species-level model (Table 4).
Due to its superior performance based on Cross Validation and
Recognition Capability values, as well as on the test cohort, the
automated-hybrid approach was used for comparison with other
standard identification methods.

Comparison of MALDI-TOF MS with serotyping and auto-
mated biochemical identification. The performance of this
MALDI-TOF MS assay was compared to the performance of the
routine methods of serotyping and automated biochemical iden-
tification (BD Phoenix) for all Shigella (n � 33) and inactive E. coli
(n � 21) test isolates. Because they are not routinely subjected to
Shigella serotyping, typical E. coli isolates (n � 20) were compared
using only the Phoenix method. The accuracies of MALDI-TOF
MS, Phoenix, and serotyping compared to the reference identifi-
cation are shown in Table 2. MALDI-TOF MS outperformed both
serotyping and the Phoenix; however, the differences were not
statistically significant (P 	 0.05; Fisher’s exact test). Note that,
although the MALDI-TOF MS assay had a combined accuracy
value of 90% (62 of 69), of the seven discrepant isolates, five iso-
lates were simply flagged for further workup (e.g., the results were
inconclusive) and only two isolates (2.9%) were misidentified
(Table 3). In contrast, discrepant serotyping and Phoenix data
would result in predominantly incorrect identifications (for sero-
typing, 9 of 10; for Phoenix, 9 of 10). Taken together, these data

show that this novel MALDI-TOF approach is equivalent or su-
perior to current phenotypic methods for distinguishing E. coli
and Shigella species.

DISCUSSION

The differentiation of Shigella species and E. coli continues to pose
a diagnostic challenge for clinical laboratories. Sequencing of the
16S rRNA gene and routine MALDI-TOF MS-based identifica-
tion cannot distinguish between these species, and identification
usually relies on a few distinct phenotypic and biochemical char-
acteristics (5–7), which require additional time beyond primary
isolation and may still not resolve all isolates. Since the discovery
of the first species (S. dysenteriae) in 1898, Shigella species have
been generally considered distinct from E. coli species from a clin-
ical perspective (7, 19). Most E. coli species are commensals found
as part of the normal gut flora, whereas Shigella species are gener-
ally considered pathogenic. Based on DNA hybridization, multi-
locus enzyme electrophoresis, and comparison of genomes and
housekeeping genes, it would be reasonable to conclude that E. coli
and Shigella species are part of the same phylogenetic continuum
rather than clearly distinct species (1, 4, 20, 21). To further com-
plicate diagnosis, our results indicate that inactive E. coli isolates
may be misidentified as Shigella by commercial assays (e.g., Phoe-
nix and serotyping), necessitating additional testing to reach a
conclusive identification. Our newly developed MALDI-TOF MS-
based assay using ClinProTools software (Bruker Daltonics) en-
ables rapid distinction of Shigella species from E. coli species and
could be adopted by clinical laboratories already using MALDI-
TOF for routine bacterial identification.

ClinProTools software offers the ability to generate classifica-
tion models from large numbers of spectra in a relatively rapid and
flexible way. The aim of model generation is to determine a com-
mon signature among spectra of each of the model generation
classes (e.g., different genera or species) in such a way that spectra
of test isolates can be classified by the model. Among the three
model generation algorithms available, models based on the ge-
netic algorithm performed better for our study isolates than the
other algorithms (Supervised Neural Network and QuickClassi-
fier; data not shown). Two recent studies have used classification
models generated using ClinProTools software for distinguishing
between two Staphylococcus aureus strains (22) and between Strep-
tococcus pneumoniae and S. mitis (23). The genetic algorithm was
either the optimal algorithm for model generation or worked as
well as the other options in both studies. Both of those studies
developed single models that relied on only three distinguishing
biomarker peaks, which was likely adequate because they were

TABLE 3 Discrepant results from the automated-hybrid MALDI-TOF MS approach

Isolate Reference identification

ID based on MALDI PCR amplification

Genus level Species level Result lacY gene ipaH gene

22a E. coli (inactive) E. coli S. sonnei Further workup 
 

82 S. sonnei Shigella spp. E. coli Further workup 
 �
102 E. coli (typical) Shigella spp. S. sonnei S. sonnei � 

123 E. coli (inactive) Shigella spp. E. coli Further workup � 

124 E. coli (inactive) E. coli Inconclusive Further workup � 

129 S. flexneri Shigella spp. S. boydii S. boydii 
 �
136 S. dysenteriae E. coli Inconclusive Further workup 
 �
a Although the lacY gene for isolate 22 did not amplify, it was determined to be an E. coli gene based on ipaH gene PCR, serotyping, and biochemical tests.

TABLE 4 Cross Validation and Recognition Capability values for
automated approaches

Parameter

Value (%) determined by indicated approach

Automated Automated-hybrid

Genus-level
model

Species-level
model

Genus-level
model

Species-level
model

Cross Validation 99.4 90.3 99.8 97.2
Recognition Capability 100 99.8 100 100
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discriminating between only two classes (i.e., strains or species).
For our study, models were developed to differentiate as many as
five classes (4 Shigella species and E. coli). Two aspects seemed
critical for this to be effective: first, utilization of a larger number
of peaks than previously described (15 and 12 peaks; Table 1), and
second, use of a hybrid-automated approach which combined
manually validated peaks and those selected by the default Clin-
ProTools algorithm. The flexibility of ClinProTools in allowing
customization of parameters was indispensable in developing an
assay that could distinguish between Shigella species and E. coli.

Despite issues with interpretation of agglutination, serotyping
is arguably considered the gold standard for identification of Shi-
gella species and is widely recommended in the clinical microbi-
ology setting (13, 24). Overall, serotyping performed well in iden-
tifying most species of Shigella (Table 2); however, we were
surprised to see that 28% (5 of 17) of the S. sonnei isolates in our
test cohort were misidentified by this method. Repeat serotyping
and PCR results of the lacY and ipaH genes helped resolve these
discrepant results. Many laboratories rely on automated biochem-
ical systems for the identification of enteric bacteria, and the over-
all accuracy of performance of the Phoenix system for identifying
the E. coli in this cohort was 89% (32 of 36 isolates). However, this
system had difficulties identifying Shigella and inactive E. coli iso-
lates, with only 82% (27 of 33) of Shigella species and 80% (16 of
20) of inactive E. coli species (Table 2) identified correctly in our
study. These data are consistent with those reported by Carroll et
al., which showed that the Phoenix system misidentified approx-
imately 17% of their Shigella isolates as E. coli (25). Unfortunately,
that study did not specifically examine inactive E. coli isolates. As
seen with the Phoenix, other automated systems may have diffi-
culties correctly identifying some Shigella species and E. coli (26–
29). Together, these data reinforce the idea that the phenotypic
distinction between Shigella species and some E. coli isolates may
be quite difficult or impossible to achieve using traditional meth-
ods. The specialized MALDI-TOF MS assay described here pro-
vides an alternative testing strategy that could improve upon cur-
rently available methods.

Our study had some limitations. First, the numbers of S. dys-
tenteriae and S. boydii isolates included were low because these
species are uncommon in the United States. Second, given that the
ClinProTools models were generated using half of the available
study isolates, it is possible that the diagnostic performance of this
customized MALDI-TOF MS assay could improve if the models
were generated with a larger set of isolates. Lastly, our study relied
on a protein extraction method using cells grown on MacConkey
agar. Spectra generated from isolates growing on sheep blood agar
and the direct smear sample preparation method would have en-
abled a more streamlined workflow; however, preliminary man-
ual analysis of a limited number of spectra (sheep blood agar ver-
sus MacConkey agar) suggested that data obtained from isolates
growing on a selective medium such as MacConkey agar con-
tained more discriminatory peaks. Further investigation will be
required to determine if this strategy is feasible using other growth
media.

The inability of routine MALDI-TOF MS to distinguish be-
tween Shigella species and E. coli is well recognized (5, 30). Fur-
thermore, even though specialized mass spectrometry combined
with liquid chromatography or affinity probes was shown to have
the potential to differentiate between S. flexneri or S. sonnei and E.
coli species, these techniques will require further development and

validation to be applicable in routine clinical laboratory settings
(31, 32). Our study demonstrated that MALDI-TOF MS, using a
routine sample preparation combined with a specialized and yet
automated data analysis approach, can overcome existing analysis
limitations. The performance of this assay exceeded that of cur-
rently accepted methods such as serotyping and use of the Phoenix
instrument. In addition, although serotyping is the recommended
approach for identifying Shigella to the species level, this assay
could enable species-level identification without the labor-inten-
sive and subjective process of serotyping. This assay could be ad-
opted by clinical laboratories to rapidly distinguish inactive and
other non-lactose-fermenting E. coli species from Shigella species,
although to replicate the analysis approach presented here may
require laboratories to possess large cohorts of E. coli and Shigella
isolates. However, the ability to transfer MALDI-TOF MS spectra
between laboratories may promote wider use of such data analysis
approaches to generate alternative classification tools. Overall,
our study has demonstrated that MALDI-TOF MS is a powerful
technology that is driving improvements in bacterial identifica-
tion, and the currently observed limitations may simply be due to
a lack of sufficient analysis tools rather than to inherent shortcom-
ings of the method.
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