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Abstract

Background and Objectives The interplay between liver

metabolising enzymes and transporters is a complex process

involving system-related parameters such as liver blood per-

fusion as well as drug attributes including protein and lipid

binding, ionisation, relative magnitude of passive and active

permeation. Metabolism- and/or transporter-mediated drug–

drug interactions (mDDIs and tDDIs) add to the complexity of

this interplay. Thus, gaining meaningful insight into the

impact of each element on the disposition of a drug and

accurately predicting drug–drug interactions becomes very

challenging. To address this, an in vitro–in vivo extrapolation

(IVIVE)-linked mechanistic physiologically based pharma-

cokinetic (PBPK) framework for modelling liver transporters

and their interplay with liver metabolising enzymes has been

developed and implemented within the Simcyp Simulator�.

Methods In this article an IVIVE technique for liver

transporters is described and a full-body PBPK model is

developed. Passive and active (saturable) transport at both

liver sinusoidal and canalicular membranes are accounted

for and the impact of binding and ionisation processes is

considered. The model also accommodates tDDIs involving

inhibition of multiple transporters. Integrating prior in vitro

information on the metabolism and transporter kinetics of

rosuvastatin (organic-anion transporting polypeptides

OATP1B1, OAT1B3 and OATP2B1, sodium-dependent

taurocholate co-transporting polypeptide [NTCP] and

breast cancer resistance protein [BCRP]) with one clinical

dataset, the PBPK model was used to simulate the drug

disposition of rosuvastatin for 11 reported studies that had

not been used for development of the rosuvastatin model.

Results The simulated area under the plasma concentra-

tion–time curve (AUC), maximum concentration (Cmax)

and the time to reach Cmax (tmax) values of rosuvastatin over

the dose range of 10–80 mg, were within 2-fold of the

observed data. Subsequently, the validated model was used

to investigate the impact of coadministration of cyclospor-

ine (ciclosporin), an inhibitor of OATPs, BCRP and NTCP,

on the exposure of rosuvastatin in healthy volunteers.

Conclusion The results show the utility of the model to

integrate a wide range of in vitro and in vivo data and

simulate the outcome of clinical studies, with implications

for their design.

1 Introduction

As the proportion of candidate drugs within the Biophar-

maceutical Drug Disposition Classification System
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(BDDCS) class 2–4 entering development increases, it is

becoming evident that transporter-mediated drug–drug

interactions (tDDIs) may pose challenges for regulatory

approval and clinical practice [1, 2]. So it is not surprising

that many regulatory agencies are now requesting investi-

gation of transporter effects in vivo whenever they are

likely to be clinically relevant [3, 4]. Considering the

number of transporters in the body, including the gut, liver,

kidney, heart and brain, investigation of tDDIs can be

complicated, difficult to interpret and costly.

The contribution of the organic anion-transporting

peptide (OATP) family of solute carriers (SLCs) to the

hepatic elimination of many drugs and associated drug–

drug interactions (DDIs) is significant [5, 6]. This may lead

to an increase in the susceptibility of a drug to a tDDI. This

is particularly the case for statins (HMG-CoA reductase

inhibitors), as many patients taking these drugs for lipid

lowering have co-morbidities and are co-prescribed a

number of other medications [7]. Rosuvastatin is a rela-

tively hydrophilic statin (Class 3 according to the BDDCS)

with a low oral bioavailability of *20 % [8]. With limited

metabolism (*10 %) occurring mainly via cytochrome

P450 (CYP) 2C9 and uridine diphosphate glucuronosyl-

transferase (UGT) 1A1 [9–12], the main excretion path-

ways of rosuvastatin are mediated via the biliary and renal

routes [8, 13]. Despite a low passive diffusion into hepa-

tocytes [14], rosuvastatin is extensively distributed into the

liver, its site of action [15, 16]. This is mainly due to active

uptake of rosuvastatin by OATP1B1, OATP1B3 and

OATP2B1, as well as the sodium-dependent taurocholate

co-transporting polypeptide (NTCP) [17, 18]. On the can-

alicular side, rosuvastatin is excreted into the bile via the

breast cancer resistance protein (BCRP) [17, 19]. An

increase in the plasma area under the concentration–time

curve (AUC) of rosuvastatin was observed in patients pre-

treated with gemfibrozil, an inhibitor of OATPs [20].

Similarly, rosuvastatin AUC and the maximum plasma

concentration (Cmax) were increased by 7- and 10-fold,

respectively, in heart transplant recipients (compared with

healthy volunteers [HVs]) on an anti-rejection regimen

including the immunosuppressant cyclosporine (ciclospo-

rin), which is an inhibitor of OATPs and NTCP [21].

Application of in vitro–in vivo extrapolation (IVIVE), a

‘‘bottom-up’’ approach, in conjunction with physiologi-

cally based pharmacokinetic (PBPK) modelling under a

mechanistic systems biology approach can help to predict

complex DDIs and also inform the design of clinical

studies in HVs or patient populations [22, 23]. The model

that is incorporated within the Simcyp Population Based

Simulator [24] allows investigation of metabolism and

transport interplay within the liver and can also be used for

quantitative prediction of metabolism-mediated drug–drug

interactions (mDDIs) and tDDIs. In this study, we present

an IVIVE framework for scaling in vitro liver transporter

kinetic data to in vivo. We account for the impact of drug

ionisation on extra- and intracellular water (EW and IW)

concentrations within the permeability-limited liver (PerL)

model and present equations to estimate the unbound

concentration fractions in EW and IW compartments based

on tissue composition and drug physicochemical data. We

demonstrate application of the approach by describing the

development of a PBPK model for rosuvastatin, incorpo-

rating active uptake into the liver via OATP1B1,

OATP1B3, OATP2B1 and NTCP, in addition to excretion

of the drug into the bile by BCRP. The impact of

co-administration of cyclosporine is also investigated.

2 Methods

2.1 Model Theory and Development

2.1.1 Physiologically Based Pharmacokinetic Models

A schematic structure of the PBPK model is shown in

Fig. 1. It comprises 15 compartments, where all compart-

ments apart from the liver and gut are well-stirred models.

The gastrointestinal tract is modelled using the Advanced

Dissolution, Absorption and Metabolism (ADAM) model

[25]. The model accounts for interplay of gut metabolism

and transport and also the heterogeneity of distribution of

enzymes and transporters along the gastrointestinal tract

[26, 27]. The typical tissue volumes, tissue density values

and tissue blood flows are provided in the Electronic

Supplementary Materials.

2.1.2 Perfusion Versus Permeability-Limited Models

In PBPK models tissues/organs are generally represented

as perfusion-limited models, where it is assumed that drugs

passively diffuse into tissue water and reach equilibrium

instantaneously and distribute homogeneously into the

available space [28]. Therefore, for a non-eliminating tis-

sue, a single-compartment well-stirred model can be used

to describe the distribution process using the following

mass balance differential equation (Eq. 1):

VT

dCT

dt
¼ QT CAR �

CT

Kp=B:P

� �
ð1Þ

where VT, QT and CT are the tissue volume, blood flow and

concentration, respectively. CAR is the arterial blood con-

centration, Kp is the tissue-to-plasma partition coefficient

and B:P is the blood-to-plasma ratio. For modelling

transporter functionality or scenarios where the tissue

plasma membranes limit the drug distribution from the

extracellular water (EW) into cells these models cannot be
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used. Instead multi-compartment permeability-limited

models are used to describe the distribution process. Fig-

ure 1 shows a schematic of this model for the liver where

two membrane sides (sinusoidal and canalicular) are con-

sidered. The proposed PerL model is divided into three

compartments: vascular space (VS), EW and IW. Many

processes are considered simultaneously, including protein

and lipid binding and ionisation, all of which are assumed

to be instantaneous, and active and passive transport in and

out of the compartments.

The following assumptions apply to the PerL model:

• The vascular and extracellular compartments are in

instantaneous equilibrium, although the total concen-

tration in these compartments can be different [29].

• Only un-ionised and unbound species can passively

permeate through the plasma membrane [30] and

transporters act only on unbound drug.

• The movement of the unbound un-ionised species from

the VS to the EW is not a rate-limiting process.

• Passive permeability at the canalicular side of the liver

plays a negligible role in biliary secretion.

These assumptions underpin the need to determine

unbound extracellular and intracellular concentrations.

Unbound fractions in these milieus are usually unknown or

challenging to measure in vitro. Thence, having models to

predict these fractions based on the physicochemical

properties of the compound and tissue compositions is

desirable. The development of mechanistic equations

incorporating compound lipophilicity, binding of com-

pound to plasma and tissue macromolecules, and levels of

phospholipids and neutral lipids in plasma and tissues has

improved prediction of the tissue distribution of many

compounds [31, 32]. These in silico models have been

further developed to account for both protein binding in the

Fig. 1 PBPK model showing both the ADAM and PerL model. The

ADAM module represents the gastrointestinal tract as compartments

based upon their physiological and anatomical attributes, hence the

relationship between permeability, metabolism and dissolution,

amongst other factors, can be assessed quantitatively. Once the drug

has passed into the portal vein the drug’s kinetics are described by a

full PBPK model using the PerL model along with the rest of the well-

stirred compartments. ADAM Advanced Dissolution, Absorption and

Metabolism, BCRP breast cancer resistance protein, EHC extrahe-

patic circulation, fuIW unbound fraction in intracellular water, IV

intravenous, KtEW-in and KtIW-out overall transport rate in and out of

the intracellular water, respectively, NP, NL and AP neutral

phospholipids, neutral lipids and acidic phospholipids, respectively,

P plasma protein, PBPK physiologically based pharmacokinetic, Perl

permeability-limited liver, PO oral, ?ve and -ve represent the drug

in ionised form, i.e. with and without a valence electron
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EW and binding of strong bases (drug acid-ionisation

constant [pKa] [7.0) to acidic phospholipids [30, 33, 34].

Steady-state conditions and instantaneous equilibrium of

the unbound drug at membranes are assumed. Using the

same approach [30, 33, 34], and based on the aforemen-

tioned assumptions, equations have been developed to

estimate unbound concentrations of drug in IW and EW

and to predict transporter functionality in the liver (see the

Electronic Supplementary Materials for the derivations).

2.1.3 Liver Compartmental Concentrations

The differential equations for the liver compartments are

developed in a general form and can consider any number

of efflux and/or update transporters at each of the liver

membranes. Assuming the transporter functionality can be

described using a Michaelis–Menten equation, Jmax

(in vivo maximum rate of transporter-mediated efflux or

uptake) and Km (Michaelis–Menten constant) are the

required parameters to determine the transport rate of the

drug across membranes. The drug passive permeation is

determined by the passive diffusion parameter, CLint,PD,

which is equal to the permeability surface product.

Berezhkovskiy [29] proposed using the effective organ

volume rather than actual volume. This can be particularly

important for drugs with high blood-to-plasma ratio and in

tissues with a high proportion of VS. Therefore, the

effective extracellular tissue volume (VEW-eff), which is a

combination of the extracellular volume and the VS, is

considered, as shown in Eq. 2:

VEW�eff ¼ VEW þ
VVS

KEW:B

ð2Þ

where VEW is the EW volume and KEW:B is the quotient of

total EW concentration and the total blood concentration in

the tissue VS (see Electronic Supplementary Materials).

Volume of the VS (VVS) represents 15 % of the liver

volume [35]. As a result, the unbound extracellular

concentration is (Eq. 3):

VEW þ
VVS

KEW:B

� �
1

fuEW

� �
dCuEW

dt

¼ QPVCPV þ QARCAR � QPV þ QARð Þ 1

fuEW

� �
CuEW

KEW:B

þ CLint; PD

CuIW

a
� CuEW

W

� �
�
XN

n¼1

Jmax;uptake;Sin;nCuEW

Km;Sin;n þ CuEW

þ
XM
m¼1

Jmax;efflux;Sin;mCuIW

Km;Sin;m þ CuIW

ð3Þ

where QPV and QAR are the portal vein and arterial blood

flows, respectively, CAR and CPV are the arterial and portal

vein concentrations, respectively, ‘‘Sin’’ represents the

sinusoidal membrane, n and m represent the total number

of uptake and efflux transporters involved in the drug

transport, and ‘‘uptake’’ and ‘‘efflux’’ represent the

transport functionality. CuEW and CuIW represent the

unbound EW and IW concentrations, respectively, and

fuEW is the extracellular unbound fraction. W and a for a

monoprotic base are 1þ 10pKa�pHEW and 10pKa�pHIW where

pKa is the drug acid-ionisation constant, and pHEW and

pHIW are the EW and IW pH values, respectively. For other

drug charge types these equations can be defined similarly

based on the compound charge type using the Henderson–

Hasselbalch equation (see Electronic Supplementary

Materials). Similarly, the intracellular unbound

concentration is (Eq. 4):

VLivfIWð Þ 1

fuIW

� �
dCuIW

dt

¼ CLint;PD;Sin

CuEW

W
� CuIW

a

� �
� CuIW

XK

k¼1

V maxk

Km;k þ CuIW

� �

þ
XN

n¼1

Jmax;uptake;Sin;nCuEW

Km;Sin;n þ CuEW

�
XM
m¼1

Jmax;efflux;Sin;mCuIW

Km;Sin;m þ CuIW

�
XI

i¼1

Jmax;efflux;Can;iCuIW

Km;Can;i þ CuIW

ð4Þ

where ‘Can’ refers to the canalicular side and I represents

the total number of efflux transporters pumping the drug

into bile ducts. fuIW is the intracellular unbound fraction,

fIW is the intracellular volume fraction, VLiv is the liver

volume Vmax is the in vivo maximum metabolism rate and

Km is the metabolism Michaelis–Menten constant for each

of the enzymes that metabolise the drug. As uptake trans-

porters on the canalicular membrane have not been repor-

ted for drugs, this is not considered.

2.1.4 In Vitro–In Vivo Extrapolation of Transporter

Kinetic Parameters

Assuming that a Michaelis–Menten equation can describe

uptake or efflux of drugs in and out of cells then Jmax (in

pmol/min/million hepatocyte) and Km (in lmol/L) are

needed to determine CLint,T (transport clearance in lL/min/

million hepatocyte) as follows (Eq. 5):

CLint;T ¼
Jmax

Km þ Cu
ð5Þ

where Cu is the unbound concentration at the transporter

site. Hence, for the liver uptake transporters Cu is the

unbound concentration in the EW and for efflux

transporters it is the unbound concentration in the IW. In

the differential equations described in the previous section,

Jmax represents the in vivo value for maximum flux rate of
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the whole liver and thus this in vitro value needs to be

scaled by the following scaling factor (SF) [Eq. 6]:

SF ¼ HPGL� LiverWt � REF� 60� 10�6 ð6Þ

where HPGL is the hepatocellularity, i.e. the hepatocytes

per gram of liver [36], LiverWt is the liver weight [37] and

REF is the relative expression factor, which can also be

replaced by a relative activity factor (RAF), and 60 9 10-6

is the unit change to convert the CLint,T to L/h. The liver

REF or RAF values are determined as the ratio of the

transporter expression and/or functionality in vivo relative

to the corresponding value in the relevant in vitro system

(e.g. hepatocyte or expression systems such as HEK

[human embryonic kidney] cells) according to the

following equation (Eq. 7):

REF ¼ in vivo expression=in vitro expression ð7Þ

The same approach is applied to scale up the CLint,PD

(mL/min/millions of hepatocyte) value; therefore, the SF

for passive permeability (SFPD) across the hepatocyte is

defined by Eq. 8:

SFPD ¼ HPGL � LiverWt� 60� 10�3 ð8Þ

2.1.5 Transporter-Mediated Drug–Drug Interactions

Drug–drug interactions can occur for both metabolising

enzymes and transporters. For cytochrome P450 (CYP)

enzymes, competitive and/or time-dependent inhibition and

induction are accounted for as previously explained [38–40].

Here, we describe equations relating to tDDIs, assuming

that the mechanism of inhibition is competitive. Equation 9

can be used to modify transporter-mediated intrinsic

clearance values:

CLint;T�inh ¼
Jmax

Km 1þ Iu
Kui

� �
þ C

ð9Þ

where CLint,T-inh is the transporter-mediated intrinsic

clearance in the presence of an inhibitor, the ‘‘inh’’ suffix

refers to the inhibited value, Iu is the unbound

concentration at the binding site of a transporter and Kui

is the unbound concentration of the inhibitor that supports

half-maximal inhibition (corrected for non-specific

binding). In the case of multiple inhibitors, it is assumed

that all inhibitors are acting via the same mechanism (or

the overall effect is similar) on each transporter. Therefore,

the overall effect can be modelled using the same approach

reported for metabolism interaction [41], as shown in

Eq. 10:

CLint;T�inh ¼
Jmax

Km 1þ
P

j

Iuj

Kui; j

 !
þ C

ð10Þ

where j represents the inhibitor index of either the parent

drug, its metabolites or both, and C is the victim drug

concentration at the transporter site. There are literature

reports that support such assumptions [42]. Further, the

developed model handles metabolism- and transporter-

mediated DDIs for both victim and perpetrator drugs;

hence, drugs can mutually affect each other.

2.2 Development of the Rosuvastatin Model

The sub-models and differential equations described in the

previous sections were used to develop a full PBPK model,

including permeability-limited diffusion into the liver to

describe the disposition of rosuvastatin. The absorption of

rosuvastatin from solution was defined using the ADAM

model.

2.2.1 Data Used for Simulations of Rosuvastatin

Pharmacokinetics

In vitro and pharmacokinetic parameters for rosuvastatin

were collated from data in the literature (Table 1). Where

data from more than one source were available for the same

parameter, weighted means were calculated based on the

number of observations reported. Details relating to some

of the key input parameters are given in the following

sections.

2.2.2 Whole-Organ Metabolic Clearance

Rosuvastatin undergoes only minor metabolism and thus

these enzyme kinetics have not been characterised quan-

titatively in vitro. Therefore, a global value of net intrinsic

hepatic clearance (CLuint,H) was back-calculated from

in vivo clearance (CLiv,B) using Eq. 11:

CLuint;H ¼
QH � CLH;B

fuB � ðQH � CLH;BÞ
ð11Þ

where fuB = fu/(B:P) (values were 0.107 and 0.625 for fu

and B:P, respectively), QH is hepatic blood flow (90 L/h)

and CLH,B is the hepatic metabolic clearance in blood

(50.9 L/h) derived from CLiv,B (78.1 L/h) after subtraction

of CLR,B (renal clearance with respect to blood, 27.2 L/h).

The estimated net CLuint,H of 648.2 L/h was divided by an

average liver weight of 1,648 g [37], a microsomal protein

per gram of liver (MPPGL) value of 39.8 mg of micro-

somal protein/g liver [52] to obtain a value of 174 lL/min/

mg protein. As the derived value is a composite of trans-

port and metabolism, 10 % (17.4 lL/min/mg protein) was

assigned as the metabolism component for human liver

microsomes (HLM) based on previously published data [8,

13, 53].
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Table 1 Parameter values used for the rosuvastatin simulations

Parameter Value Reference/comments

Molecular weight (g/mol) 481.54

fu—experimental 0.107 [8, 43]

Blood-to-plasma ratio (B:P)—experimental 0.625 [8, 43]

Log of the octanol:water partition coefficient

(logPo:w)—experimental

2.4 [44]

Compound type Monoprotic acid Marvin Sketch 5.4.0.1

pKa 4.27 [43, 45]

Main plasma binding protein HSA (human serum albumin)

Absorption

Model ADAM

Caco-2 permeability [Papp,caco-2(7.4:7.4) (10-6 cm/s)] 3.395 [46]

Reference compound Propranolol

Reference Papp,caco-2(7.4:7.4) (10-6 cm/s) 20 [46]

fa—predicted 0.66 Based on Caco-2 data

fa—observed 0.55 [8]

ka (h-1)—predicted 0.35 Based on Caco-2 data

ka (h-1)—observed 0.46–0.78 Range [20, 47]

Distribution

Model Full PBPK

Vss (L/kg)—predicted 0.227 Rodgers and Rowland method;

see text for details

Vss (L/kg)—observed 1.73 [8]

Elimination

CLiv (L/h) 48.78 [8]

CLint (lL/min/mg protein) 17 Calculated using the retrograde model

CLR (L/h) 17 Meta-analysis [8, 48]

Transport (active and passive)

Intestinal efflux intrinsic clearance

CLint,T,BCRP (lL/min/cm2) 35

Intestinal BCRP REF (User) 1

Hepatic efflux intrinsic clearance

CLint,T,OATP1B1 (lL/min/million hepatocytes) 109 See text for details; [17]

Hepatic OATP1B1 REF (User) 1

CLint,T,OATP1B3 (lL/min/million hepatocytes) 36 See text for details; [17]

Hepatic OATP1B3 REF (User) 1

CLint,T,NTCP (lL/min/million hepatocytes) 78 See text for details; [17, 18]

Hepatic NTCP REF (User) 1

CLint,T,BCRP (lL/min/million hepatocytes) 1.23 [49]

Hepatic BCRP REF (User) 1

CLbile (L/h)—predicted 15 Using above data

CLbile (L/h)—observed 4–195 [15, 50]

Passive intrinsic clearance at sinusoidal membrane

CLint,PD (mL/min/million hepatocytes) 0.0025 [51]

For CLR—these data were obtained from a meta-analysis of clinical data. The cited value is the weighted mean (accounting for the number of subjects in

each study) of the reported values

Values in bold were refined using in vivo information

ADAM Advanced Dissolution, Absorption and Metabolism, BCRP breast cancer resistance protein, CLbile biliary clearance, CLint human liver microsome

intrinsic clearance, CLint,PD passive diffusion parameter, CLiv in vivo systemic clearance, CLR renal clearance, fa fraction absorbed, fu fraction unbound in

plasma, ka absorption rate constant, OATP organic-anion transporting polypeptide, NTCP sodium-dependent taurocholate co-transporting polypeptide,

REF relative expression factor, Vss volume of distribution at steady state
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2.2.3 Permeability Data

Permeability data obtained using Caco-2 cells (Papp) for

rosuvastatin (3.395 9 10-6 cm/s) was calibrated using

propranolol (20 9 10-6 cm/s) and then extrapolated to an

effective permeability in human (Peff,man) of

0.855 9 10-4 cm/s using the default regression equation

within the Simcyp Simulator. It was assumed that Peff,man

was consistent across all segments of the intestine includ-

ing the duodenum, jejunum, ileum and colon.

2.2.4 Kinetic Data for Rosuvastatin Transport

Active and passive kinetic transport data for the hepatic

sinusoidal uptake (OATP1B1, OATP1B3 and NTCP) and

canalicular efflux (BCRP) of rosuvastatin were available. It

is not always possible to recover observed drug plasma

concentration–time profiles accurately purely from the

‘bottom-up’ using physicochemical, in vitro permeability

and metabolism/transport data. To accommodate inherent

uncertainty, the parameter estimation (PE) module within

the Simcyp Simulator may be used to optimise key

parameter values. This provides a link between the ‘bot-

tom-up’ and ‘top-down’ pharmacokinetic modelling para-

digms by utilising available in vivo data to modify

parameters based purely on in vitro studies. The simula-

tions then move forward more effectively to predict the

impact of specific perturbations of drug kinetics as a con-

sequence of a DDI.

Preliminary simulations indicated that the experimental

transporter kinetic data were not able to recover the

observed profiles of rosuvastatin. Thus, a global intrinsic

clearance for the active hepatic uptake (global CLint,T) of

rosuvastatin was obtained using the PE module within the

Simcyp Simulator and the observed plasma concentration–

time data from Martin and co-workers [8] following

intravenous administration of rosuvastatin in HVs. Other

parameters were fixed to the in vitro values (Table 1), and

optimisation was done using the Nelder–Mead minimisa-

tion method and weighted least squares algorithm. A global

CLint,T of 222 lL/min/million cells was obtained for

hepatic uptake of rosuvastatin. This was apportioned to

OATP1B1, OATP1B3 and NTCP, based on the relative

contributions of each of the transporters to the active

uptake of rosuvastatin in vitro. According to the study of

Kitamura and co-workers [17], the contribution of

OATP1B1 to the active hepatic uptake of rosuvastatin in

human hepatocytes is on average about 49 %. Using

sandwich culture human hepatocyte (SCHH), Ho and

co-workers [18] estimated that the percentage contribution

of NTCP is about 35 %. It was assumed that the remaining

16 % represented the transporter-mediated uptake of

rosuvastatin into the liver via OATP1B3. Thus, CLint,T

values of 109, 36 and 78 lL/min/million cells were

assigned to hepatic uptake of rosuvastatin by OATP1B1,

OATP1B3 and NTCP, respectively (Table 1). It has been

reported that OATP2B1 also contributes to the uptake of

rosuvastatin. However, since modelling this transporter

requires more sophisticated models that account for ion

gradients and multiple binding sites, its contribution was

combined with that of OATP1B3. As the data were derived

from in vivo data, no REFs were applied (the REFs/RAFs

were set to 1). The hepatic canalicular efflux contribution

was recalculated from in vitro data in SCHH (CLint biliary

3.39 mL/min/kg [49]) using 107 9 106 HPGL and 25.7 g

of liver per kg bodyweight and assigned to BCRP. A value

of 1.23 ((3.39/25.7)/107) 9 1,000) lL/min/million hepa-

tocytes was obtained.

Although rosuvastatin has been shown to be a substrate

of intestinal BCRP in vitro [19], no quantitative data were

available. Therefore, a sensitivity analysis was performed

to obtain estimates of the intestinal CLint,T of BCRP using

observed rosuvastatin time to Cmax (tmax) and Cmax for a

given dose of 40 mg [21, 54]. A value of 35 lL/min/cm2

was able to recover observed tmax and Cmax values and was

thus applied in further simulations.

2.2.5 Data Used for Simulations of Cyclosporine

Pharmacokinetics

In vitro and pharmacokinetic parameters for cyclosporine

were taken from data in the literature (Table 2). Cyclo-

sporine is an inhibitor of OATP1B1, OATP1B3, NTCP and

BCRP; IC50 (the concentration that inhibits 50 % of the

transporter activity) values of 0.1, 0.05, 4.5 and 2.0 lmol/L,

respectively, have been generated in the same laboratory

and reported by Clarke and co-workers [55, 56]. The

OATP1B1 inhibition constant (Ki) is approximately 10-fold

higher than that reported previously by Amundsen and

co-workers [57]. It has been demonstrated that the value

derived in the latter study (0.014 lmol/L) can be applied

successfully for prediction of tDDIs involving OATP1B1

[58, 59]. Thus, all of the IC50 values reported by Clarke and

co-workers [55, 56] were converted to Ki values and cali-

brated using the 10-fold factor derived for OATP1B1 to

retain the same relative inhibitory potencies; final values of

0.014, 0.007, 0.28 and 0.07 lmol/L were used for

OATP1B1, OATP1B3, NTCP and BCRP, respectively. In

the full PBPK model of cyclosporine a well-stirred liver

model was used; therefore, the surrogate inhibitory con-

centrations according to Table 3 were applied.

2.2.6 Simulations

All simulations were performed using the Simcyp Simulator

(version 12, release 2). The program allows facile
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extrapolation of in vitro enzyme kinetic data in both liver and

intestine, to predict pharmacokinetic changes in vivo in

virtual populations. Genetic, physiological and demographic

variables relevant to the prediction of DDIs are generated for

each individual using correlated Monte-Carlo methods and

equations derived from population databases obtained from

literature sources. To ensure that the characteristics of the

virtual subjects were matched closely to those of the subjects

studied in vivo, numbers, age range and sex ratios were

replicated. The following simulations were performed:

• Ten virtual trials of HVs (subject number, age range, %

female according to Table 4) receiving a single oral

dose of rosuvastatin 10, 20, 40 or 80 mg were

generated. The simulated profiles for rosuvastatin were

compared with observed data from 11 independent

pharmacokinetic studies (Table 4).

Table 2 Parameter values used for the cyclosporine simulations

Parameter Value Reference/comments

Molecular weight (g/mol) 1,202

fu—experimental 0.0365 [60]

Blood/plasma ratio (B:P)—experimental 1.36 [31]

Log of the octanol:water partition coefficient
(logPo:w)—experimental

2.96 [61, 62]

Compound type Neutral

Main plasma binding protein HSA (human serum albumin)

Absorption

Model ADAM

Effective permeability (Peff,man) (10-4 cm/s) 1.65 [63]

Effective colonic permeability
(Peff,man,colon) (10-4 cm/s)

0.001 Permeability in the colon was set to *0 in order to
achieve an fa of \1 (consistent with observed data)

fa—predicted 0.857 Based on observed Peff,man

ka (h-1)—predicted 0.679 Based on observed Peff,man

ka (h-1)—observed 0.68–1.6 Range [64, 65]

Distribution

Model Full PBPK Rodgers and Rowland method; see text for details

Vss (L/kg)—predicted 1.7 When applying Kp liver and Kp spleen

Vss (L/kg)—observed 1.48 [64, 66]

Liver partition coefficient (Kp) 11 [67]

Spleen partition coefficient (Kp) 7.7 [67]

Elimination

CLiv (L/h) 24.07 [64, 66]

Intrinsic clearance (CLint CYP3A4) (lL/min/pmol CYP) 2.64 Calculated using the retrograde approach

CLR (L/h) 0.024 Applying fe (fraction of drug excreted) of 0.001
(Sandimmune Prescribing Information) to a
systemic clearance of 24.07 L/h

Interaction

Ki—intestinal BCRP (lmol/L) 0.28 See text for details; [56, 57]

Ki—hepatic OATP1B1 (lmol/L) 0.014 [56, 57]

Ki—hepatic OATP1B3 (lmol/L) 0.007 See text for details; [56, 57]

Ki—hepatic NTCP (lmol/L) 0.63 See text for details [56, 57]

Ki—hepatic BCRP (lmol/L) 0.28 See text for details [56, 57]

ADAM Advanced Dissolution, Absorption and Metabolism, BCRP breast cancer resistance protein, CLiv in vivo systematic clearance, CLR renal clearance,
CYP cytochrome P450, fa fraction absorbed, fu fraction unbound in plasma, ka absorption rate constant, Ki concentration of inhibitor that supports half-
maximal inhibition, Kp tissue-to-plasma partition coefficient, NTCP sodium-dependent taurocholate co-transporting polypeptide, OATP organic anion-
transporting peptide, PBPK physiologically based pharmacokinetic, Vss volume of distribution at steady state

Table 3 Interacting concentrations used depending on the selected

physiologically based pharmacokinetic models for perpetrators

Liver transporter

function

Permeability

limited

Perfusion limited

Efflux IuIW ILiv fu/(Kp Liv)

Uptake IuEW ILiv fu/(Kp Liv)

EW extracellular water, I perpetrator concentration affecting other

victim moieties, fu fraction unbound in plasma of the perpetrator, IW

intracellular water, Kp tissue-to-plasma partition coefficient, Liv liver,

u unbound
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• Ten virtual trials of ten HVs aged 30–65 years (0.11 %

female; one female subject) receiving multiple oral

doses of rosuvastatin 10 mg co-administered with oral

cyclosporine (200 mg twice daily) for 10 days were

generated. The simulated profiles for rosuvastatin were

compared with observed data [21, 54].

3 Results

Simulated rosuvastatin plasma concentration–time profiles

following oral doses (10–80 mg) were reasonably consis-

tent with observed data from 11 independent clinical

studies in HVs (Fig. 2). The individually simulated profiles

matching each study and the comparison to observed data

are shown in the Electronic Supplementary Material. It

should be noted that over the dose range 10–80 mg, the

observed data were highly variable; however, apparent

total oral clearance (CL/F), Cmax and tmax ratios for pre-

dicted versus observed data were generally within 2-fold.

Following oral administration, the median predicted AUC

from time zero to time t (AUCt) values of rosuvastatin at

10 mg ranged from 23.95 to 39.70 ng/mL�h for the ten

simulated trials (mean 35.16, median 32.06, geometric

mean 31.82) using 50 % male subjects between 20 and

50 years of age; the observed geometric mean values were

31.6 [54] and 45.9 ng/mL�h [68]. Median predicted AUCt

values of rosuvastatin at 20 mg ranged from 47.79 to

79.37 ng/mL�h for the ten simulated trials (mean 70.06,

median 63.99, geometric mean 63.45); the observed geo-

metric mean value was 56.8 ng/mL�h [54]. Median pre-

dicted AUCt values of rosuvastatin at 40 mg ranged from

95.58 to 158.74 ng/mL�h for the ten simulated trials (mean

140.12, median 127.97, geometric mean 126.91); the

observed geometric mean values were 98.2 [54], 165 [8]

and 216 ng/mL�h [14]. Mean predicted AUCt values of

rosuvastatin at 80 mg ranged from 198.03 to 342.74 ng/

mL�h for the ten simulated trials (mean 284.57, median

252.29, geometric mean 255.76); the observed geometric

mean values were 253 [69], 268 [54], 325 [70], 397 [68]

and 410 ng/mL�h [20].

Simulated rosuvastatin plasma concentration–time pro-

files in the absence and presence of cyclosporine (200 mg

twice daily) following 10 days of rosuvastatin administra-

tion (10 mg multiple dose) in HVs are shown in Fig. 3.

Predicted median AUCt and Cmax ratios for the ten virtual

trials ranged from 1.45 to 1.68 and 2.73 to 3.62, respec-

tively (Fig. 3). Although HV data weren’t available for

direct comparison, clinical data indicated that the AUC

from time zero to 24 h (AUC24) and Cmax values were

increased 7.1- and 10.6-fold, respectively, in stable heart

transplant recipients ([6 months after transplant) on an

anti-rejection regimen including cyclosporine compared to

HV [21]. Sensitivity analysis of different elimination pathways

suggests the hepatic uptake transporter is the most sensitive

factor in rosuvastatin elimination (data not shown). Fig-

ure 4 shows the rosuvastatin unbound concentrations in the

liver extracellular (CuEW) and intracellular (CuIW) com-

partments in absence and presence of cyclosporine for the

simulated population. The figure shows that there is sig-

nificant difference between CuEW and CuIW and the dif-

ferential impact of transporter-mediated inhibition in the

extracellular and intracellular compartments.

4 Discussion

4.1 Model Development and Unbound Fractions

To model pravastatin pharmacokinetics in humans,

Watanabe and co-workers used a PBPK model where the liver

was divided into five units consisting of the extracellular

and subcellular compartments [71, 72]. The units were

connected in tandem by blood flow rate to mimic the liver

dispersion model. They argued that, especially for high

extraction drugs, the well-stirred model underestimates the

hepatic clearance compared with the parallel tube and

dispersion models, and the difference becomes greater

when active uptake increases. The unbound fraction in the

extracellular compartment and subcellular compartments

was assumed to be the same as the unbound fraction in

blood and the tissue unbound fraction (measured in rats),

respectively.

Jones and co-workers [43] also used PBPK models with

a liver permeability model to predict the pharmacokinetics

of seven OATP substrates using in vitro data generated

Table 4 Details on the single-dose clinical studies used for rosu-

vastatin performance verification

Clinical

study

Dose

(mg)

Age range

(years)

n % female Reference

1 10 22–42 11 0 [68]

2 10 31–60 18 0 [54]

3 20 31–60 9 0 [54]

4 40 31–60 9 0 [54]

5 40 21–51 10 0 [8]

6 40 21–39 36 13.9 [14]

7 80 22–44 11 0 [69]

8 80 25–56 14 0 [68]

9 80 29–51 14 0 [70]

10 80 31–60 18 0 [54]

11 80 35–47 20 15 [20]

n number of subjects in each study, % female the female percentage in

the study

Mechanistic Transporters IVIVE and DDI 81



from SCHH. As per Watanabe et al. [71], they divided the

liver into five units and used measured unbound fractions

from in vitro experiments. Measuring unbound extracel-

lular and intracellular fractions is a laborious and complex

process and, thus, it is highly desirable to predict these

values at early stage of drug development. Recently, the

advent of more mechanistic approaches to assess drug

distribution into tissues has led to the development of

methods for prediction of unbound fractions using physi-

cochemical properties [30–32, 34]. The Rodgers and

Rowland equations improved Kp predictions largely due to

the incorporation of distribution processes related to drug

ionisation, an issue that was not addressed in earlier

equations [34]. These methods were mainly developed

assuming steady-state conditions and instantaneous equi-

librium of the unbound drug at membranes. However,

researchers have tried modifying these equations to

account for non-equilibrium conditions to develop models

that describe transporter functionality in different organs

such as the liver, brain and heart [73, 74]. Fenneteau and

co-workers [73] proposed mechanistic transport-based

models to investigate the impact of P-glycoprotein-medi-

tated efflux in mouse brain and heart. Their model assumed

that transport occurs at the capillary membrane. They

developed an equation for estimating the tissue unbound

fraction where they assumed CuEW and Cup (unbound

concentration in plasma) are equal and CuIW and Cup only

differ by an ionisation factors. Nevertheless, these

assumptions are only valid for passive permeability and

instantaneous equilibrium, which are not applicable in this

case. Poirier and co-workers [74] used a similar approach

to simulate the plasma concentration of napsagatran and

fexofenadine in rats and that of valsartan in humans [75].

They predicted fuIW using the method by Poulin and Theil

[31, 32] and fuEW using the method by Rodgers and

Rowland [30, 34]. However, their fuIW equation for the

permeability-limited model was independent of fIW.

Our proposed liver model (PerL) and the unbound

fraction prediction equations account for the processes

involved in drug transport at the liver membranes. Obvi-

ously, their validity should be assessed for a range of

compounds. It should be noted that these equations are

mainly developed to provide predictions during the dis-

covery and early stages of drug development when mea-

sured values are not available. Generally, to increase

confidence in pharmacokinetic predictions it is recom-

mended these values be obtained from in vitro experiments

whenever possible [76].

4.2 Development of the Rosuvastatin Model

In this study, we have presented a PBPK model for rosu-

vastatin, incorporating gut efflux by BCRP and active

uptake into the liver via OATP1B1, OATP1B3

(OATP2B1) and NTCP, in addition to excretion of the drug

into the bile by BCRP. Although the model was able to

recover the observed data in most cases, for some studies

the absorption delay was not captured. The delay may be a

a b

c d

Fig. 2 Simulated and observed

plasma concentration–time

profiles of rosuvastatin in

healthy volunteers following the

oral administration of a 10 mg,

b 20 mg, c 40 mg and d 80 mg.

The black line represents the

mean concentration for the

simulated population (n = 100,

20–50 years, health volunteers,

50 % female). The light and

dark grey lines represent the

upper (95 %) and lower (5 %)

percentile concentrations of the

simulated populations,

respectively. The markers

denote mean values from the

clinical studies [8, 14, 20, 54,

68–70]
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result of increasing solubility along the intestine due to pH

changes or, alternatively, rosuvastatin may be a substrate of

other efflux transporters that have higher expression in the

proximal part of the intestine, e.g. MRP2 (multi-drug

resistance protein 2). However, as there was considerable

variability in clinical data across doses and the rosuvastatin

model was able to recover observed data in most cases, the

model was considered to be reasonably robust for assess-

ment of the magnitude of interaction with cyclosporine, an

inhibitor of OATPs and NTCP.

Predicted median AUC and Cmax ratios of rosuvastatin

(10 mg multiple dose) following co-administration of

cyclosporine (200 mg twice daily) for 10 days ranged from

1.45 to 1.68 and 2.73 to 3.62, respectively, for the ten trials.

Although clinical data from a crossover study design in

HVs were not available for direct comparison, rosuvastatin

pharmacokinetic parameters had been assessed in an open-

label trial involving stable heart transplant recipients

([6 months after transplant) on an anti-rejection regimen

including cyclosporine [21]. In these patients taking rosu-

vastatin 10 mg for 10 days, geometric mean values and

percentage coefficient of variation for steady-state AUC24

and Cmax were 284 ng�h/mL (31.3 %) and 48.7 ng/mL

(47.2 %), respectively. In controls (historical data AUC24

and Cmax from 21 HVs taking rosuvastatin 10 mg), these

values were 40.1 ng�h/mL (39.4 %) and 4.58 ng/mL

(46.9 %), respectively [21]. Thus, compared with control

values, AUC24 and Cmax values were increased 7.1- and

10.6-fold, respectively, in transplant recipients. The pre-

dicted increase in exposure of rosuvastatin following co-

administration of cyclosporine in virtual HV subjects is

lower than observed in vivo.

Recently, Gertz and co-workers [77] developed a PBPK

model to predict the inhibitory effects of cyclosporine and its

mono-hydroxylated metabolite on intestinal CYP3A4

metabolism and uptake and efflux transporters. Their model

indicated that cyclosporine had the highest impact on the

liver uptake transporters and minimal impact on hepatic

efflux and metabolism. Inclusion of the cyclosporine

metabolite had little impact on the predicted interaction with

liver uptake transporters. Thus, the fact that we did not

consider the impact of the cyclosporine metabolite does not

account for the under-prediction of the tDDIs with rosu-

vastatin seen in our study. However, it should be noted that

other disease-related factors may contribute to increased

exposure of rosuvastatin in patients. In addition, the expo-

sure of cyclosporine itself may differ between heart trans-

plant patients and the virtual HV subjects. Despite the

limitations and lack of clinical data for direct comparison,

the PBPK model presented here for rosuvastatin is sensitive

to inhibition of the transporters OATP1B1, OATP1B3,

OATP2B1, NTCP and BCRP by cyclosporine. The devel-

oped PBPK model also predicts the intracellular liver con-

centration of rosuvastatin in the presence and absence of the

inhibitor. As Fig. 4 shows, the predicted magnitude of

interaction within the tissue can be different to that obtained

in the plasma. Depending on the drug characteristics, the

difference can be significant. Such knowledge can be

a

b

Fig. 3 a Simulated plasma concentration–time profiles of rosuvast-

atin on day 10 in the absence and presence of cyclosporine (200 mg

twice daily) in healthy volunteers following the oral administration of

rosuvastatin 10 mg (multiple dose). b Simulated versus observed

plasma concentration–time profile of cyclosporine (200 mg twice

daily) on day 10. The thin grey lines represent simulated individual

trials (ten trials of ten subjects) and the thick black lines are the

simulated mean of the healthy volunteer population (n = 100)

without (solid lines) and with interaction (dashed lines). The circles

denote mean values from the clinical studies for rosuvastatin [21] and

for cyclosporine [86]
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valuable, especially when liver toxicity is an issue for some

drugs or when the site of drug action is within the liver, in the

case of statins. Indeed, it can only increase our understanding

of the drug response and its variability [23].

Given the complexity of processes involved in the trans-

port of drugs into cells, obtaining accurate kinetic parameters

from in vitro assays is very challenging. Recently, model-

based data analysis of in vitro assays has attracted more

attention and new methods and data analysis techniques are

proposed; for more detail see previous publications [76, 78–

80]. The functional translation of some SLC effects using

IVIVE approaches is challenging due to the existence of

several binding sites [81], the possible time-dependent

inhibition for some SLCs [57, 77] and the limitations of

apparent in vitro kinetic parameter measurements [82].

Adding to this complexity, in order to have a robust PBPK

model, the relative contributions of both active and passive

components need to be assigned correctly. In addition, the

active component itself can be a sum of different uptake and

efflux transporters working in parallel or against each other

on the same membrane. Thus, the fractional contribution of

each transporter (ft) to the global transport is as important as

the ‘fm’ (the fraction of a drug metabolized by an enzyme)

for CYP enzymes in the prediction of interactions involving

metabolism. For our PBPK model of rosuvastatin, a global

hepatic uptake was fitted using intravenous clinical data and

the relative contributions of OATP1B1, OATP1B3

(OATP2B1), NTCP and BCRP were assigned based on

in vitro data. Our model has also successfully been applied to

predict the disposition and DDIs of other drugs such as

repaglinide and pravastatin [40, 58, 83, 84].

Transporters’ ‘ft’ values are used to predict tDDIs in a

manner similar to that used for CYP enzymes. These

fraction values have been used in static equations with

different degrees of success depending on the applied

assumptions [84, 85]. In some cases it is assumed that the

transport process occurs exclusively via a particular uptake

transporter, ignoring the potential contribution of passive

diffusion or other transporters or involvement of metabo-

lism. The static equations cannot account for the time-

varying nature of the substrate and inhibitor concentrations

and assume constant values. Further, since these models

cannot estimate the relevant concentrations at the transport

site, surrogate concentrations such as plasma or average gut

concentration (highest oral dose diluted in 250 mL) are

used. These assumptions often increase the possibility of

encountering false positive predictions and may lead to

unnecessary clinical studies being conducted. Given the

complexity of the processes involved in metabolism and

transport interplay, dynamic models for determining DDIs

are preferable. However, in some cases during the early

stages of drug development, static equations, if applied

with correct assumptions, may provide a reasonable esti-

mate of tDDIs.

5 Conclusions

Incorporation of transporters within PBPK models can

provide some insight into their role in drug disposition and

lead to improved understanding of the drug response and

its variability. In particular, when these models account for

a b

Fig. 4 Simulated unbound liver concentrations in a extracellular

(CuEW) and b intracellular (CuIW) compartments of rosuvastatin on

day 10 in the absence and presence of cyclosporine (200 mg twice

daily) in healthy volunteers following the oral administration of

rosuvastatin 10 mg (multiple dose). The grey and black lines

represent the mean concentrations for the simulated population in

the absence and presence of cyclosporine, respectively
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mDDIs and tDDIs simultaneously for multiple moieties

they become very powerful tools for investigating complex

cases that can occur in clinical practice. Although there are

still gaps in our knowledge regarding physiological data

such as reliable absolute abundance/activity data for

transporters, observed clinical data can be used to estimate

the unknown model parameters and, once validated, the

model can then be applied prospectively, to predict tDDIs.

Application of these models can aid in making informed

decisions on the design of clinical studies and give an

indication of whether such studies are needed. Indeed,

successful application of these models (e.g. Varma et al.

[58, 83]) demonstrates the value and impact of model-

based drug development in the pharmaceutical industry.
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