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Abstract We previously reported that moderate calorie
restriction (CR) has minimal impact on testicular gene
expression in young adult rhesus macaques, and no
obvious negative impact on semen quality or plasma
testosterone levels. We now extend these findings by
examining the influence of CR on various aspects of
the reproductive axis of older males, including 24-h

circulating testosterone levels, testicular gene expression,
and testicular morphology. Young adult and old adult
male rhesus macaques were subjected to either 30 %
CR for 5–7 years, or were fed a standard control diet.
Analysis of the 24-h plasma testosterone profiles revealed
a significant age-associated decline, but no evidence for
CR-induced suppression in either the young or old males.
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Similarly, expression profiling of key genes associated
with testosterone biosynthesis and Leydig cell mainte-
nance showed no significant CR-induced changes in
either the young or old animals. The only evidence for
CR-associated negative effects on the testis was detected
in the old animals at the histological level; when old
CR animals were compared with their age-matched
controls, there was a modest decrease in seminiferous
tubule diameter and epithelium height, with a con-
comitant increase in the number of depleted germ cell
lines. Reassuringly, data from this study and our
previous study suggest that moderate CR does not
negatively impact 24-h plasma testosterone profiles
or testicular gene expression. Although there appear
to be some minor CR-induced effects on testicular
morphology in old animals, it is unclear if these
would significantly compromise fertility.
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Introduction

First reported in the mid-1930s (McCay et al. 1935),
calorie restriction (CR) remains the only proven non-
genetic paradigm for extending lifespan, and it does so
by slowing the rate of physiological decline and
retarding age-related chronic diseases (Colman et al.
2009; Dhahbi et al. 2004; Gredilla and Barja 2005;
Hursting et al. 2003; Koubova and Guarente 2003;
Lane et al. 1999b). Moderate CR has demonstrated
consistent effects across vertebrate classes with benefi-
cial health effects on many physiological systems.
Importantly, there is growing evidence that CRmay also
be beneficial at combating aging in primates, even
though the exact underlying causal mechanism(s) are
still poorly understood (Colman et al. 2009; Heilbronn
and Ravussin 2003; Ingram et al. 1990; Kemnitz 2011;
Mattison et al. 2012; Roth et al. 1999; Weindruch and
Walford 1988). Moreover, there is increased public in-
terest in adopting CR as a potential anti-aging remedy.
Consequently, it is important to establish if there are any
negative side effects of CR on specific aspects of human
physiology, especially biological systems such as the
hypothalamic–pituitary–gonadal (HPG) axis, which do
not immediately and/or obviously impact an individ-
ual’s health.

With regard to restriction of calorie intake, distinc-
tions need to be made between moderate and severe
CR paradigms and also when the CR was initiated; for
example, data from adult female rhesus macaques
(Macaca mulatta) suggest that reproductive hormones
and normal ovarian cyclicity are not adversely affected
by long-term moderate CR (Black et al. 2001; Lane
et al. 2001; Mattison et al. 2003). Similarly, ovarian
cyclicity does not appear to be perturbed by short-term,
moderate CR (Wu 2006). On the other hand, data from
male rhesus macaques show that when moderate CR is
initiated before puberty, it delays the maturation-
related increase in circulating testosterone (T) levels
and postpones skeletal growth by approximately 1 year
(Lane et al. 1997; Roth et al. 2000). Generally, less is
known about post-pubertal implementation of CR in
male primates, but recent studies in our laboratory have
demonstrated that moderate CR of young adult male
macaques has only modest influence on gene expres-
sion in the pituitary and testes (Sitzmann et al. 2009)
and has no obvious negative effect on semen quality or
circulating T levels (Sitzmann et al. 2010). In contrast,
there is abundant evidence from both human and
nonhuman primate studies showing that short-term
fasting (i.e., severe CR) can markedly suppress the re-
lease of luteinizing hormone (LH) and T (Cameron 1996;
Cameron and Nosbisch 1991; Cameron et al. 1991,
1993; Dubey et al. 1986; Helmreich and Cameron
1992; Schreihofer et al. 1993). Consequently, important
questions persist about the possible impact of moderate
CR on testicular gene expression, testicular morphology,
and T biosynthesis in both young adult and old males.

The HPG axis of male primates has been well studied,
and there is clear evidence for an age-related reproductive
decline with functional deterioration (Harman et al. 2001;
Moffat et al. 2002; Ottinger 1998; Plymate et al. 1989;
Schlatt et al. 2008; Sitzmann et al. 2008; Urbanski and
Sorwell 2012). This includes decreased hypothalamic
gonadotropin-releasing hormone, and decreased gonad-
otropin output from the pituitary gland, as well as
reduced T production and blunted circadian rhythmic-
ity of circulating T and LH levels. The gradual decline
of these HPG axis components in the male makes
determining the timing of reproductive senescence dif-
ficult; furthermore, some level of spermatogenesis can
continue well into old age (Buwe et al. 2005; Henkel
et al. 2005; Kidd et al. 2001; Plas et al. 2000). This
does not mean, however, that there are no physiological
ramifications of reproductive aging, especially in humans
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where decreasing T levels, metabolic and circadian
changes, and increasing body weight are generally asso-
ciated with aging. Body mass index, which typically
increases during young and middle age, has been shown
to negatively influence reproductive capacity in males
(Hammoud et al. 2008; Jensen et al. 2004;Mendiola et al.
2009; Wong et al. 2000).

Because moderate CR is capable of reducing body
mass and adiposity and improving general health
parameters, it would be of great benefit to know if
CR can also maintain reproductive fitness and attenuate
age-related changes. For more than 25 years, the
National Institute on Aging (NIA) and the University
of Wisconsin-Madison have been conducting parallel
studies of the effects of CR on general physiology,
healthspan, and lifespan in rhesus macaques to deter-
mine its potential application in humans (Colman et al.
2009; Ingram et al. 1990; Kemnitz 2011; Mattison et al.
2012). Both of these studies have identified health
effects consistent with results observed in other species,
including attenuation of age changes in plasma triglyc-
erides, oxidative damage, and glucose regulation and
reduced incidence of diabetes, cancer, cardiovascular
disease, and brain atrophy; these findings suggest that
CR may indeed contribute to healthy aging in primates
(Colman et al. 2009; Kemnitz 2011; Lane et al. 1996,
1999a; Mattison et al. 2003, 2012; Roth et al. 2002). For
men considering CR as a potential lifestyle choice, the
question then becomes whether moderate CR is likely to
negatively impact T levels and impair fertility.

The aim of the present study was to help address
concerns about potential negative effects of moderate
CR on the HPG axis of young and old males. Using the
rhesus macaque as a translational animal model, we
examined the impact of 5–7 years of moderate CR on
24-h circulating T levels, testicular gene expression, and
testicular morphology. Reassuringly, our data show
minimal negative impact of moderate CR.

Materials and methods

Animals and diet

All experiments were conducted under approved pro-
tocols reviewed by the Institutional Animal Care and
Use Committees at the University of Maryland and the
Oregon National Primate Research Center (ONPRC).
Male rhesus macaques (M. mulatta) were individually

housed in a temperature-controlled environment (24 °C)
under a fixed 12L/12D photoperiod (lights on 0700–
1900 hours) with ad libitum access to drinking water.
Individual animals were cared for by the ONPRC in
accordance with the National Research Council’s Guide
for the Care and Use of Laboratory Animals (National
Research Council 1996), which included daily health
checks to ensure normal behavior, food consumption,
and waste production. Additionally, routine physical
examinations, hematological studies, fecal parasite
checks, tuberculin testing, and dental cleaning were
performed periodically.

The study consisted of two separate age groups.
Group 1 included five young adults, maintained on a
control diet (YAC;mean terminal bodyweight=10.72kg)
and five young adults that were subjected to CR, begin-
ning during the peripubertal period (Urbanski and Pau
1998) at 4 years and 11 months of age (YACR; mean
terminal body weight=9.19 kg), as previously described
(Ingram et al. 1990; Mattison et al. 2003, 2012). Group 2
included six old adults maintained on a control diet
(OAC; mean terminal body weight=6.27 kg) and four
calorie-restricted old adults (OACR; mean terminal
body weight=6.69 kg). Differences in mean body
mass between the age-matched control and treatment
groups were not significant and were consistent with
weight and caloric intake changes reported in previous
CR studies involving larger cohorts of male rhesus
macaques (Mattison et al. 2005a, b).

In both age groups, baseline food intake was
established for each animal as characterized by a few
uneaten biscuits remaining in their cage at the end of
each day. The control animals continued to be fed on this
baseline level, which approximated ad libitum feeding,
whereas calorie-restricted animals received 30 % less
food than their age- and body weight-matched controls.
In both groups, food was provided daily at 0800 and
1500 hours and consisted of specially formulated bis-
cuits (Cargill, Minneapolis, MN) supplemented with
daily fresh fruits or vegetables (10–40 cal). The compo-
sition of the diet was 15 % protein, 5 % fat, and
5 % fiber with a caloric content of ∼3.7 kcal/g. The
biscuits included a vitamin/mineral mix that was 40 %
higher than the recommended allowance for rhesus ma-
caques by the National Research Council (2003), but
were otherwise similar to those used in many laboratory
studies of rhesus macaques. This vitamin/mineral supple-
mentation was designed to ensure sufficient availability
of essential nutrients to both diet groups. Biochemical
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assays were performed periodically and with every new
shipment to ensure diet content and quality (Black et al.
2001; Mattison et al. 2005b).

Activity data

Actiwatch activity monitors (Philips-Respironics, Bend,
OR) were used to record 24-h locomotor activity pat-
terns in each animal (YAC, n=5; YACR, n=5; OAC,
n=6; and OACR, n=4), as previously described (Downs
et al. 2007; Haley et al. 2009; Urbanski 2011; Urbanski
et al. 2012). These monitors use piezoelectric acceler-
ometers to record the integration of intensity, amount,
and duration of movement and thus provide insights
about an animal’s daily energy expenditure. In the pres-
ent study, the monitors were placed inside the pocket of
protective jackets worn by the animals during remote
blood sampling.

Testosterone measurement

Circulating levels of T vary widely throughout the day
because of the underlying episodic and circadian pattern
of release (Cameron 1996; Goodman et al. 1974;
Urbanski and Sorwell 2012). Therefore, to more accu-
rately assess the impact of moderate CR on hormone
secretion, serial blood samples were collected across the
day and night from each animal (YAC, n=5; YACR n=5;
OAC, n=6; and OACR, n=4). After 4–5 years of dietary
treatment, when animals in groups 1 and 2 were 10.6
±0.1 and 26.5±0.7 years of age, respectively; all of the
animals were surgically fitted with an indwelling subcla-
vian vein catheter connected to a swivel-tether remote
blood sampling system (Downs et al. 2008; Urbanski
et al. 1997, 2004; Urbanski 2011). Individuals were
allowed a minimum of 2 weeks to become accustomed
to wearing a protective jacket prior to catheterization.
Serial blood samples (1 ml) were collected remotely,
every 30 min over a 24-h period from an adjacent room
to avoid disturbing the animals. Samples were collected
into EDTA-coated glass tubes, and after centrifugation
at 4 °C, plasma supernatant was stored at −20 °C until
assay by radioimmunoassay, as previously described
(Resko et al. 1973; Urbanski and Pau 1998).

Tissue collection

Animals in group 1 were euthanized when ∼12 years
old and after ∼7 years of dietary treatment; animals in

group 2 were euthanized when 24–30 years old and
after ∼5 years of dietary treatment. The procedure was
performed by the ONPRC pathology service and in-
volved ketamine sedation followed by sodium pento-
barbital overdose, in accordance with National Research
Council (1996) guidelines. Postmortem tissues were
made immediately available to various investigators
associated with a larger interdisciplinary NIA study.
For the present study, a single testis was collected from
each animal and weighed. A cross-sectional segment
(<1 cm) was dissected from the equatorial region and
bath-fixed overnight in Bouin’s aqueous solution for
later morphological study, whereas the remainder of
the testis was flash-frozen in liquid nitrogen for PCR
analysis.

Testicular staining

Bouin’s-fixed testicular tissue from groups 1 (YAC, n=5
andYACR, n=5) and 2 (OAC, n=6 andOACR, n=4) was
rinsed in 70 % ethanol, dehydrated in ethanol, cleared in
butanol (Gabe 1968), and embedded in Paraplast Plus
(Sigma Chemical Co., St. Louis, MO). Cross sections
(5 μm thick) were cut using a Leitz RM 2155 microtome
(LeicaMicrosystemsGmbH,Wetzler, Germany), collect-
ed at intervals of 500 μm, mounted on albumin-coated
microscope slides and then stained with a trichromic stain
(Sigma). Briefly, sections were stained 75 s in Harris
hematoxylin, rinsed in running tap water for 10 min,
and then in distilled water. Slides were stained with
0.5 % erythrosine B (CI, 45,430)–0.5 % orange G
(CI, 16,230) for 30 min, rinsed in distilled water,
immersed for 10 min in 0.5 % phosphotungstic acid,
and rinsed again in distilled water. Finally, sections
were stained with 1 % methyl blue (CI, 42780) for
75 s then quickly dehydrated in 95 % ethanol followed
by 100 % ethanol. After clearing in xylenes, the slides
were coverslipped with Poly-Mount Xylene mounting
medium (Polysciences, Inc., Warrington, PA).

Analysis of seminiferous tubules

Stained slides were examined using a bright-field Leitz
Orthoplan microscope (Leica) equipped with a CCD
Cohu Camera (Cohu, Inc., San Diego, CA) using a
×25 objective. Captured images were digitized using a
frame grabber card installed in a Macintosh Power PC
(Apple, Cupertino, CA) and analyzed using National
Institutes of Health (NIH) Image-J (Bethesda, MD,
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http://rsb.info.nih.gov/nih-image). Seminiferous tubule
(ST) diameter was determined by measuring the
smallest axis among the contra-lateral basal membranes
in at least 100 circular tubule cross sections. Using the
same axis, the height of the epithelium was measured
between the base and the relative apex of the Sertolian
epithelium.

Analysis of germ line stages

Photomicrographs were obtained with a Zeiss Axioskop 2
bright-field microscope equipped with a Zeiss AxioCam
digital camera (Carl Zeiss AG, Oberkochen, Germany)
connected to a PC computer utilizing the Zeiss Axiovision
Program.

A minimum of 100 ST cross sections for each treat-
ment group were classified qualitatively into two main
categories, with multiple subcategories. Designations
were made according to what generation of germinal
line cells was present (or whether they were partially or
totally depleted) and related to the typical germ cell
associations that characterize normal stages of the sem-
iniferous epithelium cycle in mature rhesus macaques.
Sections were assigned to categories as follows:

1. Complete germinal line (CGL)

a) CGLNOR: all cell generations are normal and
well represented in each cellular association

b) CGLABN: partial abnormal depletion in one
generation of germinal cells (B spermatogonia,
spermatocytes, or spermatids)

2. Depleted germinal line (DGL)

a) DGL3: a generation of B spermatogonia, sper-
matocytes or spermatids is absent

b) DGL2: all round undifferentiated and elongated
differentiated spermatids are absent

c) DGL1: spermatids and spermatocytes are absent;
Sertoli cells are present

d) DGL0: Sertoli and germ cells are absent (fibrosed
cords)

RNA extraction

Flash-frozen testis sections from groups 1 and 2 were
homogenized with a PowerGen rotor-stator homoge-
nizer (Fisher Scientific, Pittsburgh, PA), and total RNA
was isolated using RNeasy Mini Kit according to the

manufacturer’s instructions (Qiagen, Valencia, CA).
Integrity of RNA in the final samples was assessed by
microcapillary electrophoresis (Agilent Bioanalyzer
Model 2100; Agilent Technologies, Santa Clara, CA).

Semiquantitative RT-PCR

PrimerExpress® software (Applied Biosystems, Foster
City, CA) was used for all primer and probe design
(Table 1). Specific primers were designed for each tran-
script using the human or predicted rhesus macaque
mRNA sequences (National Center for Biotechnology
Information, Entrez Nucleotide database) and were pur-
chased from Invitrogen (Carlsbad, CA).

Total RNA (1 μg) was examined in a subgroup of
animals from groups 1 (YAC, n=5 and YACR, n=5) and
2 (OAC, n=3 and OACR, n=3). To synthesize cDNA,
we used the Omniscript kit (Qiagen) and oligo d(T)15
primers (Promega Corp, Madison,WI) in 20 μl at 37 °C
for 1 h. Semiquantitative RT-PCR amplifications were
performed in duplicate using 1 μl cDNA, 0.5 μl
deoxynucleotide triphosphates (200 μM final concen-
tration; Promega), 0.5 μl of each primer (0.5 μM final
concentration), and 0.15 μl of HotStarTaq® polymerase
(2.5 U; Qiagen) in 25 μl with the following thermocycle
profile: 95 °C, 15 min; 94 °C, 1 min; specific cycle
number and annealing temperature for each primer pair
(Table 1), 1 min; and 72 °C, 1 min. Resulting PCR
products were resolved by electrophoresis on 2 %
agarose gels with ethidium bromide and photographed
under ultraviolet light. Subsequent bands were analyzed
with NIH Image-J software. A single rectangle was
drawn horizontally around all bands in a selected gel
image and a plot profile of signal intensities was gener-
ated. Area selections were created under the peak for each
band using the “straight lines selection” tool; total area
under the curves was used for statistical comparisons.

Quantitative real-time RT-PCR

Total RNA (1μg) was examined in a subgroup of animals
from groups 1 (YAC, n=4 and YACR, n=4) and 2 (OAC,
n=3 and OACR, n=3). To synthesize cDNA, we used
200 ng of RNA, the Omniscript kit (Qiagen) and random
hexamer primers (Promega); the reactions were diluted
1:100 for subsequent PCR analysis. The PCR mixtures
contained 5 μl of Taqman® Universal PCR Master Mix
(Applied Biosystems), 0.3 μl of primer (300 nM final
concentration; Invitrogen), 0.05 μl of human β-actin
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primers (50 nM final concentration; Applied Biosystems),
0.25 μl of probe (250 nM final concentration; IDT,
Coralville, IA), and 2 μl cDNA. Luteinizing hormone/
choriogonadotropin receptor (LHCGR) primers (5′–3′; F-
TGCTAAGAAAATGGCAATCCTCAT; R-CTG
TGATAAGAGGCGCTTTGAA) and probe (6FAM-
TTCACCGATTTCACCTGCATGGCA-TAMRA) were
designed using the predicted rhesus macaque sequence
available in the NCBI Entrez Nucleotide database
(XM_001114090).

Reactions were run in triplicate in an ABI/Prism 7700
Sequences Detector System (Applied Biosystems) with
the following thermocycle profile: 50 °C, 2 min; 95 °C,
10 min; and 50 cycles consisting of 95 °C for 15 s and
60 °C annealing for 60 s. Human ACTB (β-actin)
endogenous control (Applied Biosystems) was used to
generate a standard curve and convert the critical thresh-
old values (i.e., above background) into relative RNA
concentrations for each sample, thus compensating for
any differences in reverse transcription efficiency.

Amplicon sequencing

Semiquantitative RT-PCR products were purified
(QIAquickGel ExtractionKit, Qiagen) andDNAsequenc-
ing performed on an ABI 3130XL Genetic Analyzer

using dye terminator sequencing chemistry (Applied
Biosystems). Resulting sequences were then BLASTed
in the NCBI database (www.ncbi.nlm.nih.gov) to verify
primer specificity and proper amplicon production.

Statistical analyses

Group mean hormone values were calculated from the
overall average of the individual values spanning the
entire 24-h sampling period. Group maximum hor-
mone values were determined by first identifying the
maximum value for an individual and then averaging it
with two adjacent values on each side of the peak to
provide a mean individual maximum value. Similarly,
group minimum concentrations were calculated from
the mean of the nadir hormone concentration for each
individual, averaged with two adjacent values on each
side of the nadir.

For each animal, total daily activity was averaged over
approximately a 2-week period using Actiware-Sleep
version 3.4 software (Cambridge Neurotechnology Ltd.,
Cambridge, UK), and the animal group means were
compared by ANOVA. Similarly, the mean daytime ac-
tivity (defined as activity during the period between 0700
and 1859 hours), the mean nighttime activity (activity
between 1900 and 0659 hours), the mean day/night

Table 1 Semiquantitative RT-PCR primers

Gene name Primer sequence (5′–3′–) PCR product (bp) PCR cycles Temperature (°C) GenBank accession ID

LHCGR F-AGTGTAGACCATGACCACTGCC 610 26 63 XM_001114090

R-TGAGACAGGGTTCCTACTCACG

StAR F-AACACCACAGAACAAGCAGCG 281 29 68 XM_001090472

R-ATATTGGCCAGGATGGTCTCG

CYP17A1 F-GAGTGGCACCAGCCGGATCAG 287 25 65 NM_001040232

R-CTCCAGGCCTGGCGCACCTTG

HSD3β2 F-CCACACGGTGACATTGTCAAAT 211 28 65 XM_001113717

R-CCCACATGCACATCTCTGTCAT

HSD17β3 F-AGGCCCTGCAAGAGGAATATAGAG 302 25 66 XM_001105829

R-CCTGACCTTGGTGTTGAGCTTC

INSL3 F-CCTCTGTCCCTACTGATTCCTC 313 20 63 NM_005543

R-TGCACATGCAGGGAGCGGAG

β-actin F-CATTGCTCCTCCTGAGCGCAAG ∼300 23 65 NM_001101

R-GGGCCGGACTCGTCATACTCC

Reference sequences for each of the targeted Macaca mulatta genes can be accessed via GenBank accession ID

LHCGR luteinizing hormone/choriogonadotropin receptor, StAR steroidogenic acute regulatory protein, CYP17A1 family 17, subfamily
A, polypeptide 1, HSD3β2 hydroxysteroid 3-beta dehydrogenase 2, HSD17β3 hydroxysteroid 17-beta dehydrogenase 3, INSL3 insulin-
like factor 3, β-actin human ACTB
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activity ratio were calculated, and the group means com-
pared by ANOVA.

Statistical comparisons between age and within treat-
ment groups (i.e., plasma T levels, morphological mea-
sures, and mRNA expression levels) were conducted
using Student’s t test (SPSS Inc., Chicago, IL), or
Excel (Microsoft, Redmond, WA), and are expressed
as mean±SEM. For all analyses, the minimum criterion
for significance was P<0.05.

Results

Activity analysis

As expected, the mean 24-h locomotor activity levels
of the young animals (group 1) were significantly
higher than those of the old animals (group 2), when
analyzed without regard to dietary treatment (P<0.05,
Student’s t test); activity levels were especially en-
hanced during the daytime (P<0.01), and this was also
reflected as a significantly higher day/night activity
ratio in the young animals (P<0.05; data not shown).
Conversely, there was no significant (P>0.05) effect of
CR on the level of activity within either age group.

Testosterone analysis

Circulating 24-h plasma T profiles were qualitatively
similar in all animals regardless of age or diet; this was
characterized by a nocturnal peak and a daytime nadir
(Fig. 1a, c). However, there were some obvious quan-
titative differences. We previously reported that the
mean, maximum, and minimum T levels were signifi-
cantly (P<0.001) lower in old adults compared with
young adults (Urbanski and Sorwell 2012), but in the
present study we also observed a subtle effect of diet.
Specifically, the YACR had significantly (P<0.01) en-
hanced minimum T levels (Fig. 1b), and the OACR had
significantly (P<0.05) increased maximum T levels
(Fig. 1d). Importantly, however, the data clearly show
that moderate CR did not suppress plasma T levels,
either in the young or old animals.

Testicular morphology

As shown in Table 2, the testis weights of CR animals
did not differ significantly from those of their age-
matched controls (P>0.05). However, some differences

in testicular morphology were observed (Fig. 2). On the
one hand, in the young animals there was no significant
effect of CR on ST diameter, epithelium height, or the
two main qualitative categories of germ line stages
(complete/depleted; Fig. 2a–d). On the other hand, in
the old animals CR was associated with a significant
(P<0.05) reduction in diameter, epithelium height, and
completion of germ cell line with a concomitant increase
in depleted germ cell lines (Fig. 2e–h). To gain addi-
tional insight into the nature of these morphological
differences, we performed a more detailed analysis of
germ cell line production in each of the animal groups.
Figure 3 illustrates how the STwere classified using six
subcategories of complete and depleted germ line pro-
duction. Quantitative analysis of STsubtypes is depicted
in Fig. 4 and shows that there was no significant differ-
ence between control and CR animals in either the
young or old age groups.

Semiquantitative and quantitative real-time RT-PCR

Amplicons were detected between 20 and 29 cycles at
62–68 °C (Table 1). Representative gel images of semi-
quantitative RT-PCR products and expression levels for
genes related to T biosynthesis or Leydig cell mainte-
nance are presented in Fig. 5 (group 1: young adult) and
Fig. 6 (group 2: old adult). Overall, the gene expression
levels showed no significant diet-induced effect either in
the young or in the old animals. Although the insulin-
like factor 3 (INSL3) mRNA expression appeared to
differ between CON and CR in old males, this did not
prove to be statistically significant due to the small
group sizes (n=3); more power would potentially re-
veal a difference with CR in the direction of expres-
sion observed in young males. Quantitative real-time
RT-PCR measurements of LHCGR mRNA expression
showed no significant age or diet-induced changes
(YAC, 5.21±1.44; YACR, 3.73±0.87; OAC, 5.85±2.18;
and OACR, 4.53±0.87).

DNA sequencing

Amplicon sequences were BLASTed in the NCBI
database to determine the sequence of best fit. In
each instance, the experimentally-derived sequence
returned a best fit for at least one, and usually both,
of the primer pairs for the human or predicted
rhesus macaque mRNA sequence that had been
used for primer design (data not shown).
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Discussion

As expected, aging was found to be associated with an
overall reduction in 24-h locomotor activity. Within
each age group, however, the activity patterns of CR
and control animals were very similar. This suggests
that the metabolic expenditures were most likely sim-
ilar in the CR and age-matched control animals.

Similarly, there was no obvious detrimental effect of
moderate CR on circulating T levels, even though T

Fig. 1 Effect of moderate CR (30%) on daily circulating plasma T
concentrations in young (a) and old (c) male rhesus macaques.
Data from young adult animals were previously reported (Sitzmann
et al. 2010) and show a significant difference (**P<0.01) in
minimum T levels between young controls and young CR
animals (b). Differences in the present study were also detected
in maximum T concentrations (*P<0.05) between old controls

and old CR animals, with the latter exhibiting higher daily
levels (d). Importantly, there was no evidence for a suppressive
effect of CR on plasma T levels, either in the young or old
animals. (Note: to facilitate visualization of the cyclic expres-
sion patterns, SEMs have been omitted and the 24-h hormone
profiles have been double plotted, with horizontal bars indicating
periods of light and dark)

Table 2 Mean testicular weights in adult rhesus macaques

Treatment group Group mean (g) SEM

YAC (n=5) 18.6 1.9

YACR (n=5) 24.0 3.1

OAC (n=3) 18.8 1.2

OACR (n=3) 13.4 4.1

Testes weights of CR animals were not significantly different
from their respective age-matched controls (P>0.05)
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levels were significantly lower in the older animals. T
is a critical feedback component of the HPG axis and
essential for production of spermatozoa. Although
the impact of T decline on eventual reproductive
senescence is not understood, there is evidence that
declining T levels are associated with many subtle
changes that affect reproductive function and fer-
tility. The Brown Norway rat, for example, experi-
ences a significant age-related decline in T produc-
tion as a result of Leydig cell dysfunction rather
than a reduction in cell numbers (Chen and Zirkin
1999; Zirkin and Chen 2000). Overall LHCG recep-
tor numbers and their affinity for LH also decline as

a function of age in rats (Chen et al. 2002; Zirkin and
Chen 2000). In humans, some investigators reported no
effect of age per se when excluding those with severe co-
morbidity (Sartorius et al. 2012), whereas many others
documented a clear decline in T production beginning
after 30 years of age and continuing gradually into old
age (Hardy and Schlegel 2004; Henkel et al. 2005;Wang
et al. 2005). Consequently, there is potential for a cascade
effect within the entire reproductive system as a result of
decreased circulating T levels. Testosterone decline, es-
pecially during aging, can result in weakening muscle
function, bone density and alteration of other physiolog-
ical parameters related to overall aging (Bremner et al.

Fig. 2 ST diameter, epithelium height, complete germ cell line
percentage, and depleted germ cell line percentage in testicular
sections from young adult (a–d) and old adult (e–h) rhesus

macaques. Values represent mean±SEM. Significant effects of
CR on all four morphological parameters were detected in the old
animals but not in the young adults (*P<0.05)
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1983; Feldman et al. 2002; Harman et al. 2001; Moffat
et al. 2002; Sitzmann et al. 2008). Also of importance is
the neurological impact of T loss. Some studies have
reported that men with Alzheimer’s disease (AD) have
significantly lower T levels than aged men without AD
(Moffat et al. 2002; Rosario et al. 2006). Significantly, T
depletion appears to occur well before clinical and path-
ological diagnosis of AD, suggesting that low T levels
may contribute to AD pathogenesis rather than results
from it (Rosario et al. 2006).

As previously reported, we did not detect any
suppressive influence of CR on mean, maximum, or
minimum circulating T levels in young adult rhesus
macaques (Sitzmann et al. 2010). In the present
study we expand and extend these previous finding
by also analyzing the 24-h T profiles from ten old
adult males. Taken together, the data show that in
male rhesus macaques, daily circulating plasma T
levels have a well-defined 24-h pattern which per-
sists even into old age. Importantly, however, the
data also emphasize that T levels are significantly
lower in older animals and that CR has no negative
impact on mean, maximum, or minimum circulating
T levels. Surprisingly, maximum circulating T
levels were significantly higher in old CR males
than in their age-matched controls. Whether this
apparent increase is physiologically significant is
unclear, but when considered together with our
previous finding that CR enhanced the daily mini-
mum T levels in young males, it may be indicative
of a subtle improvement of physiological efficiency
elicited by moderate CR. By decreasing the daily
swing between maximum and minimum levels and
maintaining tighter control over T release, younger
CR animals may be able to divert energy toward more

�Fig. 3 Classification of CGL and DGL, as used in the analysis of
rhesus macaque testis. Representative images of spermatogenic
stages in ST sections are depicted in (a) to (f). CGLs contain all
normal cell generations well represented in each cellular associa-
tion (CGLNOR; a), whereas an abnormal complete germinal line
(CGLABN; b) shows partial depletion in one generation of germ
cells, in this case round and elongated spermatids. DGLs occur
when one or more generations of germinal cell generations are
absent: B spermatogonia, spermatocytes, or spermatids (DGL3;
c); all round undifferentiated and elongated differentiated sper-
matids (DGL2; d); spermatocytes and spermatids but Sertoli
cells present (DGL1; e); and germinal and Sertoli cells (fibrosed
cords; DGL0; f). Abbreviations: esd elongated-differentiated
spermatid, fc fibrous cord, L lumen, P pachytene spermatocyte;
rsd round-undifferentiated spermatid, S Sertoli cell, sg spermato-
gonia. Scale bar=50 μm
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critical functions of growth and life maintenance (Roth
et al. 2004). Moreover, findings in the old adults may be
an indication that CR can contribute to the maintenance
of elevated T levels during old age, which would be of
great physiological benefit. Although we cannot rule out
the possibility that the subtle enhancement of circulating
T levels stems from nontesticular origin, in normal
rhesus macaques it is clear that androgens of adrenal
origin do not contribute significantly to the 24-h pattern
of T in the circulation (Goodman et al. 1974).
Alternatively, it is also plausible that CR exerts a subtle
suppressive effect on the clearance of T by the liver.
Regardless of the source of T, our data clearly demon-
strate that moderate CR does not perturb the 24-h plas-
ma T profile of young or old males, and it does not
diminish the levels below that of age-matched controls;
if anything, it enhances them.

Based on previous findings, we were expecting to
find subtle, but nonsignificant, age-related declines in
spermatogenic parameters (Kidd et al. 2001; Plas et al.
2000). Indeed, comparison of testicular morphology
within age groups revealed some significant effects of
diet. First, ST diameters were significantly reduced in
OACR animals compared with their age-matched
OAC controls. Although diameter measurements are
themselves considered rough metrics of ST health,
they do permit some detection of spermatogenic de-
pression, which correlates to ST activity (Russell et al.
1990; Sinha Hikim et al. 1989). Moreover, when tubule
diameter was paired with measurements of epithelium
height and semiquantitative histological determination
of CGL percentages, a better picture of testicular func-
tionality emerged. In the case of our study subjects,
epithelium height and CGL percentages were signifi-
cantly reduced in OACR animals relative to OAC
controls. The mixture of focal and regional damage
(Chen and Zirkin 1999), where many stages of the
spermatogenic cycle were affected to varying degrees,
could signal a decrease in ST function within our older
treatment group, possibly due to CR. Upon more de-
tailed analysis of germ line stages, however, the differ-
ences became less clear and not statistically different.
With larger group sizes these subtle differences may

�Fig. 4 Analysis of ST from calorie restricted (CR) and age-
matched control (CON) rhesus macaques. Subcategories of
complete germinal line (CGL) and depleted germinal line
(DGL), as defined in Fig. 3, are depicted as percentages in
(a) to (f)
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have become more evident. Although OACR animals
exhibited decreased complete germinal line produc-
tion, it is unclear if this would necessarily correlate to
a significant physiological impact on fertility.

Previous gene profiling studies in our laboratory using
Affymetrix GeneChip® Rhesus Macaque Genome
Arrays revealed high expression of steroidogenic enzyme
encoding genes in young adult rhesus macaque testis
but failed to disclose any effect of moderate CR
(Sitzmann et al. 2009). In the present study, we use
semiquantitative and quantitative real-time RT-PCR to
further examine the influence of CR on testicular
gene expression in greater detail. Specifically, we
were interested in genes related to the T biosynthesis
pathway and Leydig cell maintenance. With the ex-
ception of the cytochrome P450, family 11, subfamily
A, polypeptide 1, microarray analysis included all com-
ponents of the T biosynthesis pathway (luteinizing
hormone/choriogonadotropin receptor (LHCGR); ste-
roidogenic acute regulatory protein; cytochrome P450,

family 17, subfamily A, polypeptide 1; hydroxysteroid
3-beta dehydrogenase 2; and hydroxysteroid 17-beta
dehydrogenase 3) as well as the peptide hormone,
INSL3, an indicator of Leydig cell health. No significant
differences in mRNA expression were detected within
either the young or old age groups, indicating that CR
does not exert any obvious negative impact on the
expression of key testicular genes. Although INSL3
gene expression did not differ significantly in old males
due to the small group sizes, it appears that the CRmales
had levels of expression that more closely resembled
that of young males (Figs. 5 and 6). This would be in
line with the observed positive effects of CR on circu-
lating T levels and suggestive of an effect of CR on
Leydig cells.

In summary, the present study used a nonhuman pri-
matemodel to determine whether long-termmoderate CR
is likely to negatively impact T levels and impair fertility
in human males. Clinically, this is an important issue
because fasting, even short term, has been shown to

Fig. 5 Representative semiquantitative RT-PCR gel image
demonstrating expression of testicular genes in calorie restricted
(CR; n=5) or control (CON; n=5) young adult (∼12 years old)
rhesus macaques. The housekeeping gene β-actin was used as a

positive control and for normalizing images for analysis. No
significant differences (mean±SEM; P>0.05) in gene expression
were observed between the treatment groups

Fig. 6 Representative semiquantitative RT-PCR gel image
demonstrating expression of testicular genes in calorie restricted
(CR; n=3) or control (CON; n=3) old adult (24–30 years old)
rhesus macaques. The housekeeping gene β-actin was used as a

positive control and for normalizing images for analysis. No
significant differences (mean±SEM; P>0.05) in gene expression
were observed between the treatment groups
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rapidly suppress the primate reproductive axis (Cameron
1996; Cameron and Nosbisch 1991; Cameron et al. 1991,
1993; Dubey et al. 1986; Helmreich and Cameron 1992;
Schreihofer et al. 1993). Although availability of old male
rhesus macaques was a limiting factor, we nevertheless
were able to establish that moderate CR has no negative
impact on circulating T measurements and testicular
mRNA expression, and minimal impact on testis mor-
phology. Overall, these findings should be particularly
reassuring to men who are using CR as a potential means
of combating negative physiological aspects of aging.
Even though there was some indication of modest
spermatogenesis impairment in the old CR animals, it
should be emphasized that similar findings were not
evident in young adults, and it is unclear if such subtle
changes in testicular morphology would significantly
impair fertility. The most important finding, however, is
that moderate CR does not suppress T production or
disrupt the 24-h pattern of T in the circulation; if
anything, it may even enhance circulating T levels.
Consequently, CR is unlikely to negatively impact
androgen-mediated nonreproductive functions, and
may exert additional beneficial effects.
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