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Abstract

Objectives We previously developed a model for pro-

jection of heat-related mortality attributable to climate

change. The objective of this paper is to improve the fit and

precision of and examine the robustness of the model.

Methods We obtained daily data for number of deaths

and maximum temperature from respective governmental

organizations of Japan, Korea, Taiwan, the USA, and

European countries. For future projection, we used the

Bergen climate model 2 (BCM2) general circulation

model, the Special Report on Emissions Scenarios (SRES)

A1B socioeconomic scenario, and the mortality projection

for the 65?-year-old age group developed by the World

Health Organization (WHO). The heat-related excess

mortality was defined as follows: The temperature–mor-

tality relation forms a V-shaped curve, and the temperature

at which mortality becomes lowest is called the optimum

temperature (OT). The difference in mortality between the

OT and a temperature beyond the OT is the excess mor-

tality. To develop the model for projection, we used Jap-

anese 47-prefecture data from 1972 to 2008. Using a

distributed lag nonlinear model (two-dimensional non-

parametric regression of temperature and its lag effect), we

included the lag effect of temperature up to 15 days, and

created a risk function curve on which the projection is

based. As an example, we perform a future projection using

the above-mentioned risk function. In the projection, we

used 1961–1990 temperature as the baseline, and temper-

atures in the 2030s and 2050s were projected using the

BCM2 global circulation model, SRES A1B scenario, and

WHO-provided annual mortality. Here, we used the

‘‘counterfactual method’’ to evaluate the climate change
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impact; For example, baseline temperature and 2030

mortality were used to determine the baseline excess, and

compared with the 2030 excess, for which we used 2030

temperature and 2030 mortality. In terms of adaptation to

warmer climate, we assumed 0 % adaptation when the OT

as of the current climate is used and 100 % adaptation

when the OT as of the future climate is used. The midpoint

of the OTs of the two types of adaptation was set to be the

OT for 50 % adaptation.

Results We calculated heat-related excess mortality for

2030 and 2050.

Conclusions Our new model is considered to be better fit,

and more precise and robust compared with the previous

model.

Keywords Heat-related mortality � Excess deaths �
Climate change � Projection � Adaptation

Introduction

In 2002, the World Health Organization reported for the

first time the health impact of climate change [1]. In the

report, however, heat-related impact was not included in

the final aggregate total number, because it was not easy to

model the relationship between ambient temperature and

mortality for projecting future impact of climate change.

One of the reasons for not being able to construct the

model was as follows: In many places of the world, a

V-shaped temperature–mortality relation was observed [2,

3]. Using this relation, heat-related excess mortality can be

defined as the shaded area in Fig. 1 (where the V-shaped

relation was constructed from data for Tokyo from 1972 to

2008). So, if we can identify the optimum temperature

(OT), at which the mortality risk becomes smallest, we

should be able to estimate the excess mortality with some

additional information (as described later). Although the

OT level was found to be higher for warmer areas [4, 5], no

good index to estimate the OT had been available.

In 2007, we found that the optimum temperature can be

estimated using the 80–85th percentile of daily maximum

temperature based on 47 prefectures in Japan [6]. Using

this estimation method and a risk function model, we

projected excess mortality due to heat [7]. The projection

method can be summarized as follows: The observation

period was 24 years (1972–1995), and we used males and

females with all ages combined. The OT was the 85th

percentile value of daily maximum temperature. Although

the risk function of excess mortality due to heat is non-

linear as shown in Fig. 1, we used the categorical function

shown in Fig. 2. In this projection, we do not even show a

confidence interval.

Although the above projection was one of the first

projections of climate change impact on heat-related

mortality, there were some weaknesses to the method,

including (1) the applicability of the OT estimation method

to other regions of the world, and (2) that the risk function

was categorical. In this paper, we solve problem (2) by

using a nonparametric risk function. This should be a

substantial improvement, because the average of the tem-

peratures in the highest temperature category was actually

very close to the lower boundary of the category and huge

underestimation was expected for the risk of this category.

Regarding problem (1), we examine in this paper the

Fig. 1 Heat-related excess mortality, considered as the shaded area;

the figure shows an example using data for Tokyo Prefecture for

1972–2008

Fig. 2 Risk function of excess mortality due to heat used in the

previous projection
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applicability using cities in Korea, Taiwan, Europe, and the

USA as well as 47 Japanese prefectures.

Another concern is the temporal pattern of exposure–

mortality effects. This can be regarded in two ways [8].

One is the carry-over effect (lag effect), and the other is

mortality displacement or harvesting. The former effect has

been considered not to last long for heat-related mortality.

In the latter case, heat just kills people who would die in a

very short period of time anyway, and avoiding heat would

extend the lives of people for only a short period of time. In

the case of the 2003 heat wave in Europe, however, there

was little evidence of mortality displacement [9]. Here, we

address this lag effect using a distributed lag nonlinear

model developed by Armstrong [8].

Materials and methods

Meteorological data and mortality data were obtained from

respective governmental organizations of Japan, Korea,

Taiwan, and European countries. For the USA, we down-

loaded the National Morbidity, Mortality, and Air Pollution

Study (NMMAPS) files (which used to be downloadable at

http://www.ihapss.jhsph.edu/data/data.htm, but are no

longer available) [10]. Some descriptive information for

the mortality data is presented in Table 1; because heat-

related impact in occupational setting was also included in

the new WHO project, we restricted mortality to 65? years

of age.

A set of mortality projections for the 2030s and 2050s was

developed for this project by the World Health Organization.

The approach built upon previous methods developed by

Mathers and Loncar [11]. The method uses a series of

regression equations that quantify the current and historical

relationships between mortality and a set of independent

variables. The major independent variables that were shown

to be structurally related to mortality were (i) gross domestic

product (GDP)/capita, (ii) years of education, and (iii) time,

which is assumed to be a proxy for health benefits arising

from technological developments. In addition, specific

assumptions are made regarding future patterns of human

immunodeficiency virus (HIV)/acquired immunodeficiency

syndrome (AIDS), tuberculosis, malaria, smoking, and body

mass index (BMI).

Development of the new risk function

We developed the risk function based on all 47 prefectures

in Japan. Then, we examined the applicability of the

assumptions in combining these 47 prefectures described

below. For this purpose, we used the data for the selected

cities in Korea, Taiwan, the USA, and Europe. We did not

include data other than from Japan, because, although these

cities somewhat represent large cities in each region, the

data are not systematically collected and are not suitable

for calculating average values.

Applicability of OT estimation method

We obtained OT estimates for 47 prefectures in Japan

using a smoothing spline with six degrees of freedom. As

shown in Fig. 3, data points in the very hot range, espe-

cially beyond 35 �C, are sparse. Figure 4 shows the dis-

tribution of percentile values that correspond to the OT. In

most cases, the value was around the 84th percentile. The

mean of all the 47 prefectures was the 83.6th percentile,

and we used this value to estimate the OT.

Table 2 presents the OT and 84th percentile value of

daily maximum temperature in the cities of the other

countries examined in this study. The OTs and 84th per-

centile values were close to each other in a majority of the

cities. There were 3 US cities (Dallas/Fort Worth, Houston,

and San Diego) that did not show a V-shaped relation.

These 3 cities are located in the south, and it is possible to

speculate that air-conditioned houses are very popular in

these hot cities such that residents of these cities have

adapted to heat exposure. However, other southern cities

showed a V-shaped relation, even when the OT was higher

than 40 �C. Also, in many mid- to southern Japanese pre-

fectures, more than 90 % of households are equipped with

air-conditioners (based on the 2009 National Survey of

Family Income and Expenditure, for example), but these

prefectures still showed V-shaped temperature–mortality

relations. Hence, these 3 US cities may be exceptions due

to statistical variation. From this multicountry examination,

we concluded that OT can be estimated by the 83.6th

percentile value of daily maximum temperature.

Precision improvement

To improve precision, use of long-term data and combining

area-specific data are effective, provided that the

Table 1 Description of mortality data by country

Country/

region

Observation

period

Age

category

Note

Japan 1972–2008 65? 47 prefectures, 1973–2008

for Okinawa

Korea 1992–2010 65? 6 cities

Taiwan 1994–2007 65? 3 cities

USA 1987–2000 65? 20 cities

Spain 1992–2000 All ages Barcelona

France 1991–1998 All ages Paris

Italy 1992–2000 All ages Rome
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chronological trend is well controlled and the heterogeneity

among areas is reasonably small.

To control for chronological trend and population size,

we introduced relative risk. The reference mortality for

each year is the average number of deaths during the days

with daily maximum temperature from the 75th to 85th

percentile for each year. We chose this reference because

this reference temperature range usually covers the OT, and

because this reference is less affected by influenza epi-

demic than the annual average daily number of deaths or

adding time trend in regression models as a nonparametric

term.

Lag effect inclusion

As explained earlier, lag effect should be controlled for to

obtain the overall heat-related effect. For this purpose, we

used a distributed lag nonlinear model [8]. In the actual

calculation, we used the dlnm package developed by Gas-

parrini [12] in R 2.15.1 [13]. In their paper, they describe

dlnm as ‘‘a modelling framework that can simultaneously

represent non-linear exposure–response dependencies and

delayed effects. This methodology is based on the definition

Fig. 3 Relation between daily maximum temperature and relative

risk (RR) in Tokyo, 1972–2008

Fig. 4 Distribution of optimum temperature (expressed as percentile

value of daily maximum temperature) in Japan

Table 2 OT, 84th percentile of Tmax, and ratio of RMOT over RMav

Country City OT 84th percentile

of Tmax

Ratio

Taiwan Taipei 33.4 33.9 0.95

Taichung 33.0 33.0 0.94

Kaohsiung 31.2 32.5 0.96

Korea Seoul 27.8 28.1 0.93

Busan 28.7 26.6 0.93

Daegu 29.9 29.5 0.93

Incheon 27.5 26.9 0.94

Gwangju 29.1 28.8 0.92

Daejeon 29.6 28.4 0.91

USA Los Angeles 30.0 28.3 0.95

New York 26.7 28.3 0.92

Chicago 26.1 27.8 0.94

Dallas/Fort Worthb 37.2 34.4 0.93

Houstonb 41.7 33.9 0.93

Phoenix 41.7 40.0 0.89

Santa Ana/Anaheim 33.3 31.1 0.94

San Diegob 41.7 24.4 0.95

Miami 31.7 32.2 0.96

Detroit 25.0 27.2 0.93

Seattle 22.2 23.3 0.93

San Bernardino 39.4 38.9 0.91

San Jose 30.6 31.7 0.91

Minneapolis/St. Paul 26.7 26.7 0.92

Riverside 44.4 42.8 0.91

Philadelphia 27.8 29.4 0.92

Atlanta 31.7 31.1 0.93

Oakland 32.8 33.9 0.90

Denver 33.3 32.2 0.92

Cleveland 26.1 26.7 0.94

Spain Barcelona 27.9 29.4 0.88a

France Paris 22.8 23.6 0.92a

Italy Rome 25.0 26.8 0.89a

a Target population is all ages combined
b Optimum temperature was not observed; the lowest mortality was

observed at the highest end of the temperature
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of a ‘cross-basis’, a bi-dimensional space of functions that

describes simultaneously the shape of the relationship along

both the space of the predictor and the lag dimension of its

occurrence.’’ In our model, we used OT-offset daily maxi-

mum temperature (expressed as ‘‘Tmax - OT’’) as the tem-

perature index. Another choice would be the percentile value

of daily maximum temperature, because most prefectures

have OT close to the 84th percentile value. However, the

range of daily maximum temperature is very wide in north-

ern prefectures, whereas that in southern prefectures is nar-

row, so a one-unit increase of the percentile corresponds to a

different increase in temperature.

The parameter setting of the dlnm model is as follows:

For both OT-offset daily maximum temperature and its lag

(from 0 to 15 days), we used natural cubic splines with

degree of freedom 6. OT-offset daily maximum tempera-

ture = 0, i.e., the mortality level at OT, was used as a

reference. Since we used relative mortality, quasi-Poisson

distribution was assumed. Figure 5 shows the dlnm result.

This curve shows the result of adding up the lag effect.

Figure 6 shows the lag pattern for the situation when the

daily maximum temperature is 5 �C higher than OT. Lag

0 days had the highest risk, followed by lag 1 day. These

risks, including slightly negative risk up to lag 15 days,

were added up to construct Fig. 5. As observed, heat-

related mortality increases monotonically above OT. On

the other hand, below OT there is a complex relationship

between mortality and temperature.

From relative risk to excess number of deaths

The above risk function curve used the relative risk, and we

need to estimate the excess number of deaths using this

relative risk. Because the reference of the relative risk is

the risk at OT, we can convert the relative risks if we can

calculate the number of deaths when the temperature is the

OT (NDOT). For this purpose, considering that the available

information is the annual number of deaths (NAN), we

need the following formula:

NDOT ¼ NAN=365:25ð Þ � RMOT=RMav;

where RMOT is the relative risk at OT and RMav is the

average daily relative risk. (NAN/365.25) yields the daily

average number of deaths. We obtained both RMOT and

RMav using the Japanese dataset. Based on the Japanese

dataset, the average and standard deviation of RMOT/RMav

were 0.88 and 0.014, respectively.

To examine the robustness of the above index, we used

selected data from cities in Korea, Taiwan, the USA, and

Europe. Table 2 presents the values of this ratio in these

countries selected for this manuscript. Although cities in

Korea, Taiwan, and the USA showed a higher ratio than

Japanese prefectures, two European countries showed a

lower ratio. Considering that the European data are for all

ages combined, the ratios for the 65?-year-old age group is

expected to be even lower, because \65-year-old age

groups are usually more resistant to heat; heat-related rel-

ative risk is lower for younger age groups. Based on this

observation, we decided to use the Japanese ratio, 0.88, for

global projection.

Projection of future impact of climate change

on heat-related mortality

We need the daily maximum temperature distribution for

risk estimation. So, we chose NCC (= NCEP Corrected by

CRU, where NCEP stands for National Centers for Envi-

ronmental Prediction, USA, and CRU stands for Climate

Research Unit, University of East Anglia) daily data [14] as

the baseline climate data. For the future climates, we used

one of the general circulation models provided by the

WHO Global Burden of Diseases project, i.e., BCM2.

Fig. 5 Risk function of excess mortality due to heat (for 47

prefectures in Japan, 1972–2008). Note: Lag effects up to 15 days

were added to construct this curve

Fig. 6 Lag structure of the heat-related relative risk when the daily

maximum temperature is 5 �C higher than OT. Note: Lag structure

when T max - OT was 5
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Here, we added the monthly average difference between

the current climate and the future climate from models to

each of the baseline daily maximum temperatures within

the same month. The grid resolution is 1�. As the socio-

economic scenario, we used SRES A1B.

Adaptation is another concern. When the OT is esti-

mated as the 83.6th percentile value of daily maximum

temperature as of the current climate, we assume no

adaptation (0 % adaptation). If the future climate is used

for OT estimation, we assume 100 % adaptation. The

midpoint of the 0 and 100 % adaptation OTs is assumed to

be the OT for 50 % adaptation. V-shape flattening is

another possible type of adaptation, but our preliminary

analyses showed no evidence of flattening (this will be

published in another paper), and we did not include this

type of adaptation in this manuscript.

Because there are excess deaths due to heat even at

present, the excess number of deaths attributable to climate

change is calculated using the ‘‘counterfactual method.’’ The

idea is that, with identical annual mortality rate, what is the

difference between the number of excess deaths in the

baseline case and that in the altered climate case? The actual

procedure for 2030 is as follows: The calculation was done

for each 1� 9 1� grid of the globe. We used the annual

number of deaths (provided by the WHO) in 2030 for both

the baseline and altered climate case. Then, for the baseline

case, we applied the temperature distribution of the current

climate (1961–1990) to the risk functions (based on 47 pre-

fectures of Japan) for 0, 50, and 100 % adaptation; for the

altered climate case, we applied the temperature distribution

of the projected 2030 climate obtained using BCM2 instead

of the current climate. The difference in the number of excess

deaths between these two cases is considered to be the cli-

mate-attributable excess number of deaths. These grid-spe-

cific numbers of deaths were summed up for each WHO

region (Table 3). Likewise, the 2050 climate-attributable

excess number of deaths was calculated.

Results

Table 4 presents the projected excess heat-related deaths

by WHO region. Asian regions are vulnerable to climate

change impact.

In some regions, the heat-related excess deaths consti-

tute up to 0.6 % of deaths, and some high-income regions

also suffer a 0.1–0.4 % excess.

Discussion

Because this manuscript aims at developing a better pro-

jection model for heat-related excess deaths, the problems

and their solutions were already addressed in ‘‘Materials

and methods’’ section. Here, we evaluate how our goal was

achieved, i.e., how much the fit, precision, and robustness

of the proposed model have been improved from the pre-

vious projection [7]. As shown in Figs. 2 and 5, it is

obvious that the fit is much better for the present model. To

show the improvement of precision, we used the present

model and applied it to the observation period of the pre-

vious model, i.e., 1972–1995. As an example, when the

temperature was 10 �C higher than OT, the risk estimate

(95 % confidence interval) of this calculation was 1.241

(1.218–1.265), whereas the present calculation gave 1.173

(1.156–1.189); the range of the confidence interval was

30 % smaller. As for the robustness, Table 2 clearly shows

the similarity of the OT and the ratio of RMOT over RMav

across a wide range of areas, including Asia, the USA, and

Europe. Hence, our model that sets OT to be around the

84th percentile value of daily maximum temperature can be

generalizable to all over the world. One additional concern

may be the applicability of our OT estimation to tropical

areas, where the annual temperature difference is very

small. Our analyses covered very cold areas to subtropical

areas, but did not cover tropical areas or countries in the

Southern Hemisphere. In this regard, McMichael and

coworkers’ report [15] is worth mentioning, because they

observed the heat-related effect for 12 cities including

cities in tropical countries and those in the Southern

Table 3 WHO regions

WHO_REG_NEW GBDname

AP_HI Asia Pacific, High Income

As_C Asia, Central

As_E Asia, East

As_S Asia, South

As_SE Asia, Southeast

Au Australasia

Ca Caribbean

Eu_C Europe, Central

Eu_E Europe, Eastern

Eu_W Europe, Western

LA_A Latin America, Andean

LA_C Latin America, Central

LA_S Latin America, Southern

LA_T Latin America, Tropical

NA_HI North America, High Income

NA_ME North Africa/Middle East

Oc Oceania

SSA_C Sub-Saharan Africa, Central

SSA_E Sub-Saharan Africa, East

SSA_S Sub-Saharan Africa, Southern

SSA_W Sub-Saharan Africa, West
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Hemisphere. Their model used a different method from

ours; For example, they used daily mean temperature

instead of daily maximum temperature, and they averaged

out lag effect for lag 0–1 day and for lag 0–13 days. Still,

the relation of the 0–1 averaged lag model was V-shaped

for the majority of the cities. Considering that the 84th

percentile value is roughly equal to the summer mean

temperature, we tried to identify summer average temper-

ature and optimum temperature from the graphs they pro-

vided. Among the cities with a V-shaped relation, most of

the cities, including a tropical city (Bangkok, Thailand),

had optimum temperature similar to their respective sum-

mer average temperature. Although this procedure is not

accurate, at least use of the 84th percentile value in pre-

dicting OT cannot be falsified even by observations of

cities in tropical zones or in the Southern Hemisphere.

Another supporting report is the 4th Assessment Report of

the Intergovernmental Panel on Climate Change [16];

temperature rise in tropical areas is expected to be less

prominent compared with temperate areas and high-lati-

tude areas. Hence, our projection would not be wide of the

mark.

Compared with our previous projection, this new pro-

jection has advantages in terms of fit, precision, and

robustness. Also, we included lag effect, which addresses

mortality displacement. This implies that, although there

may be some mortality displacement effect, the overall risk

exists and climate change would increase the burden due to

heat-related mortality.

Because the purpose of this paper is to show how we

have improved the model for the global projection, we

showed the projection results using only one global cir-

culation model. However, the model described in this paper

was adopted in the new WHO Global Burden of Diseases

attributable to climate change, which will appear some-

where soon, and several models will be used and

compared.

Compared with the total number of deaths, the propor-

tion of deaths due to heat-related mortality attributable to

climate change appears small. However, considering that

even huge cyclones do not kill many people nowadays in

high-income countries, heat waves are a major environ-

mental hazard. Of course, we need to compare the heat-

related impact and cold-related impact to obtain the net

impact of global warming. However, new papers have

warned that we should not naively apply the V-shaped

temperature–mortality relation to projections for future

cold-related excess deaths [17, 18]. We will try to develop

Table 4 Projection of heat-related excess deaths

Region 2030 2050

Populationa Baseline 0 %b 50 %b 100 %b Populationa Baseline 0 %b 50 %b 100 %b

AP_HI 177,053 2,427 4,802 3,635 2,598 162,307 2,528 6,866 4,395 2,588

As_C 9,529 611 1,458 975 598 103,588 947 3,797 2,024 854

As_E 1,428,481 5,343 18,423 11,053 5,837 1,332,115 7,050 36,739 18,612 7,184

As_S 2,033,885 10,692 26,666 18,022 11,296 2,284,943 17,429 65,562 37,524 18,489

As_SE 723,970 1,449 5,718 3,078 1,594 777,181 2,487 19,662 8,371 2,549

Au 32,982 119 370 230 125 37,063 156 837 424 174

Ca 48,633 2 195 75 2 49,792 3 553 261 3

Eu_C 115,732 988 3,123 1,955 1,090 107,099 1,058 5,396 2,998 1,417

Eu_E 195,411 1,708 6,350 3,647 1,860 178,872 1,732 10,471 4,845 1,721

Eu_W 441,260 3,570 6,214 4,722 3,485 446,713 4,425 13,367 8,334 4,677

LA_A 66,776 41 372 160 40 75,150 71 1,760 548 78

LA_C 287,206 700 2,181 1,239 711 318,626 1,226 7,364 3,363 1,249

LA_S 69,901 234 924 537 263 74,285 301 2,069 925 289

LA_T 229,162 364 2,050 1,066 432 233,166 563 6,546 2,545 694

NA_HI 401,536 2,408 7,394 4,704 2,702 446,749 2,953 15,441 7,877 3,235

NA_ME 584,318 1,596 4,780 2,977 1,683 681,137 3,209 15,331 7,940 3,302

Oc 14,113 4 47 14 3 18,172 8 195 68 7

SSA_C 152,539 201 918 482 221 212,327 438 4,007 1,645 485

SSA_E 574,918 858 3,686 1,923 857 848,878 1,679 14,734 6,060 1,776

SSA_S 81,752 156 539 319 165 87,940 246 1,737 798 300

SSA_W 543,556 775 2,491 1,486 785 809,872 1,578 9,468 4,465 1,679

a In thousands. Based on United Nations 2010 revision, medium estimates
b 0, 50, and 100 % represent adaptation level
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our model for cold-related excess mortality after taking

into account the points these papers raised in the near

future.
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