
Validation of Statistical Predictive Models Meant to Select
Melanoma Patients for Sentinel Lymph Node Biopsy

Michael S. Sabel, MD, John D. Rice, MSPH, Kent A. Griffith, MS, MPH, Lori Lowe, MD,
Sandra L. Wong, MD, Alfred E. Chang, MD, Timothy M. Johnson, MD, and Jeremy M.G.
Taylor, PhD
Departments of Surgery (MSS, SLW, AEC, TMJ), Dermatology (TMJ), Pathology (LL), University
of Michigan Health System and the Biostatistics Core of the University of Michigan
Comprehensive Cancer Center (JDR, KAG, JMGT), Ann Arbor, Michigan

Abstract
Introduction—To identify melanoma patients at sufficiently low risk of nodal metastases who
could avoid SLN biopsy (SLNB). Several statistical models have been proposed based upon
patient/tumor characteristics, including logistic regression, classification trees, random forests and
support vector machines. We sought to validate recently published models meant to predict
sentinel node status.

Methods—We queried our comprehensive, prospectively-collected melanoma database for
consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon 4
published models, calculating the same reported metrics: negative predictive value (NPV), rate of
negative predictions (RNP), and false negative rate (FNR).

Results—Logistic regression performed comparably with our data when considering NPV
(89.4% vs. 93.6%); however the model’s specificity was not high enough to significantly reduce
the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree
produced NPV and reduction in biopsies rates that were lower 87.7% vs. 94.1% and 29.8% vs.
14.3%, respectively. Two published models could not be applied to our data due to model
complexity and the use of proprietary software.

Conclusions—Published models meant to reduce the SLNB rate among patients with melanoma
either underperformed when applied to our larger dataset, or could not be validated. Differences in
selection criteria and histopathologic interpretation likely resulted in underperformance.
Development of statistical predictive models must be created in a clinically applicable manner to
allow for both validation and ultimately clinical utility.

Introduction
Lymphatic mapping and sentinel lymph node (SLN) biopsy provides critical staging
information for clinically node negative melanoma patients. In addition, the early removal of
micrometastatic disease from the regional nodes may have a therapeutic benefit.1 For these
reasons, SLN biopsy has been widely accepted as a component of the surgical management
of melanoma and is considered by some to be the standard of care for a subset of melanoma
patients.2 However, the procedure is not without controversy.3, 4 Although the Multicenter
Selective Lymphadenectomy Trial-I (MSLT-I) trial, which randomized clinically node
negative patients to wide excision alone versus wide excision with SLN biopsy, suggested a
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potential therapeutic benefit for SLN biopsy among the node-positive patients, overall the
study demonstrated no survival benefit to the procedure.1

Many surmise that one reason the MSLT-I trial failed to demonstrate any impact of SLN
biopsy on overall survival is that any therapeutic benefit would be limited to those patients
harboring micrometastases. With the present indications for SLN biopsy, only around 20%
of patients are found to be node positive. This means 4 out of 5 patients undergoing SLN
biopsy derive no direct benefit from the procedure, other than reassurance. Improved
selection of patients for SLN biopsy, by increasing the fraction of patients found to have
metastatic disease, would not only improve the relative therapeutic benefit of the procedure,
but minimize the cost and morbidity. To that end, multiple groups, including ours, have
retrospectively examined their SLN outcomes in an attempt to identify clinical and
histopathologic features that may correlate with positive SLN.5–8 Some of these studies
attempted to create statistical models with a high accuracy for predicting the SLN status.8, 9

To potentially identify those patients at sufficiently low risk of nodal metastases whom
could avoid the procedure, Mocellin et al.10 examined four different predictive statistical
models, focusing on negative predictive value (NPV), SLN biopsy reduction rate (rate of
negative predictions, RNP), and the false negative rate (FNR), or how many patients with
positive biopsies were predicted to be negative by the model. They reported predictive
models that could identify approximately a quarter of patients who may be spared SLN
biopsy, with a false negative error rate of 1–2%. In their conclusion, the authors ask
institutions involved in the management of melanoma to independently validate their
models. In this study, we attempted to do just that.

Methods
In the Mocellin paper, a sample of 1132 melanoma patients, from two institutions were used
to construct 4 statistical models using-logistic regression, classification trees, random
forests, and support vector machines (SVM), with the intention of selecting models that
allowed for a significant reduction in the number of biopsies performed while incurring a
minimum of false negatives. To validate these findings, after obtaining approval from the
University of Michigan Institutional Review Board (IRB), we queried our comprehensive
prospectively-collected melanoma database to identify consecutive melanoma patients 16
years of age and older who underwent SLN biopsy at the University of Michigan.

Patients undergo same-day preoperative lymphoscintigraphy in which 99mTc sulfur colloid
is injected intradermally around the primary lesion or biopsy site 2–4 hours prior to surgery.
Either isosulfan blue dye (Lympazurin 1%) or diluted methylene blue dye is injected
intradermally around the primary lesion or biopsy site after the induction of general
anesthesia. Any blue, hot (defined as the hottest node and any other nodes greater than 10%
of the counts per minute of the hottest node) or suspicious lymph nodes are considered
SLNs. SLN specimens are fixed in 10% neutral-buffered formalin, serially sectioned
longitudinally at 2–3mm intervals, and entirely embedded in paraffin. Hematoxylin and
eosin (H&E) staining was performed on two 5-µm thick sections from each tissue block. In
addition, four unstained serial sections are prepared for possible future
immunohistochemical analysis. If SLN(s) were negative by routine light microscopy,
immunohistochemical staining is routinely performed using antibodies to the melanoma
markers Melan-A (1:12.5 dilution: DAKO Corporation, Carpineteria, CA) and S-100 protein
(1:500 dilution: DAKO Corporation, Carpineteria, CA).

Using information available from the Mocellin paper itself and/or the web address cited for
supplementary material, we attempted to duplicate their statistical models, using our data
with respect to outcome of interest (PSLN) and independent covariates, for purposes of
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predicting the occurrence of PSLN. The outcome of interest was the discovery of any
positive sentinel lymph nodes. The covariates of interest included the following patient/
tumor characteristics: patient age and gender, tumor thickness (Breslow depth), Clark level,
regression, ulceration, histologic subtype, and mitotic index. In order to evaluate similarities
and differences in the predictive ability of Mocellin's statistical models when applied to our
data as compared to when applied their data, we calculated the same metrics (NPV, RNP,
and FNR) they had previously published.

Sensitivity, Specificity, Negative Predictive Value (NPV), and False Negative Rate (FNR)
are each calculated per their accepted definitions as follows; Sensitivity = True Positives
(TP) / {TP + False Negatives (FN)}, Specificity = True Negatives (TN) / {TN + False
Positives (FP)}, NPV = TN / {TN + FN}, and FNR is equal to 1 − Sensitivity and defined as
FN / FN + TP. SNB reduction rate = {TN + FN} / {Total = TN + FN + TP + FP} and the
error rate = FN / Total. All metrics were calculated as in Mocellin et.al.

If data was missing, this was handled both by using only cases on which we had complete
data or employing multiple imputation using Imputation and Variance Estimation Software
(IVEware). This free, downloadable software, maintained by the researchers at the Survey
Methodology Program, Survey Research Center at the University of Michigan, uses a
multivariate sequential regression approach to imputing missing values in analytical
datasets. Multiple imputed datasets can be created, such that missing data is replaced by
‘sensible’ guesses based upon the remainder of the patient’s data. Multiple imputation
methods can then be used to aggregate the estimates from the regression models from each
of the imputed datasets. [Raghunathan et. Al., Survey Methodology, June 2001). Full details
of the programs and its uses can be found at http://www.isr.umich.edu/src/smp/ive/.

Results
We identified 2313 patients who underwent SLN biopsy for melanoma between 1998 and
2009. The clinical and demographic characteristics are summarized in Table 1, and are
compared to the Mocellin data. There were several differences between our patient
populations. Gender and age distribution were essentially the same. Although the median
Breslow thickness was similar, the data used by Mocellin et al had a larger fraction of
melanomas less than 1.0mm in Breslow thickness than our dataset (23.8% vs. 10.5%). This
likely reflects differences in the application of sentinel lymph node biopsy. Whereas they
performed SLN biopsy on patients with melanoma <1mm if Clark level was IV or V or
ulceration was present, we do not use Clark level as an indication for SLN biopsy. Instead,
we perform SLN biopsy on melanoma <1mm only in the presence of other adverse
histologic features such as angiolymphatic invasion, ulceration, high mitotic rate and young
age, resulting in fewer patients with thin melanoma being mapped. The Mocellin population
also has a higher fraction of Clark level II and III patients, whereas for patients in whom
data were available, we had far fewer Clark level II and III melanomas. Complicating this
was the undocumented Clark level for a fraction of our patients. We stopped routinely
recording Clark level as it was not predictive of SLN status,5, 9 however this variable
appears in all of Mocellin et al.’s models. We therefore approached this in two ways:
analyzing only cases on which we had complete data (1667 subjects, or 72% of the original
data set), and employing multiple imputation using IVEware (Version 0.2, Institute for
Social Research, University of Michigan, 2010) in order to generate full data sets for further
analysis. Other differences between our two datasets included a much higher rate of
regression in the Mocellin data (nearly half of the patients compared to only 13.4%) and a
higher mitotic rate among our patients, the latter likely reflecting our use of mitotic rate as a
selection criteria for SLN biopsy.
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All patient/tumor characteristics selected for modeling by Mocellin et al. seemed to be of
especially strong predictive value for their data. Of their four models, three (logistic, tree,
and SVM) were, on the whole, largely similar both in the set of variables they identified as
significant as well as in their performance as measured by NPV (93.6%, 94% and 93%,
respectively), RNP (27.5%, 29.8% and 30.1%, respectively), and FNR (1.8%, 1.8% and
2.1%, respectively). However, the random forest seemed to perform somewhat better, with a
97% NPV and a false negative rate (FNR) of 0.5%. This was achieved, however, at the cost
of a lesser reduction in biopsies (RNP), at only 18%.

Logistic Regression
We began with what Mocellin et al. note is the simplest and most commonly applied model,
logistic regression, for which the coefficients in the prediction model were given in their
paper. We applied their model to our data twice, first using only observations on which we
had the full set of observations, then on data imputed using IVEware; there were only
negligible differences in the results.

Using a cutoff value of 0.1 for the predicted probability to define cases as having a positive
SNB at the individual level (not to be confused or aligned with the proportion of positivity at
the population level), we found that the logistic model's performance with our data produced
worse NPV yet better FNR. These results are shown in Table 2. However, it seems that the
model’s specificity is not high enough to be efficient at reducing the rate of biopsies.
Raising the probability cutoff to 0.2 lowers NPV by a negligible amount, while lowering the
cutoff to 0.05 has minimal impact on the already low false-negative rate and error rate, while
lowering the number of SLN biopsy cases potentially omitted.

Classification Tree
When evaluating their classification tree when applied to our data (Table 3) compared to
applied to their data, the performance was reduced for 2 of 3 metrics. Comparing our metrics
to theirs, the NPV was slightly lower and the RNP was substantially lower; however, the
error rate was slightly lower for our data.

We also present in Tables 2 and 3 sensitivity and specificity of the logistic and tree models
applied to the Mocellin data and applied to our data. While the sensitivity and specificity of
these models applied to our data was quite good, it was not quite as good as for these models
applied to the Mocellin data.

Random Forest and SVM
Unfortunately, we were unable to validate the remaining two models, the random forest and
SVM. These are sophisticated models, which if carefully constructed have the potential for
superior performance; however by their nature they cannot be summarized by a simple
graph or equation. In the end, despite multiple correspondences with the authors, because of
the complexity of the models in question, complicated by the use of proprietary software
(DTREG), we could not apply these models to our data. This was especially disheartening
because the random forest model was potentially the best of the four by Mocellin et al.
metrics.

Discussion
Breslow thickness is a validated and highly reproducible factor predictive of SLN status.11

Based on these findings, SLN biopsy has generally been recommended in any melanoma
patient with a Breslow thickness ≥ 1.0mm, although some institutions use a threshold of
0.75mm. Using a cutoff of 1.0mm, the SLN positivity rate ranges from approximately 15%
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to 25%. Several groups have attempted to identify patient and primary tumor characteristics
that may correlate with SLN positivity (Table 4). The primary goal of many of these studies
has been to identify adverse factors that may select patients with thin melanomas who may
benefit from the procedure. Balch et al,2 in arguing that SLN biopsy should be the standard
of care, state that the risk of nodal metastases should be sufficient to justify the procedure,
and approximate this rate as ≥10%. It follows logically, that if there are adverse features that
can identify patients with thin melanoma who should have the procedure (risk >10%) then it
would also be ideal to identify a subset of patients with melanoma ≥1mm, lacking those
features and having a risk <10%, who do not need the procedure. A better selection of
patients would not only significantly decrease the costs and morbidity associated with the
surgical therapy of melanoma, but potentially increase the relative impact of SLN biopsy on
outcome.

In 2006, we proposed this idea, based on a multivariate model based on logistic regression
techniques showing the interactions between Breslow thickness, age and mitotic rate on
SLN positivity.9 As an example, our model would predict patients >65 years of age with
melanomas <2mm on the head and neck or upper extremity (and lacking angiolymphatic
invasion) would not fit the criteria put forth by Balch et al. However, as Mocellin et al
correctly point out, our model was based on maximizing predictive accuracy, which may not
be the ideal clinical criteria. Differentiating a patient with a 30% risk from a 50% risk may
be biologically interesting, but is clinically irrelevant as both would be recommended for
SLN biopsy. In contrast, models maximizing the negative predictive value would better
select patients who may avoid the procedure. Using clinicopathologic data from two centers,
one in Italy and one in Australia, they conclude these models can spare a high percentage of
patients from SLN biopsy with a small error rate, and sought validation from other
institutions. Given our interest in this approach, we were highly motivated to do so.

We were able to apply the logistic regression and classification tree models to our data;
however, we found them not as useful as reported. For the logistic model, the cutpoint for
the predicted probability of PLSN was not stated in the Mocellin et.al. paper making exact
comparison difficult. However, using a cutpoint of 0.1, the logistic regression model
reduced the SLN biopsy rate by 2.9% for UM data, far below the 27.5% reported by the
Mocellin group. The prediction metrics were similar for the classification tree applied to
UM data; however, the decrease in the fraction of patients recommended to undergo SLN
was not as large. Although the reduction in the number of SLN procedures would not have
been as large if the classification tree was applied prospectively to our data, there would still
have been a 14% reduction in SLNB, with a simultaneous reduction in FNR and no increase
in error rate. This highlights the strong potential to these predictive models. It is highly
possible that the differences seen may be related to differences in the selection criteria used
to recommend SLN biopsy, which thereby creates the sample data on which their models are
constructed. Mocellin et. al. include patients with thin melanomas having a Clark level of IV
or V. This represents approximately a fifth of their analyzed sample. Their models suggest
the potential for a significant reduction in the fraction of these patients recommended for
SLN biopsy. However, at our institution, SLN biopsy would not have been recommended
for these patients in the first place, without additional worrisome characteristics. Therefore,
the levels of reduction in SLN biopsy reported by Mocellin et. al. may be less significant
using data from institutions that already have a higher recommendation threshold for SLN
biopsy.

In attempting to validate these results, several additional issues related to predictive models
in oncology became apparent. One important lesson in moving forward is to remember that
in order for these models to be clinically relevant, it is necessary for them to be available in
a readily usable form, first for institutions to validate the results, and ultimately for
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clinicians. Despite multiple attempts, only 1 out of the 4 models (classification tree) could
be exactly validated, with a second method, logistic regression, duplicated but with the
probability cutpoint used for classification only estimated, given that it was not provided in
the original published manuscript. The random forest and SVM methods could not be
validated. Given that their models are sophisticated, requiring specialized proprietary
software, the models are not readily generalizable. As the goal of this avenue of research is
to provide models that are applicable to a wide variety of data sources, consideration must
be given to the availability of the software. There are a number of R packages, for example,
that allow for the creation and storage of such models. R is a freely available language and
environment for statistical computing. Like commercial products such as SAS or STATA, R
is a statistical analysis platform that is often used in the academic statistical and biostatistical
communities. ‘R packages’ are add-on features that expand the statistical application of the
R program and can be freely downloaded at http://cran.r-project.org. Alternatively, a website
can be established in which the user would enter the patient characteristics (Breslow depth,
mitotic index, etc) and the website would return the prediction from the models, which is a
trivial exercise for logistic models and classification trees; yet would require additional
efforts for the complexity of the classification routines employed by random forests and
support vector machine techniques.

Finally, another challenge to the creation and application of these predictive models is the
variability in the interpretation of histopathologic features. The histolopathologic
interpretation of melanoma with evaluation of the prognostic parameters is the single most
important factor in the selection criteria for SLN biopsy. Accordingly, differences in data
sets can often be traced to differences in histologic interpretation from institution to
institution. Regression emerged as one factor in selecting patients likely to be node negative,
and has been previously reported. However, regression was present in almost half of the
patients in the Mocellin dataset, as compared with only 13% of our dataset. Among similar
series, regression was only present in a small percentage of patients (between 7% and
18%),5, 6, 12–15 with one outlier (28%).7 The reported presence of regression in a larger
proportion of cases in the Mocellin dataset compared to others is likely a reflection of a
lower histologic threshold and/or looser definition of regression. Early histologic evidence
of regression can be difficult to identify and is often times equivocal. The earliest stage of
regression is lymphocytic inflammation, yet it is difficult, if not impossible, to distinguish
early lymphocytic regression from conventional host response of tumor infiltrating
lymphocytes. At our institution, we refrain from reporting regression unless unequivocal,
well-developed regressive fibrosis is present. This difference in histologic thresholds may, in
part, explain the difference in reported rate of regression between the 2 datasets.

Similarly, there is a striking difference in percent of melanomas with a low (<1/mm2)
mitotic rate between the 2 datasets. Mocellin et al. reported that 37.4% of their melanomas
had a low mitotic rate, whereas only 15.7% of our cases had less than 1 mitosis per mm2.
While this may represent our use of mitotic rate in selecting patients for SLN biopsy, to
some degree it may also represent differences in how mitotic rate is measured. While there
may be some inter-institution variability in the histologic application of counting mitotic
figures per mm2, it is likely that the noted differences largely stem from a difference in
intensity and vigilance in the search for mitoses. Histologically, one mm2 corresponds to
approximately 4 to 6 high power fields. If 4 high power fields of melanoma are just
randomly evaluated, it would not be unusual for not a single mitoses to be identified. At our
institution, the dermatopathologists specifically seek out mitotically active areas from which
to obtain their count. Historically, our data has shown that even a single mitosis identified in
the dermal invasive component of melanoma can stratify patients into a higher risk group for
SLN positivity.6 Thus, our dermatopathologists are sensitized to the prognostic and
therapeutic implications between identifying no mitoses, which corrresponds to the “low”
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category versus finding even a solitary mitotic figure which would then stratify to the
“medium” mitotic index category.

In conclusion, the logistic regression and classification tree models reported by Mocellin et
al. provided high sensitivity but low specificity when applied to our data, and had less
impact on the reduction in the number of SLN performed than reported. While the logistic
regression model has negligible impact on reducing SLN biopsy, the classification tree
model performed better. Differences in both selection criteria and the interpretation of
histopathologic features likely contribute to variation in model performance. The random
forest and SVM models were unable to be clinically validated.
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Table 1

Demographic and Clinical Summary

Variables Mocellin (n = 1132) Michigan data (n = 2313)

Sex

  Female 44.5% 37.4%

  Male 55.5% 62.6%

Age (yr)

  Median 54 54

  Range 14–85 16–95

Breslow (mm)

  Median 1.61 1.7

  Range 0.14–35 0.35–28

  T1 (< 1 mm) 23.8% 10.5%

  T2 (1–2 mm) 38.9% 48.4%

  T3 (2–4 mm) 24.6% 28.2%

  T4 (> 4 mm) 12.7% 12.4%

  Unknown - 0.5%

Clark

  II 5.1% 0.6%

  III 33.1% 7.9%

  IV 54.9% 65.9%

  V 6.9% 2.7%

  Unknown - 23.0%

Ulceration

  Present 29.7% 23.7%

  Absent 70.3% 73.7%

  Unknown - 2.6%

Regression

  Present 47.1% 13.4%

  Absent 52.9% 84.5%

  Unknown - 2.2%

Histological subtype

  SSM 55.0% 50.7%

  NM 34.0% 20.6%

  Others 11.0% 28.8%

Mitotic index

  High (> 5 mm^2) 30.8% 20.5%

  Medium (1–5 mm^2) 31.8% 57.8%

  Low (<1 mm^2) 37.4% 15.7%

  Unknown - 6.0%
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Table 2

Comparison of the performance of the Logistic Regression Model on Mocellin data and Michigan Data.

Mocellin UM (0.1 cutoff) UM (0.2 cutoff)

Negative Predictive Value 93.6% 89.4% 86.1%

SLN Reduction Rate 27.5% 2.9% 26.0%

False Negative Rate 8.6% 1.2% 14.1%

Error Rate 1.8% 0.3% 3.6%

Sensitivity 91.4% 98.8% 85.9%

Specificity 32.3% 3.4% 30%
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Table 3

Performance of the Classification Tree Model using University of Michigan Data

Mocellin UM

Negative Predictive Value 94.1% 87.7%

SLN Reduction Rate 29.8% 14.3%

False Negative Rate 8.6% 6.7%

Error Rate 1.8% 1.8%

Sensitivity 91.4% 93.3%

Specificity 35.2% 16.9%
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Table 4

Studies of clinical and histopathologic factors predictive of SLN involvement.

Author Year N Institution Factors Associated with SLN Positivity on Multivariate
Analysis

Mraz-Gernhard16 1998 215 Univ. of California Breslow thickness, ulceration (present), mitotic rate (≥6),
ulceration (present), angiolymphatic invasion (present),
microsatellites (present)

Nguyen14 2000 112 Medical Univ. of South Carolina Breslow thickness (>1.5mm), ulceration (present), angiolymphatic
invasion (present)

Wagner15 2000 275 Indiana Univ. Breslow thickness (≥1.25), ulceratioin (present), Mitotic rate (>5)

McMasters13 2001 1058 Sunbelt Melanoma Trial Breslow thickness, Clark level, ulceration (present), age (≤60)

Rousseau17 2003 1375 MDACC Breslow thickness, ulceration (present), age (≤50), tumor site
(axial)

Sondak5 2004 419 Univ. of Michigan Breslow thickness, age, mitotic rate (continuous variables)

Wong8 2005 979 MSKCC & Sunbelt Melanoma
Trial

Breslow thickness, age, site, Clark level, ulceration

Kruper6 2006 682 Univ. of Pennsylvania Breslow thickness, mitotic rate (0.1 to 5, >5), TIL (absent)

Mocellin 2006 246 Univ. of Padova, Italy Breslow thickness, mitotic rate, satellitosis

Sassen18 2007 2303 Sydney Melanoma Unit Breslow thickness (>2.0mm), age (<40), histology (desmoplastic),
ulceration (present).

Taylor19 2007 875 MSKCC Breslow thickness, ulceration (present), gender (male), TIL
(absent)

Paek9 2007 1130 Univ. of Michigan Breslow thickness, mitotic rate, age (all continuous), site (trunk,
leg), angiolymphatic invasion (present)

Niakosari20 2008 96 University of Toronto Lymphatic invasion (present), age (<50), ulceration (present)

Mandala7 2009 394 Riuniti Hospital, Italy Breslow thickness, site (axial), TIL (absent)

Mitra21 2010 561 Multiple locations in UK Breslow thickness, mitotic rate (0.1 to 6, >6), site (H&N, leg,
trunk)
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