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Abstract
Secretory diarrheas caused by bacterial and viral enterotoxins remain a significant cause of
morbidity and mortality. Enterocyte Cl− channels represent an attractive class of targets for
diarrhea therapy, as they are the final, rate-limiting step in enterotoxin-induced fluid secretion in
the intestine. Activation of cyclic nucleotide and/or Ca2+ signalling pathways in secretory
diarrheas increases the conductance of Cl− channels at the enterocyte luminal membrane, which
include the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca2+-activated Cl−

channels (CaCCs). High-throughput screens have yielded several chemical classes of small
molecule CFTR and CaCC inhibitors that show efficacy in animal models of diarrheas. Natural-
product diarrhea remedies with Cl− channel inhibition activity have also been identified, with one
product recently receiving FDA approval for HIV-associated diarrhea.
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Introduction
Secretory diarrhea remains a major global health challenge, and represents the second
leading cause of mortality globally in children under age 5 [1]. Repeated episodes of
dehydration from diarrhea are also associated with impaired physical and mental
development [2]. In developing countries major causes of secretory diarrheas include
enterotoxin-producing bacteria such as Vibrio cholerae and enterotoxic E coli, viruses such
as rotavirus, and enteroinvasive bacteria such as Shigella and Salmonella [1]. In developed
countries secretory diarrheas are primarily caused by viruses such as rotavirus, although
with the widespread use of rotavirus vaccines other pathogens such as norovirus have
become increasingly prevalent [3].

Oral rehydration solution (ORS) to replace fluid losses and promote intestinal fluid
absorption has been the primary therapy for secretory diarrhea, reducing mortality four-fold
over the last 30 years [4]. However, there remains an unmet need for alternative and
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adjunctive antidiarrheal therapeutics, as ORS is not always effective, available or
administered properly. Antisecretory drug therapy could have broad indications for
infectious diarrheas in developing and developed countries, and potentially for diarrheas
associated with certain cancer and HIV therapeutics [5]

Antisecretory Targets in the Intestinal Epithelium
The intestinal epithelium consists of villi and crypts, with absorption occurring mainly in
villi and secretion in crypts. Fluid absorption in the small intestine is driven by the luminal
Na+/H+ exchanger (NHE3), Na+-glucose cotransporter (SGLT1), and Cl−/HCO −3
exchanger (DRA) [6,7] (Figure 1). As in all epithelia the electrochemical driving force is
established by a basolateral Na+K+-ATPase pump. The pro-absorptive solute transporters
are constitutively active, though they can be modulated by second-messengers including
cAMP and Ca2+ [8, 9]. NHE3, SGLT1 and DRA are thus potential membrane transporter
targets to increase intestinal fluid absorption. In the colon, fluid absorption is also facilitated
by the epithelial Na+ channel (ENaC) and short-chain fatty acid (scfa) transporters (SMCT1)
[10].

Intestinal fluid secretion is driven by active transepithelial Cl− secretion, which creates the
electrochemical force for paracellular Na+ secretion and the osmotic driving force for
transcellular water secretion (Figure 1). Cl− is transported into the cell at the basolateral
membrane by the Na+/K+/2Cl− cotransporter (NKCC1), which is driven by Na+ and Cl−

concentration gradients produced by the Na+K+-ATPase and basolateral K+ channels. The
electrochemical gradient drives Cl− secretion across the luminal membrane through CFTR
and Ca2+-activated Cl− channels (CaCCs). NKCC1, CFTR, CaCCs and K+ channels
(KCNQ1/KNE3, KCNN4) are thus potential membrane transporter targets to reduce
intestinal fluid secretion. The intestinal epithelium also expresses other chloride channels
including ClC-2 and bestrophins [11, 12].

In addition to membrane transporters, a number of the cellular signalling molecules involved
in mediating anion secretion represent potential pharmacological targets. Bacterial
enterotoxins elevate cyclic nucleotides (cAMP and cGMP) [13, 14] (Figure 2A), and viral
enterotoxins and some drugs elevate cytosolic Ca2+ [15, 16] (Figure 2B). There is thought to
be significant cross-talk between cyclic nucleotide and Ca2+ signalling, with proposed
mechanisms involving cAMP-induced Ca2+ elevation mediated by Epac [17], and
compartmentalized Ca2+-induced cAMP elevation mediated by membrane-associated Ca2+-
sensitive adenylyl cyclase-1 [18] (Figure 2C). Proof-of concept that these signalling
pathways are potential antisecretory targets has been shown by the efficacy of a small
molecule phosphodiesterase (PDE) activator, which reduces cAMP and cGMP, in a closed-
loop model of intestinal fluid secretion [19]. Other potential targets include modulators of
membrane macromolecular complexes such as agonists of lysophosphatidic acid (LPA)
receptors, which inhibit CFTR function, or the more recently identified putative modulator
MAST205 [20, 21]. Agonists of the Ca2+ sensing receptor CaSR have been shown to inhibit
enterotoxin mediated fluid secretion [22] and act through a number of pathways including
the enteric nervous system [23].

Involvement of CFTR and CaCC in Secretory Diarrhea
The involvement of the major apical Cl− channels, CFTR and the intestinal CaCC, in
secretory diarrheas is supported by numerous studies. There is strong evidence that CFTR is
the Cl− pathway in secretory diarrheas caused by the bacterial enterotoxins released in
cholera and Traveler’s diarrhea in both the small intestine and colon [24] (Figure 2A).
Intestinal Cl− and fluid secretion are absent in mice lacking CFTR and in CF patients [25],
and colonic Cl− transport in human tissue is effectively blocked by CFTR inhibitors [24].
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The alternative, CaCC-mediated pathway, may be involved as well in these diarrheas, but
likely represents the primary pathway for apical membrane Cl− secretion in rotavirus (Figure
2B) and possibly in drug-induced secretory diarrheas [26].

Small-Molecule CFTR and CaCC Inhibitors
Three chemical classes of small-molecule CFTR inhibitors have emerged from high-
throughput screening. The thiazolidinone CFTRinh-172 [27] (Figure 3), which has been used
widely in cystic fibrosis research, inhibits CFTR by binding at or near arginine-347 and
stabilizing the channel closed-state [28]. The IC50 for inhibition of CFTR Cl− current by
CFTRinh-172 ranges from ~300 nM to several μM depending on cell type and membrane
potential. CFTRinh-172 has low toxicity and is excreted with minimal metabolism [29].
Studies in mouse models of cholera and STa toxin-induced intestinal fluid secretion have
demonstrated CFTRinh-172 efficacy [24]. Structure–activity studies have identified
thiazolidinones with greater water solubility than CFTRinh-172 [30], including an analogue
containing a 4-tetrazolophenyl in place of the 4-carboxyphenyl in CFTRinh- 172 that has
shown efficacy in mouse models of polycystic kidney disease (PKD) [31].

PPQ/BPO compounds (Figure 3) are a second class of absorbable CFTR inhibitors with
cytoplasmic site-of-action [32]. The IC50 is ~90 nM for PPQ-102 inhibition of CFTR Cl−

conductance. Structure-activity studies yielded BPO-27, which contains structural changes
that greatly increase its metabolic stability, inhibition potency and aqueous solubility [33].
The IC50 for CFTR inhibition by (racemic) BPO-27 is ~8 nM. Chiral separation yielded an
active R-enantiomer of BPO-27 with IC50 ~ 4 nM, with the S-enantiomer being inactive
[32]. PPQ-102 and BPO-27 have shown efficacy in models of PKD, but have not been tested
in diarrhea models.

Glycine hydrazides such as GlyH-101 (Figure 3) are a third class of CFTR inhibitors that
target the CFTR pore on its extracellular surface [34]. Patch-clamp analysis showed a
characteristic signature of an extracellular pore blocking inhibitor, including a linear
current–voltage relationship that becomes inwardly rectifying following GlyH-101, with
rapid single-channel flicker. CFTR inhibition by a membrane-impermeant PEG-hydrazide
conjugate [35], and molecular modelling [36], further supported an extracellular site-of-
action, which provides a unique opportunity to develop non-absorbable compounds for
antisecretory therapy. The GlyH-101 analog iOWH032 (Figure 3), which weakly inhibits
CFTR (IC50 ~ 8 μM), is in clinical trials [37]. However, it is theoretically unlikely that a
low-affinity small-molecule glycine hydrazide will have antisecretory efficacy because of
predicted rapid washout (by convection) of an externally targeted inhibitor (see below), and
the poor inhibition potency of glycine hydrazides at interior-negative membrane potentials.

In an attempt to address the washout/potency liabilities, several non-absorbable
macromolecular conjugates were synthesized containing a malonic acid hydrazide (MalH)
CFTR-inhibiting moiety, including a MalH-lectin conjugate [38] (Figure 3). MalH-lectin
conjugates had IC50 down to 50 nM and remained bound to CFTR for many hours, as
compared to seconds for GlyH-101 or iOWH032. The improved potency of the MalH-lectin
conjugate and its resistance to washout is likely due to trapping in the enterocyte glycocalyx.
Multivalent MalH-PEG conjugates were also synthesized with nanomolar CFTR inhibition
potency [35]. The development potential of these lectin and PEG conjugates is unclear.

Motivated by the potential efficacy of CaCC inhibitors for some secretory diarrheas, a
phenotype-based small molecule screen was done using the human colonic cell line HT-29
[39]. Several classes of CaCC inhibitors were identified, the most potent being the 3-acyl-2-
aminothiophene CaCCinh-A01 (Figure 3). CaCCinh-A01 fully inhibited CaCC-dependent
halide flux in different intestinal cell lines and in response to different agonists, with IC50
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down to 1 μM, and was shown recently to prevent watery diarrhea in a neonatal mouse
model of secretory diarrhea (unpublished observations). Subsequent target-based screening
yielded TMEM16A-selective inhibitors [40], the most potent being T16Ainh-A01 (Figure 3).
Though TMEM16A is not a major enterocyte CaCC, it is the principal CaCC in interstitial
cells of Cajal and required for intestinal motility [41].

Convective Washout Reduces Efficacy of Surface-Targeted Cl− Channel
Inhibitors

As mentioned above, a concern for drugs with an extracellular target in intestinal crypts is
convective drug washout, which reduces drug efficacy (Figure 4A). A convection-diffusion
model was developed recently of drug washout in an anatomically accurate 3-dimensional
model of the human intestine [42]. The model predicted greatly reduced inhibitor efficacy
for rapid crypt fluid secretion as occurs in cholera. Figure 4B shows a single-crypt
computation in which inhibitor efficacy in reducing fluid secretion is plotted as a function of
inhibitor concentration (relative to its binding dissociation constant, Kd). Whereas 50%
inhibition of fluid secretion occurs for inhibitor concentration ~ Kd when secretion rate is
low, orders of magnitude greater inhibitor concentration is needed to prevent fluid secretion
at high secretion rates as in cholera. It was concluded that the antisecretory efficacy of an
oral, membrane-impermeant, surface-targeted inhibitor requires high inhibitor affinity (low
nanomolar Kd) in order to obtain sufficiently high luminal inhibitor concentration (> 100-
fold Kd), and sustained high luminal inhibitor concentration or slow inhibitor dissociation.
Convective washout considerations are relevant to glycine hydrazide- and some natural-
product-based Cl− channel-targeted therapies.

Natural-Product Cl− Channel Inhibitors
Natural products have been identified with antidiarrheal efficacy in humans and a putative
mechanism of action involving Cl− channel inhibition. Crofelemer, a heterogeneous
proanthocyanidin oligomer extracted from the bark latex of South American tree Croton
lechleri, was approved recently for HIV-associated diarrhea following clinical trials showing
efficacy in reducing the number and severity of diarrhea episodes [43]. Investigation of the
antisecretory mechanism of crofelemer revealed weak and partial (maximum ~60 %)
inhibition of CFTR, though complete inhibition of CaCC with IC50 < 10 μM [44]. Whether
CaCC inhibition by crofelemer can explain its efficacy in HIV-associated diarrhea is
unclear. Crofelemer has not been tested in animal models having defined diarrheas.

Following a natural product screen that identified tannic acid as a general CaCC inhibitor,
we found that red wines containing polyphenolic gallotannins fully inhibited intestinal
CaCC without effect on CFTR [45]. In recent follow-up work, we generated an alcohol-free
red wine extract with potent CaCC inhibition activity, and showed its efficacy in a neonatal
mouse model of rotaviral diarrhea (unpublished data). The wine extract inhibited intestinal
Ca2+-activated Cl− current and fluid secretion without affecting rotaviral infection of
intestinal epithelial cells. CaCC inhibition may account for anecdotal reports of antidiarrheal
action of red wines. Motivated by the possibility that known herbal antidiarrheal remedies
might act by Cl− channel inhibition, we recently screened a selection of diarrhea remedies
from sources worldwide and identified a commonly used Thai herbal remedy that fully
inhibited both CFTR and CaCC (unpublished observations). The herbal remedy showed
efficacy in mouse models of cholera and rotaviral diarrhea. Chemical analysis of active
ingredient(s) is in progress. Natural products thus represent a potentially inexpensive and
immediately available therapy for secretory diarrheas with a defined mechanism of action.
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Conclusions
Antisecretory drug therapy has considerable potential in reducing morbidity and mortality
associated with infectious and some drug-induced and other diarrheas. Because severe
secretory diarrhea is largely a concern in developing countries, challenges in drug
development include the need for very low cost and high stability in a hot /humid
environment, as well as obtaining funding to support commercial development of a new
chemical entity with relatively low profit potential. The development or repurposing of
existing natural products, such as wine or herbal extracts, is of particular interest based on
their low cost and immediate availability for clinical testing against a variety of pathogens.
The overall human and economic cost of diarrheal disease globally justifies a multi-factorial
approach that includes pharmacological therapies as well as improvements in access to ORS,
education, vaccination and sanitation.
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Highlights

cAMP (CFTR) and Ca2+-activated (CaCC) Cl− channels are expressed on enterocytes.

Enterocyte Cl− channels are activated in major infectious secretory diarrheas.

Cl− channel-targeted therapeutics for secretory diarrheas are emerging.
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Figure 1.
Intestinal transport mechanisms. Left. Fluid absorption, which occurs primarily in villus
epithelial cells, involves active transcellular Na+ transport of sodium via apical membrane
transporters and channels and the basolateral Na+/K+ ATPase, which drives passive Cl− and
water flux. Right. Fluid secretion, which occurs primarily crypt epithelial cells, involves
active transcellular Cl− transport from the basolateral side via the NKCC transporter and
apical Cl− transport channels, with corresponding passive Na+ and water flux.
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Figure 2.
Intestinal signal pathways controlling fluid secretion. A. Signaling pathways in CFTR
activation by bacterial enterotoxins. Cholera toxin and heat stable enterotoxin (STa) bind to
membrane receptors (GM1– ganglioside receptor, guanylin receptor) causing increases in
cyclic nucleotides (cAMP, cGMP) and neurotransmitters, resulting in CFTR activation. EC
– enterochromaffin cells, 5-HT – 5-hydroxytryptamine, VIP – vasoactive intestinal peptide,
ENS – enteric nervous system. B. Signaling pathways in CaCC activation by rotavirus.
Rotavirus releases NSP4 (non-structural protein 4), which causes elevation of cytoplasmic
Ca2+ either: directly via binding to a membrane receptor (integrin α1β2); via neuropeptide
galanin; or through activation of enteric nerves. Gal1-R – galanin 1 receptor. C. Cross-talk
between Ca2+ and cAMP pathways in intestinal epithelial cells. Epac – exchange protein
directly activated by cAMP, PDE – phosphodiesterase, AC – adenylate cyclase, CaSR –
calcium sensing receptor.
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Figure 3.
Chemical structures of CFTR and CaCC inhibitors. Absorbable CFTR inhibitors include
thiazolidiones and PPQ/BPO inhibitors. Externally acting CFTR inhibitors include
hydrazide derivatives. Small-molecule and macromolecular CaCC inhibitors shown.
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Figure 4.
Convective washout reduces the efficacy of enterocyte surface-targeted Cl− channel
inhibitors. A. Schematic of epithelial cell-lined crypt-villus units. Fluid secretion into the
lumen produces convective (upward) solute transport opposing drug diffusion. B.
Convective inhibitor washout requires a high concentration of a membrane-impermeant
inhibitor in the intestinal lumen for antisecretory efficacy. Computations were done for a
single crypt with human mid-jejunal anatomy. Percentage inhibition of net secreted fluid as
a function of Co/Kd (lumen inhibitor concentration / inhibitor dissociation constant) for
indicated J ov (single-crypt fluid secretion in the absence of inhibitor). J o ~7 × 10−2 v μL/
cm2/s is typical in cholera. Adapted from ref. 43.

Thiagarajah and Verkman Page 13

Curr Opin Pharmacol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


