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Abstract
We hypothesize that during training some learners may focus on acquiring the particular
exemplars and responses associated with the exemplars (termed exemplar learners), whereas other
learners attempt to abstract underlying regularities reflected in the particular exemplars linked to
an appropriate response (termed rule learners). Supporting this distinction, after training (on a
function-learning task), participants either displayed an extrapolation profile reflecting acquisition
of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule
(rule learners; Studies 1a and 1b). Further, working memory capacity (measured by Ospan) was
associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined
the persistence of these learning tendencies on several categorization tasks. Study 1c showed that
rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles)
to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the
trained category. Study 2 showed that the rule learners but not the exemplar learners performed
well on a novel categorization task (transfer) after training on an abstract coherent category. These
patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars
during learning or on extracting some abstraction of the concept, (b) this tendency might be a
relatively stable characteristic of the individual, and (c) transfer patterns are determined by that
tendency.

In the concept learning and problem solving literatures, individual differences, though
implicitly assumed, have not received extensive empirical or theoretical attention. In the
concept-problem literature, a few researchers have attempted to identify qualitative
differences across individuals in what is learned during training. In one seminal study,
Medin, Altom, and Murphy (1984) trained participants to learn to categorize instances from
an ill-defined category. Based on the training performances and classification of new
instances, Medin et al. suggested that some learners had abstracted a prototype during
training, whereas others had learned particular exemplar—category associations to represent
the ill-defined category. In a more complicated category learning paradigm, Erickson (2008)
required subjects to learn to classify stimuli into four categories, with two categories
determined by a single dimension and two categories determined by two dimensions.
Subjects’ responses indicated that individuals differed in what they had learned, with one
group appearing to acquire a single category bound (one overarching representation) to map
the four categories, whereas another group had partitioned the space into two bounds (one
for one pair of categories and one for the other pair of categories).
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In the domain of function concepts—continuous inputs mapped to continuous outputs
through an underlying functional relation, DeLosh, Busemeyer, and McDaniel (1997)
trained participants on a range of input—output pairings sampled from continuous input and
output scales. After training, extrapolation performance was assessed by requiring
participants to predict the output values that would be associated with inputs sampled from
outside the training range. DeLosh et al. (1997) noted that for a quadratic function,
individuals showed dramatically different extrapolation profiles. Some learners predicted
outputs that quite closely followed the function from which the training stimuli were derived
(see Figure 1, top panel depicting the Delosh et al. finding), thereby suggesting that these
learners had abstracted the underlying function rule (in line with this interpretation a formal
rule-learning model showed similar extrapolation performance). By contrast, several
learners predicted outputs that were similar in value to outputs associated with inputs from
the extremes of the training range (Figure 1, bottom panel shows these results). Apparently,
these learners had represented their training experience as a set of exemplars reflecting the
input—output training instances (supporting this claim, an exemplar-based associative
model showed similar extrapolation performance; see Figure 10 in DeLosh et al.).

DeLosh et al. (1997) speculated that the individual differences just outlined might be
accommodated by assuming that during training all participants had focused on learning the
individual training instances (exemplars) but had differed in whether they applied a post-hoc
extrapolation rule during testing. In this article we propose instead that one important
difference across individuals may be in the qualitative characteristics of what they learn
from training experiences. In Studies 1a and 1b we describe a method to assess this
individual difference in learning tendency, and we explore whether several classic individual
difference measures of cognitive ability (Ravens Advanced Progressive Matrices, working
memory capacity) correspond to learners’ tendencies toward rule or exemplar learning. In
Studies 1c and 2 we then report results that suggest that this individual difference is
relatively stable and predicts performance across other concept learning tasks.

Exemplar Learners versus Rule Learners
Our suggestion is that two competing fundamental approaches to concept learning may each
characterize particular sub-sets of learners. Rather than assume that all concept learners
engage an exemplar-based process (e.g., Kruschke, 1992; Medin & Schaffer, 1978;
Nosofsky & Kruschke, 1992) or that all concept learners abstract underlying rules (e.g.,
Bourne, 1974; Koh & Meyer, 1991; Little, Nosofsky, & Denton, 2011; Nosofsky, Palmeri,
& McKinley, 1994) or schemata (Posner & Keele, 1968), we suggest that the prominence of
each process differs across individuals. Specifically, drawing on preliminary findings from
different kinds of concept problems (ill-defined concepts, function concepts), we suggest,
that unless the task strongly favors a particular structural solution (e.g., Ashby, Ell, &
Waldron, 2003), during training some learners focus on acquiring the particular exemplars
and the appropriate response associated with those exemplars (i.e., a classification response,
Medin et al., 1984; a response consisting of a particular value, DeLosh et al., 1997). Other
learners attempt to abstract underlying regularities reflected in the particular exemplars that
are linked to an appropriate response (i.e., a protoptye in Medin et al; a function rule in
DeLosh et al.).

Our approach bears some similarity to recently proposed hybrid models that assume that
both an exemplar-based module and a rule-learning module operate to mediate learning
(Anderson & Betz, 2001; Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Bott & Heit,
2004; Erickson & Kruschke, 1998). In these models, one module or the other may
predominate for learning the appropriate responses to particular stimuli or to particular
concept problems. However, as the models currently stand, the contribution of each
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particular module is determined by the stimuli and the structure of the conceptual tasks that
are encountered (see Erickson, 2008, for further discussion, and Juslin, Olsson, & Olsson,
2003, for related findings). The formulation that we develop in this paper is that individual
differences, exhibited across different stimuli and problems, also play a key role in the
degree to which particular learning processes are evidenced in complex conceptual learning.
It is important to note that we are not claiming that extant hybrid models are necessarily
incompatible with the findings that we report. We are attempting to provide evidence that
individuals (adults; cf. Minda, Desroches, & Church, 2008, for work with children) differ in
the degree to which they rely on exemplar learning versus abstraction, an assumption that is
not embedded in the current hybrid models (cf. Erickson, 2008).

Our approach also shares correspondences with the classic distinction that Katona (1940)
proposed between two kinds of learning: “memorization” of connections established by
repetition of examples, and “apprehension of relations” through encounter with examples.
One of Katona’s significant insights was that both kinds of learning can be evidenced with
the same materials. However, Katona focused on how these two kinds of learning were
forged by presentation of the target materials and the instruction that accompanied the
materials. Our notion is that even under identical presentation of target materials and
instructions, learners will diverge, with some reflecting an orientation toward memorizing
particular examples and others reflecting an orientation toward understanding underlying
relations.

Further, our second key assumption is that the individual’s tendency to either focus on
exemplars during learning versus focusing on extracting some abstraction of the concept or
problem solution might be a relatively stable characteristic of the individual, at least for the
relatively challenging concept tasks examined in the present study. To date, the few findings
noted above that have identified individual differences in exemplar learning versus
abstraction have been restricted to investigations within a single conceptual task. From both
a theoretical and an empirical perspective, little if any work is available in the experimental
literature that addresses whether the individuals who display exemplar-based learning (or
rule learning) in one context will be the same individuals who display reliance on exemplars
(or rule learning) in a different concept problem domain. The present studies are directed at
providing the first evaluation of this novel idea. Following directly from the assumption that
a learner’s tendency toward exemplar versus rule-learning is fairly stable, we anticipate that
identifying the individuals’ tendencies (e.g., in one conceptual domain) will provide the
basis for predicting diverging patterns of transfer across individuals in very different
conceptual learning domains (Studies 1c and 2).

Study 1a
To reveal exemplar versus rule-learning tendencies, we used a function-learning paradigm
developed by DeLosh et al. (1997). Participants were given multiple training blocks; in each
training block continuous cue values were paired with continuous criterion values and the
cue-criterion pairings were repeated across blocks. The values were generated from a bi-
linear function (a “V”). Participants attempted to learn to produce the appropriate criterion
value of each presented cue value (with feedback provided). Critically, following training
participants were given an extrapolation task in which cue values outside the training range
were presented and learners had to predict its associated output (criterion).

In this initial study, we attempted to demonstrate qualitative differences across learners
based on their extrapolation performances, differences that would inform what participants
learned during training trials. We assumed that learners who displayed relatively flat
extrapolation after having met a strict learning criterion (e.g., see bottom panel of Figure 1)
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could be considered to have primarily learned the individual cue-criterion pairings for the 20
training points (termed exemplar learners). This assumption is based on simulations
showing that a basic exemplar model with no additional extrapolation component generates
similar extrapolation profiles (DeLosh et al., 1997; see also Busemeyer, Byun, DeLosh, &
McDaniel, 1997). In contrast, learners who generally extrapolated along the slopes of the bi-
linear function (the “V”) could be considered to have abstracted the relations among the
training points (termed rule learners).

In a previous function-learning study that modeled the extent to which learners relied on
exemplar processes (an exemplar module) versus rule-learning processes (a rule module), all
learners appeared to rely on exemplar processes initially but by the end of training all were
evidencing rule learning (i.e., extrapolation paralleled the trained cyclical function; Bott &
Heit, 2004). In that study, however, learning blocks were interleaved with transfer blocks,
and so the task arguably demanded attention to underlying function topography. In the
present task, all training was completed before extrapolation was tested, thereby allowing
learning based on either exemplars or abstraction of the function rule to promote successful
performance (during training when feedback was provided). In this case, based on
preliminary analyses of individual differences in a similar paradigm (DeLosh et al., 1997),
we expected to find salient differences among learners in their extrapolation patterns.

We then explored whether these implied qualitative differences in the tendency to rely on
learning the trained exemplars (cue-criterion values) versus abstracting the relation among
exemplars (the bi-linear rule) were associated with other established individual differences
measures that might reflect or support this distinction. Of primary interest were individual
differences in two performance-based cognitive assessments: fluid intelligence as measured
by Raven’s Advanced Progressive Matrices (RAPM; Raven, Raven, & Court, 1998) and
working memory capacity (WMC), measured with the operation span (Ospan; Turner &
Engle, 1989). The RAPM requires individuals to complete a visual pattern that reflects a
progression of instances that illustrate a rule or set of relations among the instances. It is
accepted as an excellent measure of abstract reasoning (or fluid intelligence)—the ability to
construct representations that are only loosely tied to the specific perceptual inputs and
afford a high degree of generalization (Carpenter, Just, & Shell, 1990). Accordingly, one
clear hypothesis is that RAPM performance will be correlated with whether participants in
the function-learning task tend to display rule learning (as indicated in extrapolation) or tend
to rely on learning the individual training points.

WMC is typically regarded as reflecting the number of representations that can be
maintained in awareness (e.g., see Fukuda, Vogel, Mayr, & Awh, 2010) and simultaneously
being able to manipulate that information (Baddeley & Hitch, 1974; Conway et al., 2005). It
seems possible that individuals who can readily consider more representations (i.e., learned
training points in the present context) and control attention to consider possible relations
among these representations are more likely to attempt to abstract the function rule. If so,
then we should observe a significant correlation between WMC (as measured by Ospan) and
the tendency for participants to display rule abstraction versus an exemplar focus in function
learning.

Of secondary interest were several other individual difference measures: the Need for
Cognition Scale (Cacioppo & Petty, 1982), the Kolb Learning Style Inventory (Kolb, 2007,
free recall, and paired-associate learning. We explored whether these measures might be
related to the tendency to display an exemplar-learning or rule-learning approach. Because
correlations were not significant, we have reported the description of these measures and the
results in Appendix A.
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Method
Participants—Sixty-two introductory psychology students from Washington University in
St. Louis participated in exchange for course credit. One participant did not complete the
interpolation trials and extrapolation trials of the function learning task due to a technical
error. Thirteen participants did not exhibit accurate learning of the cue-criterion values
during training (mean absolute error between a participant’s predicted criterion and the
actual criterion on the final training block ≥ 10) and were excluded from further analysis.
The final, analyzable sample consisted of 48 participants. In addition, one participant did not
attend Session 2 and thus had missing Ospan and RAPM data. A second participant had
RAPM data excluded due to obvious lack of effort (0% accuracy and just over 2 minutes
spent on the task).

Procedure—Participants were tested in two sessions, separated by approximately one
week. During session 1, participants completed the function learning task, a free recall
measure, and the Kolb Learning Style Inventory. In session 2, participants completed a
concept learning task (reported in Study 1c for ease of exposition), a paired-associate
learning task, an abbreviated version of the RAPM, the need for cognition scale, and the
Ospan.

Session 1—Participants were given instructions on a monitor that asked them to pretend
they were working for NASA, examining printouts of data collected on a newly discovered
Martian organism in order to determine how much of a particular newly discovered element
this organism excreted after absorbing a certain amount of another new element. Training
was done on a bi-linear function (‘V’-shaped) function centered on 100 with an input range
of 80 to 120. For input (cue) values less than 100, output (criterion) values were derived
using the equation y = 229.2−2.197x; for inputs greater than 100, output values followed the
equation y = 2.197x−210 (participant responses could only be whole numbers, so all output
values were rounded to the nearest whole number). There was a total of 200 training trials
presented in 10 blocks of 20, with the order of the input values randomized across blocks.
Within a block, each odd value between 80 and 120 (i.e. 81, 83, 85 etc.) was presented as an
input value.

After participants read the cover story, they were presented with the training trials. On each
training trial, participants were presented with three vertical bars (see Figure 2). Each bar
had tick marks every 5 units ranging from 0 to 200, with value labels every 10 units. The
leftmost bar gave the input value and participants made their output predictions by filling up
the middle bar using the arrow keys (the up and down arrow keys moved the bar 5 units and
the left and right arrow keys moved the bar 1 unit) and submitting their answer by pressing
the space bar. They then received three forms of accuracy feedback. First, the rightmost bar
was filled to the correct output value so they could visually compare their actual answer with
the correct answer. Second, a message displayed the exact number of units of error in
numerical form. Third, participants were given an accuracy score out of 100 that was equal
to (100 − error squared). At the end of each block of 20 trials, participants were shown their
mean error and mean accuracy score for the given block.

Upon completing the 10 training blocks, participants completed a transfer test consisting of
36 novel input values. These transfer trials consisted of 6 even input values within the
training range (interpolation) followed by 30 odd values falling outside the training range
(extrapolation). The extrapolation values ranged from 51 to 79 on the lower end, and from
121 to 149 on the upper end. Interpolation and extrapolation trials were in a random order
and the same for all participants. Participants were not given feedback on their transfer trial
responses.
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After the function-learning task, participants completed a free recall task and the Kolb
Learning Style Inventory (see Appendix A). Participants were then dismissed and scheduled
for Session 2 approximately one week later.

Session 2—Participants first completed a concept-learning task developed by Regehr and
Brooks (1993) and a paired-associates task (see Appendix A). The method and results of the
concept-learning task will be described separately below in Study 1c. Participants then
completed an abbreviated version of RAPM. On each trial, participants saw 8 boxes
arranged in a 3 × 3 grid with the bottom right block missing. Each grid contained patterns
proceeding from left to right and from top to bottom. The participants were to select, from a
total of eight options, the box that completed both the horizontal and vertical patterns. In the
current study, participants completed a short form version of the RAPM (Bors & Stokes,
1998) that includes a 12-item subset of the original RAPM (Set II). This short form has a
correlation of .88 with the full RAPM and demonstrates test-retest reliability of .82,
compared to .83 for the full version (Bors & Stokes, 1998).

Next participants completed the need for cognition scale (see Appendix A). After the need
for cognition, participants completed the Ospan. The Ospan is a commonly used measure of
working memory capacity with demonstrated test-retest reliabilities ranging from .67–.81
(Klein & Fiss, 1999). In this task, participants were presented with sets of 2–5 operation-
word strings such as the following:

They were instructed to read the operation-word string, solve the math problem, and then
read the word that follows the math, and they were instructed to do all of this aloud for the
experimenter to hear. After the participant completed each string, the experimenter advanced
the program by pressing ‘Spacebar’. After 2–5 strings, the set ended, and participants were
asked to write down, in order, all of the words they had seen in the set. Participants
completed 12 sets (3 of each possible string length). Thus, each participant saw 42 total
operation-word strings. After completing the Ospan, participants were debriefed about both
sessions and dismissed from the study

Results and Discussion
Function learning classifications—Mean absolute errors (MAE) of prediction were
computed for the first and last training blocks, the interpolation trials, and the extrapolation
trials for each participant. Participants with MAE ≥ 10 during the final training block were
classified as non-learners (N = 13), as their response patterns deviated noticeably from the
criterion values (see Figure 3, top panel); these participants were excluded from further
analysis. Next, extrapolation performance was used to further classify the remaining
individuals into rule learners and exemplar learners. Flat extrapolation, reflective of a
simple exemplar model (see DeLosh et al., Figure 10, 1997), produces an MAE of 34.72.
Thus, we assumed that participants with extrapolation MAE significantly lower than 34.72
were utilizing rule-based information during extrapolation. For each participant, the
extrapolation MAE and a 95% confidence interval (CI) were computed, and participants
whose entire CI fell below 34.72 were classified as rule learners; the remaining participants
were classified as exemplar learners (with four exceptions as described below). The average
predicted output for each extrapolation trial from these two groups can be seen in Figure 3
(bottom panel). The limited extrapolation shown by the exemplar group deviates little from
the end of the training range, similar to what would be expected from an associative learning
model. On the other hand, rule learners more closely approximated the function in a manner
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consistent with performance by a model that incorporates a rule learning mechanism (e.g.,
DeLosh et al., 1997; Kalish, Lewandowsky, & Kruschke, 2004).

In addition to the above mentioned extrapolation responses, the extrapolation of four
participants appeared to be following a sine-like function rather than the V-shaped function
that generated the stimuli. Based strictly on MAE calculated from the V shaped function,
these participants fell under the exemplar learner classification, but because a sine function
potentially could be abstracted from the training points we presented, we considered
individuals with a sine-shaped extrapolation to be rule learners (see Bott & Heit, 2004). To
confirm that these extrapolations reasonably followed a sine function, extrapolation error
was calculated relative to a sine function (rather than the V-shaped function). All four sine
learners had MAE < 10 and confidence intervals with an upper limit well below the 24.09
(the MAE reflective of flat extrapolation with respect to this sine function) and were thus
considered rule learners (see Figure 3, bottom panel, for average extrapolation predictions
from sine learners). Including sine learners, the sample consisted of 25 rule learners and 23
exemplar learners.

The patterns of extrapolation may not index qualitative differences in learning, but instead
could reflect poorer learning of the trained cue-criterion values for the learners classified as
exemplar learners (i.e., a quantitative difference). Rule learners (M = 3.06) did show
significantly lower MAE than exemplar learners (M = 5.65) on the final training block,
F(1,46) = 20.69, p < .001, η2 = .31. However, an interpretation of the divergent
extrapolation patterns based on quantitative differences in learning is disfavored by the fact
that, though slightly disadvantaged relative to rule learners, exemplar learners generally
displayed relatively high levels of accuracy on the last training block (see Figure 3, top
panel). Further, note that these MAE values on the final training block are relatively small,
compared to initial training blocks (described after the next paragraph).

Moreover, final block training MAE was strongly associated with extrapolation MAE for
rule learners, r(23) = .74, 95% confidence interval (CI) [.48, .88], p < .001, but not exemplar
learners, r(21) =.10, 95% CI [−.32, .50], p = .64, and these correlations significantly
differed, z = 2.72, p < .01. This dissociation reinforces the conclusion that the differences in
learning between participants identified as rule and exemplar learners were qualitative rather
than quantitative. Specifically, for rule learners, final block MAE presumably represents, at
least in part, how closely the learner’s rule-based representation developed during training
matches the bi-linear function governing the training points. The more accurate this rule-
based representation, the more accurate extrapolation performance should be (i.e., the
extension of the rule to points outside the training range), as confirmed by the significant
correlation just reported. In contrast, for exemplar learners, the final block MAE presumably
represents the precision with which learners were able to acquire individual cue-criterion
pairings during training. Because an exemplar representation alone does not support
extrapolation (DeLosh et al., 1997; Busemeyer et al., 1997), the precision of this exemplar
representation would have little bearing on accuracy for extrapolation trials (as evidence by
a nonsignficant correlation).

Finally, the learners identified as exemplar learners did not appear to be simply slower
learners (this issue is further addressed in Study 1b), as rule and exemplar learners exhibited
similar learning rates across training. As expected, on the first block neither training group’s
predicted values closely approximated the criterion values (mean MAE’s of 17.19 and 18.43
for rule learner and exemplar learners, respectively), but by the end of training both groups
were able to generate predicted values that mirrored the actual criterion values. Statistical
analyses of the mean MAEs on the first and last training blocks (2 × 2 mixed analysis of
variance [ANOVA] with learner type as the between-subjects variable and trial block as the
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within-subjects variable), confirmed that there was significant improvement in prediction
accuracy with training, F (1, 46) = 126.98, MSE = 34.14, p < .001, η2 = .73 . Collapsed
across blocks, prediction accuracy was nominally better for rule learners (M = 10.12) than
exemplar learners (M = 12.04; F (1, 46) = 2.55, MSE = 34.55, p = .12). Importantly there
was no hint that learner type interacted with training block (F < 1), suggesting that though
rule learners held a small advantage throughout training (that for some reason emerged
nominally even in the first block), the two groups improved (i.e., learned) equivalently from
the first training block to the end of training. Thus rule learners and exemplar learners are
not distinguished by quantitative differences in learning rate during the training phase1.

Perhaps learners who displayed poor extrapolation (the “exemplar” learners) were learners
who were uncertain or confused when confronted with new trials that were not seen during
training. If so, then exemplar learners might be expected to be as impaired on interpolation
as on extrapolation (both reflect new trials). Rule learners (M = 2.57) did exhibit
significantly less error on interpolation trials than did exemplar learners (M = 5.80), F(1,46)
= 20.95, p <. 001, η2 = .31. However, as seen in Figure 3 (middle panel), interpolation for
both groups nicely paralleled the function form. A 2 × 2 mixed ANOVA that included both
interpolation and extrapolation test trials revealed that the group differences in prediction
accuracy on transfer trials was significantly more substantial on extrapolation (Ms = 13.47
and 41.44, respectively, for rule and exemplar learners) than on interpolation, F(1, 46) =
115.81, MSE = 31.67, p < .001, η2 = .20, for the interaction.

In sum, what is striking is that the profiles of the responses for trained and interpolation
trials were quite similar for the rule and exemplar learners but diverged substantially on
extrapolation trials. Moreover, this pattern across groups is consistent with formal modeling
confirming that both exemplar and rule-models perform equally well on interpolation but
not on extrapolation (DeLosh et al, 1997).

Correlations—We computed the correlations among the individual differences measures
for all participants included in the above analyses. In computing the point-biserial
correlations involving learner type, abstractors were assigned a value of 1 and exemplar
learners a value of 2. It is important to first note that the correlation we obtained between the
Ospan and Ravens Advanced Progressive Matrices assessments (r(44) = .29, 95% CI [.00, .
54], p < .05) was nearly identical to the summary value of this correlation (found in previous
studies) mentioned in a recent review (“around .30”; Wiley, Jarosz, Cusher, & Colflesh,
2011). Thus, these measures are reflecting expected associations.

A prominent finding was that Ospan (a measure of working memory capacity) was
significantly correlated with learning tendency, r(45) = −.39, 95% CI [−.61, −.12], p < .01,
such that learners with larger working memory capacity were most likely to display function
learning performances (extrapolation) reflective of rule learning (learning the functional
relation). In line with received interpretations of working memory (Conway et al., 2005;
Engle, 2002), it may be that greater working memory capacity would allow the learner to
maintain several cue-criterion trials in mind and concurrently compare critical information
across these trials to abstract the function rule (e.g., to notice how the criterion values
change with changes in the cue value). Another theoretical process that contributes to a rule-
based approach to function learning is partitioning of the function into linear segments

1Qualitative differences in learning profiles might be expected, however, such that rule learners could evidence more discontinuity in
learning curves (reflective of hypothesis testing; Bower & Trabasso, 1964). Preliminary evidence for discontinuity in backward
learning curves for rule learners and relatively continuous learning curves for exemplar learners has been reported by Little,
McDaniel, and Cahill (2012) using a categorization task (which allows a more clear-cut determination of “correct” responses during
learning than do continuous output responses as in function learning).
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(Kalish et al., 2004; Lewandowsky, Kalish, & Ngang, 2002; McDaniel, Dimperio, Griego,
& Busemeyer, 2009); such a process might be helpful for learning the current bi-linear
function. Importantly, Erickson (2008) has suggested that monitoring training stimuli for
particular partitions and switching from one partition to another to guide predictions requires
executive control (which overlaps considerably with WMC; McCabe, Roediger, McDaniel,
Balota, & Hambrick, 2010, and was also assessed with a working memory measure in
Erickson, 2008). The idea here is that learners with higher working memory capacity would
more easily be able to support the comparison or partitioning processes, or both, necessary
for rule abstraction than those with lower working memory capacity and thus would be more
inclined to attempt rule abstraction. Learners with lower working memory capacity could
find it easier to focus on learning the individual cue-criterion pairs.

There was no significant association between performance on the RAPM and the differences
in learning tendency revealed on the function-learning task (r (45) = −.16, 95% CI [−.43, .
13]). One uninteresting interpretation of this finding is that the categorical nature of the
learning tendency measure reduces the opportunity to reveal associations with other
individual difference measures. This interpretation is disfavored in light of the significant
correlation between learning tendency (in the function learning task) and Ospan. Another
interpretation is that there is a modest association between the tendency to display rule-like
extrapolation on the function learning task (implying abstraction during learning) and
general fluid intelligence (as assessed by the RAPM), but that the sample size was not large
enough to detect the observed association as statistically significant. Study 1b, reported next,
was conducted in part to evaluate this interpretation.

Study 1b
The central conclusion from Study 1a is that some individuals (who we label rule leaners)
were attempting to derive the relation among the training stimuli, whereas others (who we
label exemplar learners) focused primarily on learning the individual stimuli. What remains
unclear is the persistence of these differential foci across extended training. The idea being
advanced in this article is that exemplar learners’ focus on learning the individual stimuli is
a fundamental orientation that should persist across extensive training on the function-
learning task. A different idea is that some individuals may first focus on learning well the
individual training stimuli, and then having gained complete knowledge of these stimuli,
proceed to extract underlying regularities across the range of training stimuli. According to
this idea, many more (maybe all) learners eventually develop an understanding of the
abstract relation among the stimuli (i.e., the function rule), with some learners focusing on
learning the relation from early on and other learners focusing on learning the relation only
after having learned well the training stimuli. This idea dovetails with a previous function-
learning study that found that all learners focused on exemplar learning during initial
training, but all then eventually demonstrated rule-like learning by the end of training (Bott
& Heit, 2004). More generally, the category literature has documented that rule and
exemplar strategies can shift as training progresses so that one strategy becomes modal with
extensive training (e.g., Craig & Lewandowsky, 2012; Johansen & Palmeri, 2002; Smith &
Minda, 1998).

In the present study, we implemented two training conditions to shed light on these
competing ideas. In the moderate training condition, after participants first met the learning
criterion on a particular training block (MAE < 10), they were given an additional six blocks
of training. Previous unpublished studies in our lab had demonstrated that the mean number
of training blocks needed to reach this criterion was approximately four, so this condition
was designed to provide training that was similar in magnitude (10 blocks) to that in Study
1a. In the extended training condition, after first meeting criterion, participants received an
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additional 12 blocks of training. If the individual differences in focusing on exemplars
versus extracting the underlying function rule remains stable even after extended training on
the target stimuli, then the proportion of exemplar and rule learners (as evidenced on the
extrapolation task) displayed in the extended training condition should parallel that found in
the moderate training condition. Alternatively, if participants indentified as exemplar
learners after moderate training (e.g., in Study 1a) are learners who would proceed to discern
the underlying function rule with additional training, then the proportion of exemplar
learners evidenced in the extended training condition should significantly decline relative to
the proportion observed in the moderate training condition.

Another major objective of Study 1b was to further explore the finding of an association
between WMC (as assessed by Ospan) and learning tendency. It may be that this association
is eliminated when training is sufficient to allow substantial learning of the training stimuli
(in the long training condition), thereby perhaps reducing working memory capacity needed
to support rule abstraction. However, if we find that the orientation toward rule learning
versus exemplar learning is stable across the different degrees of training implemented in
this study, then we would expect to replicate the association between Ospan and learning
tendency observed in Study 1a. We also continued to investigate whether RAPM might be
associated with the learning tendencies identified in Study 1a. Finally, in addition to
analyzing Study 1b results alone, we were able to combine the data from Studies 1a and 1b
to achieve a more customary sample size of over 100 participants with which to conduct the
correlational analyses with Ospan and RAPM.

Method
Participants—Seventy-six introductory psychology students from Washington University
in St. Louis participated in exchange for course credit or pay ($5 per half hour of
participation), with 40 randomly assigned to the moderate training condition and 36
randomly assigned to the extended training condition. Eleven participants (seven from the
moderate condition and 4 from the extended condition) were excluded from analysis, five
had previous exposure to the function learning task, four had shown obvious signs of
disinterest/distraction (e.g., looking at phone during study), and two failed to follow
instructions (they wrote down values during the function learning task). In addition, five
participants (three from the moderate condition and two from the extended condition) did
not meet the learning criterion (MAE < 10) after the first 10 training blocks, and their data
were excluded from analysis. The final, analyzable sample consisted of 60 students (30 in
each training condition). From this sample, three participants (one from the moderate
training condition and two from the extended training condition) did not complete the Ospan
due to technical problems.

Procedure—Participants were tested in a single session. For the function-learning task, the
cover story, function, and training points were identical to that used in Study 1a. The
procedure deviated from Study 1a in the following ways. First, and most critically,
participants’ mean absolute error between their predicted criterion and the actual criterion on
the twenty trials in each training block was monitored and used to determine the length of
training. After the first training block on which a participant’s MAE was less than 10, 6
additional training blocks were administered for participants assigned to the moderate
training condition and 12 additional training blocks were administered for the participants
assigned to the extended training condition. If a participant did not meet the learning
criterion (MAE < 10) after 10 training blocks, the participant was moved to the additional
training blocks but was considered a non-learner regardless of their performance on these
training blocks.
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Second, participants received 5-minute breaks during which they were allowed to leave the
testing room (but were instructed to not use phones or internet). All participants received a
break after reaching criterion. The extended condition received a second break after
completing the first six blocks of additional training. Third, participants completed a short
distractor task (five minutes of Tetris) between the final block of training and the transfer
phase. Finally, the transfer phase consisted of 60, rather than 36 trials. This phase contained
30 extrapolation trials (the same points as in Study 1a), 20 interpolation trials, and 10 repeat
training trials.

After the function-learning task, participants completed the same short-form version of
RAPM that was used in Study 1a. Finally, to facilitate participant testing we used the
automated version of the Ospan (Unsworth, Heitz, Schrock, & Engle, 2005). This version of
the Ospan is designed to run without oversight by the experimenter. In this version, the
experimenter is not in the room during the Ospan, participants read the strings silently, and
participants advance themselves through the task by clicking a mouse. During practice, the
program computed each participant’s baseline equation-solving time, and participants were
allotted a timeframe of their individual baseline + 2.5 SD to solve each equation during the
test trials. If a participant failed to advance past an equation within this timeframe, the
program counted the trial as an error and automatically advanced to the next trial. Further, in
this version participants attempted to remember letters rather than numbers, and the to-be-
remembered numbers appeared onscreen only after the equation had been solved. During
response collection, participants were presented with a 3 × 4 array of boxes, each labeled
with a letter. Participants attempted to click on the boxes in the order that the letters were
presented in a given set. The letter sets ranged from 3–7, and participants were presented
with three sets of each size. In all, this task included 75 equation-letter strings and had a
maximum score of 75. Though this version differs from that used in Study 1a in several
ways, Unsworth et al. (2005) demonstrated that the automated Ospan is correlated with both
the standard Ospan (r =.45) and RAPM (r =.38) and that it loads highly (.68) onto a working
memory factor also containing the original Ospan and reading span. Unsworth et al. also
demonstrated test-retest reliability of .83 with this version.

Results and Discussion
Experimental group characteristics—Before turning to the effect of the training
manipulation on function learning performance, it is important to establish that there were
no pre-existing group differences that could have contributed to any differences in function
learning performance (or lack thereof) between the moderate and extended training
conditions. Table 1 shows the means and standard deviations for the moderate and extended
groups on Ospan, RAPM, Block 1 MAE, Block 8 MAE, and the block at which the learning
criterion (MAE < 10) was reached (Criterion block). Overall, there was no evidence that the
two conditions had any pre-manipulation differences. The two conditions did not differ on
Ospan (F(1,58) = 2.27, p >.10) or RAPM (F < 1). Also, the two groups did not significantly
differ on any measures of function learning performance that occurred before the two groups
diverged procedurally (F’s < 1 for Block 1 MAE, Block 8 MAE [the latest block that was
experienced by all participants], and the block on which the learning criterion was met).

Function Learning Performance—Rule learners (including sine learners), exemplar
learners, and non-learners were classified in the same manner as in Study 1a. The sample
contained 5 non-learners (3 from the moderate training condition; 2 from the extended
training condition) who were excluded from subsequent analyses and 60 total learners (30 in
each condition). In the moderate training condition there were 18 rule learners (4 sine) and
12 exemplar learners, and in the extended training condition there were 17 rule learners (3
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sine) and 13 exemplar learners. Thus, extended training did not increase the proportion of
learners who oriented toward abstracting the function rule (χ2 (1, N = 60) = .07, p =.793).

Parallel to Study 1a, we conducted analyses on the MAE for the training and transfer trials
across rule and exemplar learners. Training condition was also included as a factor in the
analyses to examine whether training condition had any general effects or interactions with
learning tendency that were not reflected in the classification proportions. Figure 4 provides
the MAEs for training and transfer performances for rule and exemplar learners in each
training condition.

A 2 (learner type) × 2 (training condition) between-subjects ANOVA was conducted with
final training block MAE as the dependent variable. Consistent with Study 1a, a main effect
of learner type emerged, with rule learners (1.98) exhibiting lower MAE than exemplar
learners (4.31), F (1,56) = 17.23, p < .001, η2 = .23. Though less accurate than rule learners
on the final training block, exemplar learners still displayed relatively high accuracy (see
Figure 4, top panels). The main effect of training condition (F (1,56) = 1.17, p = .29) and the
interaction (F (1,56) = 1.75, p = .19) were not significant, indicating that the additional six
blocks of training in the extended training condition did not substantially increase final
training-block accuracy. Also, as in Study 1a, final block MAE was highly correlated with
extrapolation MAE for rule leaners (r (33) = .67, 95% CI [.44, .82], p <. 001) but not for
exemplar learners (r (23) = −.06, 95% CI [−.44, .35], p = .78), and the difference between
these correlations was significant (z = 3.16, p < .01). As discussed in Study 1a, these
diverging correlations suggest qualitative differences in what was learned across rule and
exemplar learners.

Also paralleling Study 1a, we examined the rate of learning. All participants (across the
moderate and extended training conditions) received at least eight blocks of training, so the
rate of learning was analyzed by comparing error rates for Block 1 and Block 8. A 2 (block:
Block 1 vs. Block 8) × 2 (learner type) × 2 (training condition) ANOVA revealed a main
effect of block, F (1,56) = 343.23, p < .001, η2 = .85, with error lowering from 17.98 at
Block 1 to 4.69 at Block 8. Rule learners MAE (10.13) displayed significantly lower MAE
than exemplar learners MAE (13.03) in general, F (1,56) = 15.70, p < .001, η2 = .22 (for the
main effect), but the block x learner type interaction was not significant, F (1,56) = 2.30, p
= .135, suggesting that rule and exemplar learners had similar rates of learning across the
first eight training blocks. None of the effects involving training condition was significant
(all F’s < 1).

As in Study 1a, the interpolation trials were also analyzed. A 2 (learner type) × 2 (training
condition) ANOVA showed a main effect of learner type, with lower error rates among rule
learners (2.24) than among exemplar learners (5.18), F(1,56) = 36.92, p < .001, η2 = .39.
The main effect of training condition and the interaction did not approach significance. As in
Study 1a, although the rule learners demonstrated an advantage in interpolation, exemplar
learners’ interpolation responses followed the function relatively closely (see Figure 4, third
panels from the top). Tested training trials showed a pattern similar to interpolation. A 2
(learner type) × 2 (training condition) ANOVA revealed a lower error rate on tested training
trials among rule learners (M = 1.64) than among exemplar learners (M = 5.36), F(1,56) =
39.36, p < .001, η2 = .40, for the main effect, mimicking performance on the last block of
training. Training condition had no main or interactive effects on tested training-trial
performance. A 2 (learner type) × 2 (training condition) × 3 (test trial type: training points,
interpolation, extrapolation) ANOVA revealed a significant learner type x trial type
interaction, F(2,112) = 229.70, MSE = 18.23, p < .001, η2 = .29, driven by a pattern in
which advantages for rule learners on tested training and interpolation trials were quite

McDaniel et al. Page 12

J Exp Psychol Gen. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



minimal relative to divergent MAE’s found in extrapolation (8.83 vs. 41.51 for rule and
exemplar learners, respectively).

Overall, the patterns of function learning data from Study 1b replicated those from Study 1a.
Rule and exemplar learners were characterized by strikingly different extrapolation profiles
even though they displayed relatively similar training and interpolation performances. And
again, final training block performance was predictive of extrapolation for rule but not
exemplar learners, consistent with the conclusion that the two groups of learners had
adopted qualitatively different approaches to the learning task. For present purposes, a
critical finding was that the moderate training condition and the extended training condition
showed equivalent outcomes in terms of differentiation between rule and exemplar learners
and performances displayed by these two learner classifications (as highlighted by Figure 4).
This pattern counters the possible interpretation that those classified as exemplar learners in
Study 1a were slower learners that would have figured out the rule with more training. On
this interpretation, additional training should have led to a higher proportion of rule learners.
Yet, the additional 120 training trials enjoyed by the extended training group in the present
study did not produce even a slight increase in the proportion of rule learners (relative to the
moderate training condition). This pattern suggests that the divergence between rule and
exemplar orientations to the function learning task remains stable even with extensive
training.

Correlations—Because the training manipulation produced no effects, we collapsed across
the moderate and extended conditions to conduct correlational analyses among function
learning tendency Ospan, and RAPM. Again, point-biserial correlations were conducted
with rule learner = 1 and exemplar learner = 2. Learner type tended to be correlated with
Ospan, (r (55) = −.22, 95% CI [−.46, .04], p = .098), and was significantly correlated with
RAPM, (r (58) = −.34, 95% CI [−.55, −.09], p < .01), such that higher working memory and
RAPM scores were associated with a tendency toward rule learning. The correlation
between Ospan and RAPM did not reach significance in the Study 1b sample, r (55) = .23,
95% CI [−.04, .46], p = .087.

To obtain a larger sample for providing a more reliable analysis of the correlations, we
combined the samples from Studies 1a and 1b thereby providing over 100 participants for
these analyses. Because the Ospan used in Study 1a differed somewhat from the version
used in Study 1b, we first z-transformed each Ospan/automated and Ospan score within each
study and then conducted correlations using those z-scores. In the larger sample, both
RAPM (r (104) = −.25, 95% CI [−.42, −.07], p < .01) and z-Ospan (r(102) = −.30, 95% CI
[−.46, −.11], p < .01) were correlated with learner type. RAPM and z-Ospan were also
correlated with each other, (r (101) = .25, 95% CI [.06, .43], p < .01). We will fully address
these results in the General Discussion

Study 1c
The novel individual-difference tendencies reported in the function-learning task in Studies
1a and 1b may generally emerge across a range of complex conceptual tasks. To provide an
initial test of this hypothesis and provide further currency for the assumption that the
individual difference reflects an orientation toward abstracting rules versus learning
exemplars, we attempted to show that these tendencies in Study 1a would be associated with
the nature of transfer on a non-quantitative categorization task. Regehr and Brooks (1993)
argued that in natural category learning, stimuli can provide both a systematic structure that
favors rule-based categorization processes and idiosyncratic features that favor learning of
individual stimuli as the basis for categorization and generalization (transfer). In their work,
they examined how the variations in the stimuli controlled the extent to which rule-based
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versus exemplar-based processes would contribute to category learning. In the present study,
we adopted the Regehr and Brooks paradigm to test whether the individual differences
identified in Study 1a persist to influence rule versus exemplar-based processes in this
category learning task. Specifically, we examined whether transfer on critical instances
diverged for the rule versus exemplar learners indentified in Study 1a.

Briefly, the stimuli were animals that differed on five binary-valued dimensions. Animals
were divided into two categories (builders and diggers) based on a three-feature additive
rule. That is, at least two of three features for the category had to be present for the animal to
be classified in that category. The other critical aspect of the stimuli was that the perceptual
forms of each dimension varied considerably, so that the animals had idiosyncratic
appearances that individuated each animal (see Figure 5 for sample stimuli). Thus, the
stimulus set potentially supported either rule-based or exemplar-based processes as the basis
for categorization. Critically, transfer items can be presented that have high perceptual
similarity to old items in the training set, but do not contain a majority of the categorical
features of the old items (following Regehr & Brooks, 1993, we label these the “Bad
Transfer” items). Thus, a reliance on exemplars will lead to the (incorrect) decision that the
Bad Transfer item is in the category of the old item it resembles, whereas a reliance on rules
will oppose that incorrect decision.

Using these stimuli, Regehr and Brooks (1993, Experiment 1C) found that after completing
several blocks of learning trials, subjects in general were highly likely to make an error on
the bad transfer items (77 % of the time). The implication is that in general subjects had
relied on memorized exemplars to support their category learning and transfer responses
(see Regehr & Brooks, 1993, for amplification). Regehr and Brooks concluded more
specifically that with these stimuli, the exemplar-based processes took precedence over
tentative rule-like information.

According to our framework, however, we might find predictable individual differences.
The exemplar learners identified in the function learning task from Study 1a should be more
likely to display extensive reliance on exemplars for learning and transfer in this
categorization task (as revealed by high error rates on the bad transfer items) than would the
rule learners. We expected that the rule learners (identified as such in the function learning
task) would be less influenced by exemplar based processes (as revealed by more modest
error rates on the bad transfer items), though we did not expect them to perfectly categorize
the bad transfer items. The additive rule is difficult to learn (rule learners might thus acquire
a simple rule plus some knowledge about exceptions; Nosofsky et al., 1994), and moreover,
effects of similarity for these stimuli persist somewhat even when learners are told the rule
prior to training (33% error on bad transfer items in Regehr & Brooks’ 1993 Experiment
1D).

Method
Twenty-four rule learners and twenty-three exemplar learners from Study 1a completed the
Regehr and Brooks’ (1993) concept learning task during session 2. In this task, participants
saw drawings of fictitious animals that varied on five binary dimensions: body shape
(angular or round), leg length (short or long), number of legs (two or six), neck (short or
long), and spots (spots or no spots). Each animal was either a digger or a builder, and group
membership was determined by an additive rule in which an animal must possess at least
two of three critical features to be a builder. Four different category structures were created
by varying the critical features, and we attempted to counterbalance these category
structures across participants2. The following is a listing of the features associated with the
builder category for the four structures:
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Rule 1: Long legs, angular body, and spots present

Rule 2: Short legs, long neck, and spots present

Rule 3: Six legs, angular body, and spots present

Rule 4: Two legs, long neck and spots present

The training stimuli (from Regehr & Brooks, 1993) maximized perceptual distinctiveness
(exemplar salience) by giving each training animal an idiosyncratic form of the five primary
features (as shown in Figure 5). For example, although multiple animals had long necks, this
feature manifested itself differently in each animal, and such was the case for all features.

During training, stimuli were presented on a computer monitor, and participants tried to
classify each one as either a builder or digger by pressing designated keys. Participants were
not explicitly presented with the rule. Once they made a response, feedback appeared
onscreen in the form of the word ‘correct’ or ‘incorrect’. There were eight training stimuli
(four for each category), and participants completed 5 blocks of training, for a total of 40
training trials.

After training, participants completed a test phase consisting of three types of items: Repeat
Training Items, Good Transfer Items, and Bad Transfer Items. The transfer items were
created simply by changing the spots designation of the eight training items. For training
items with spots, a transfer item was created by removing the spots; for training items with
no spots, a transfer item was created by adding spots. This resulted in eight transfer items,
each identical to one of the training items with the exception of the change in spot
designation. The two sets of items were counterbalanced across participants such that a
given set was the training set for some participants and the transfer set for others. For four of
the transfer items (two each from the builder and the digger categories), the change in spots
was not enough to shift categories based on the given rule. Thus, the transfer item was in the
same category as its training “twin”. These items are referred to as “Good Transfer” items
(following Regehr & Brooks’, 1993, terminology). Conversely, for four of the transfer items
(two each from the builder and digger categories), the change in spots led to a shift in
category, creating a situation in which the transfer item was in a different category from its
training “twin” even though perceptually they were nearly identical. These are referred to as
“Bad Transfer” items.

The test phase consisted of the eight repeat training items, the four Good Transfer items, and
the four Bad Transfer items. These 16 test stimuli were presented in a random order with the
constraint that “twins” had to be separated from each other by at least two items.
Participants classified the stimuli as during training, but received no feedback during the test
portion.

Results and Discussion
We first compared performance accuracy on the last training block for rule and exemplar
learners (identified from their previous extrapolation performance on the function learning
task in Study 1a). The two groups performed comparably, with neither group displaying

2Because learner type was not manipulated, rule and exemplar learners were not distributed equally across the four rules. Eight rule
learners and six exemplar learners received Rule 1; seven rule learners and five exemplar learners received Rule 2; six rule learners
and four exemplar learners received Rule 3; three rule learners and eight exemplar learners received Rule 4. To assure that this
unequal distribution did not account for differences between rule and exemplar learners, 2 (learner type) × 4 (rule) ANOVA’s were
conducted for the three primary measures (repeat training accuracy, good transfer accuracy, and bad transfer accuracy). These
ANOVA’s confirmed that there was no main effect of rule and no learner type x rule interaction for any of the measures (F’s <1).
Accordingly, effects of learner type are not attributable to the particular categorization rule assigned, and all analyses reported in the
Results section are collapsed across rule assignment.
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perfect learning (Mean correct performance = 75% and 73% for rule and exemplar learners,
respectively; F < 1). Because the anticipated divergence across groups in transfer
performance on the Bad Transfer items should be most robust for participants who have
learned the categories (with high levels of exemplar learning producing endorsement of the
Bad Transfer items in the same category as its twin and rule learning opposing that
classification), we stratified the participants based on their classification accuracy for the
trained items in the test phase. (We did so because participants were likely continuing to
learn on the final training trial, as evidenced by nominally better performance on the trained
items in the test phase—81% and 74% for rule and exemplar learners, respectively—than on
those identical items on the final training trial.)

Table 2 shows the classification performances on the Good and Bad Transfer items for
learners who performed near chance on the trained items (62.5%), for learners who
approached perfect learning (75–87.5%), and for learners who correctly classified all
training items (these cut-points were used as they corresponded to percentage values derived
from the eight-item pool). As can be seen, those participants classified as rule learners (on
the function task) had a fairly consistent level of performance on the Bad Transfer items,
averaging 40% accuracy, with relatively little change from the less accurate performers (as
indexed by the training items) (M = .50) to the perfect performers (M = .45); a similar
dynamic emerged for performance on the Good Transfer items, with modest improvement
from the less-accurate to the perfect performers (on the training items). A 3 (near chance,
almost perfect, perfect accuracy on trained items) × 2 (Bad, Good Transfer items) mixed
ANOVA for the rule learners confirmed that classification accuracy on bad and good
transfer items did not significantly vary as a function of accuracy on old items (Fs < 1 for
the main effect and interaction). Performance was better on good than bad items, F(1, 21) =
5.47, MSE = .14, p < .05, η2 = .20.

In contrast, in the group of participants classified as exemplar learners, higher levels of
performance on the training items was associated with decreasing accuracy on the Bad
Transfer items and increasing accuracy on the Good Transfer items. This pattern produced a
significant interaction between the level of accuracy on old items (near chance, almost
perfect, perfect) and the classification accuracy for Bad versus Good items, F (2, 20) = 5.58,
MSE = .09, p < .05, η2 = .17 (from a 3 × 2 mixed ANOVA)3. In general, Good items were
classified much more accurately than Bad items, F(1, 20) = 33.88, MSE = .09, p < .001, η2

= .52. Regehr and Brooks (1993) concluded that this kind of pattern—a rise in errors for Bad
Transfer items with a corresponding drop in errors for Good Transfer items—implicated a
nonanalytic (non-rule) similarity (to memorized training items) approach to classification.
Particularly compelling in the present data is that the exemplar learners who classified the
training items perfectly (in the test phase) always placed the bad transfer items in the
incorrect category with its twin. This demonstrates exclusive reliance on exemplar similarity
for classification of new instances, more extreme reliance than has been reported in the
literature when individual differences are not considered (Regehr & Brooks, 1993). Such
reliance on similarity was not evident in the performance of rule learners (as reported
above). However, an omnibus 2 (rule, exemplar learner) × 3 (accuracy on trained items) × 2
(transfer-item type) mixed ANOVA indicated that the 3-way interaction was not statistically
significant (F (2, 41) = 1.98, p = .15).

3 Because interpretation of the transfer profiles of poor learners may be ambiguous, these learners were excluded from a 2 (almost
perfect, perfect) × 2 (Good, Bad Transfer) mixed-model ANOVA. Results were consistent with the 3 × 2 ANOVA‘s. Among rule
learners, only a main effect of trial type emerged, F(1,17) = 5.50, p < .05. Among exemplar learners, the main effect of trial type was
significant, F(1,13) = 41.78, p < .001, and the interaction just missed reaching significance, F(1,13) = 4.64, p = .051
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These patterns nevertheless suggest that the participants classified as exemplar learners (at
least some of them) were learning the particular examples and the associated category
response. As these learners more accurately learned the training examples, their
classification decisions on the Bad Transfer item became completely linked to the category
of the twinned training example. For exemplar learners, the association between trained-item
accuracy (in the test phase) and Bad-Transfer item classification was significant; r(21) = −.
46, 95% CI [−.73, −.06], p < .05. Note that it was not the case that improved performance on
the trained examples (old items) necessarily led to similarity-based (exemplar-oriented)
classification of the Bad Transfer items. For the rule learners there was no association
between trained-item accuracy (in the test phase) and Bad Transfer classification (r(22) = −.
14, 95% CI [−.51, .28], p > .50), and the rule learners with perfect training item accuracy
incorrectly placed the bad training example in the category of its trained twin just over half
the time (55%). Thus, it appears that this set of learners was able to oppose salient exemplar
similarity with some (perhaps incomplete) abstraction of a classification rule to guide their
categorization decisions. Still, these learners (at least some) probably did not learn the
underlying additive rule (or possibly just did not apply it well during transfer), as
performance of learners who are provided with the rule prior to training display better
classification of the bad transfer items than found here (33% incorrect responses reported in
Regehr & Brooks, 1993).

In sum, these results are consistent with the idea that the participants identified as exemplar
learners on the function learning task also adopted an exemplar approach to the present
categorization task, whereas the learners identified as rule learners generally attempted,
albeit somewhat unsuccessfully, to discover the rule underlying the category structure of the
stimuli. We believe that the persistence of these rule learners’ tendencies to attempt to
abstract the underlying rule is underscored by the finding that these learners apparently did
not abandon a rule approach (in the face of the difficult additive rule) in favor of exclusive
reliance on exemplar learning (as indicated by the absence of an association between
training item accuracy and inaccurate classification of bad training items, as found for the
exemplar learners). Clearly, however, the evidence for rule use in the categorization task for
these learners was not as direct as it could have been. Accordingly, in Study 2 we turned to a
different categorization task in which transfer performance more directly implicates
abstraction (or its absence) of a classification rule.

Study 2
In this study, we had two major objectives. The first was to replicate the key finding that
when given the function learning task, a new set of individual participants would display a
tendency to either abstract the functional relation among the cue and criterion values (rule
learners) or learn only these values (exemplar learners) Second, we further tested our
hypothesis that the rule-learning (abstraction) and exemplar-learning tendencies that
participants display in the function learning task will persist across an unrelated, new
conceptual task.

Wisniewski (1995) introduced the notion of abstract coherent categories, categories that
make sense in light of previous knowledge, and whose members can be determined using
only the relationships among features. Building on previous work (e.g., Rehder & Ross,
2001), Erickson et al. (2005) developed a laboratory instantiation of an abstract coherent
category in which participants were trained on one coherent category and one incoherent
category. For the coherent category, the presented features could be used to create a
functional machine; for the incoherent category the presented features could not realize a
functional machine. Participants were trained to classify certain feature combinations (which
were coherent) as one category and other feature combinations (which were incoherent) as
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another category. Accordingly, during training, successful performance could be achieved
either through abstracting the underlying coherence relationship, or by simply memorizing
feature co-occurrences. Those participants who demonstrated learning in the training task
(high levels of performance during training), were then transferred to a categorization task
with novel items (we label this key task, the novel categorization task). These items all had
completely new features, but some features were coherent and some were not. Learners were
required to indicate which of the two trained categories the novel items should be placed. As
a whole, trained groups did not reach 70% accuracy in any of the three experiments.

One interpretation of the above finding is that there was variation in the kind of
representations people formed during training: some participants failed to learn the
coherence relation, whereas others had learned the coherence relationship. Paralleling the
absence of explanation in the problem solving literature for why some individuals
spontaneously transfer and others do not, Erickson et al. (2005) made no mention of why
some people would glean the underlying structure to the category, while others would not.
In the current experiment we apply our framework to gain leverage on characterizing those
learners who successfully glean the underlying structure and those who do not in this task.
To reiterate, we suggest that this variation in performance reflects fairly stable tendencies of
learners toward either a focus on exemplars or a focus on abstracting underlying relations. If
our hypothesis is correct, then identifying such tendencies in the function learning context
will significantly predict those learners who will perform well on the novel categorization
(transfer) task (rule learning tendency) and those who will not (exemplar learning tendency).

Method
Participants—A total of 72 undergraduates at Washington University in St. Louis
participated in at least part of the experiment and received course credit in exchange for
either one or two hours of participation (depending on whether they attended one or both
sessions). Participants were only included in analyses if they were native English speakers
(because of the verbal stimuli), attended both sessions, and demonstrated learning during
training on both the abstract coherent categories (ACC) task (final training block accuracy ≥
75%, following Erickson et al., 2005) and function learning task (final training block mean
absolute error < 10). A total of 35 participants were excluded from analyses (10 did not
return for session two, 3 were non-native English speakers, 15 were non-learners during
ACC training, and 7 were non-learners during function learning training), leaving 37
participants available for analysis.

Procedure—Participants were tested during two sessions, approximately one week apart.
During the first session, participants completed the abstract coherent category task and
RAPM; during the second session, they completed the Ospan and then the function learning
task. These versions of the Ospan and function learning task were identical to those from
Study 1a4.

Day 1 session—In the first one-hour experimental session, participants began by
completing the abstract coherent categorization task. The procedure for this was the same as
that for participants in the classification condition of Erickson et al. (2005, Experiment 3).
The categorization materials were presented to participants on 3 × 5 index cards. Each card
represented a machine and had four attributes listed on it. These four attributes describing
the machine (where it operated, the action in which it engaged, what instrument it used, and
its means of locomotion) appeared in the same order on each card. Each morkel was
comprised of two sets of coherent features--pairs of features that made sense together—that,
when combined, formed a set of four features that were also coherent. Krenshaws were
composed of two sets of consistent features that were inconsistent across pairs. In other
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words, for krenshaws, features 1 and 3 made sense together, as did 2 and 4, but the
combination of all the features yielded an implausible machine (See Appendix B for
example stimuli).

During training, participants were told that they would be learning about two kinds of
imaginary machines called morkels and krenshaws, and that they would see a series of cards
representing a particular machine that they would attempt to classify. They were told that
two instances of the same kind of machine could differ from each other, and that machines
of different types could share common features. Participants were told that at first they
would be guessing because they had had no prior experience with the machines, but as they
progressed they could use feedback given to them after each trial to improve their
performance. For feedback, the experimenter simply indicated whether the classification
response was correct or incorrect on every training trial. There was a total of six training
blocks, each with a random sequence of eight possible machines (four morkels and four
krenshaws) presented once per block, yielding a total of 48 training trials.

After these training trials, participants were told that they would now be tested on what they
had learned by seeing cards containing two features of a machine they had previously seen
and asked to classify the machine on the card as either a morkel or a krenshaw. This two-
feature test was the same as that used in Erickson et al. (2005), with each possible pair of
features presented together (except the features that would have appeared together in
position 1 and 3 or in position 2 and 4 because these could be accurately classified as either
kind of machine). Participants were told that they would not be receiving feedback on these
trials, but that they would rate their confidence in each classification on a scale from 1 to 7
(where one is least confident, just guessing and 7 is certain). There was a total of 16 feature
pairs presented to the participant in random order.

The final test was the novel classification test. There was a total of 12 novel test items, 6
each of morkels and krenshaws presented to each participant in random order. The novel
stimuli fit the template established by the training items, with each one being composed of
two pairs of coherent attributes. All four attributes of the morkels were coherent, whereas for
krenshaws the location of operation was coherent with instrument used, but not coherent
with the location and locomotion. Participants were told they would be seeing some more
morkels and krenshaws, but that the four features that these machines would have were ones
that they had not previously seen. They were told that they could use the information they
had learned thus far in the experiment about the two kinds of machines to help them classify
the novel ones. As in the two-feature test, participants were given no feedback and instead,
after each item, rated their confidence on a scale of 1 to 7. Next, participants completed the
full, 36-item version of RAPM (Raven, Raven, & Court, 1998).

Day 2 session—Participants returned to the lab about 1 week after the first session to
complete the function learning task and the Ospan. Both versions were identical to those
used in Study 1a.

Results and Discussion
Function learning classifications—The classification scheme was identical to the one
used in Study 1a and resulted in 19 participants classified as rule learners (including 4 sine
learners) and 18 as exemplar learners. The analyses of the training and interpolation
performances (MAE) replicated the patterns reported in Studies 1a and 1b. On the final
block of training rule learners (M = 2.67) had significantly less error than exemplar learners
(M = 4.69), F(1,35) = 11.24, p < .01, η2 = .24. However, both rule and exemplar learners
showed similarly high accuracy at the end of training, particularly compared to the
drastically different extrapolation profiles exhibited by the two groups (see Figure 6). Also,
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the rate of learning for rule learners and exemplar learners was similar, as confirmed by a
training block (Block 1 vs. Block 10) x learner type ANOVA revealing a nonsignificant
interaction (F < 1). Rule learners (M = 2.42) also showed significantly lower MAE’s than
did exemplar learners (M = 4.66) on interpolation trials, F(1,35) = 16.84, p < .001, η2 = .32.
Again, however, these differences were extremely small relative to the dramatic differences
in extrapolation MAE between rule learners (M = 11.77) and exemplar learners (M = 43.26),
as confirmed by a learner type (rule vs. exemplar) x trial type (interpolation vs.
extrapolation) interaction, F (1,35) = 133.50, p < .001, η2 = .25. Thus, the divergent patterns
of extrapolation for the participants classified as exemplar learners versus those classified as
rule-learners cannot be accounted for by differences in learning accuracy of the trained cue-
criterion values nor in the ability to transfer to interpolation regions (for which both
associative models and rule models transfer well; Busemeyer et al., 1997).

The result from Studies 1a and 1b that did not emerge here was that the correlation between
final training block MAE and extrapolation MAE was not significant for rule learners (r(17)
= .11, 95% CI [−.36, .54], p = .65; for exemplar learners, r(16) = .13, 95% CI [−.36, .56], p
= .61).

Correlations—As with Studies 1a and 1b, point-biserial correlations were computed with
rule learner = 1 and exemplar learner = 2. Learner type was not significantly correlated with
RAPM, r (35) = −.28, 95% CI [−.55, .05], p <. 10, or with Ospan, r (35) = −.13, 95% CI [−.
44, .20]. The correlation between RAPM and Ospan was also not significant, r (35) = .21,
95% CI [−.12, .50]. The small sample size likely provided insufficient power to detect these
correlations in the present study. To achieve relatively substantial sample sizes for obtaining
stable correlational patterns, we conducted a final set of correlations that combined the
function learning, Ospan, and RAPM data from Study 2 with those from Studies 1a and 1b.

Correlational Analyses Collapsing across Studies 1a, 1b, and 2—When Studies
1a, 1b, and 2 were collapsed, the correlation between final training block MAE and
extrapolation MAE was highly reliable among rule learners (r(77) = .62, 95% CI [.47, .74],
p < .001) and nonexistent among exemplar learners (r(64) = .04, 95% CI [−.20, .28], p = .
73). This difference in correlations across the two learner types was also significant (z =
4.04, p < .001).

Correlations among RAPM4, Ospan, and the function learning task were also computed for
the combined sample from Studies 1a, 1b, and 2. Both RAPM (r (141) = −.23, 95% CI [−.
38, −.07], p < .01) and Ospan (r (139) = −.25, 95% CI [−.40, −.09], p < .001) were
correlated with learner type. As is typical, RAPM and Ospan were also positively and
significantly correlated with each other (r (138) = .23, 95% CI [.07, .38], p < .01. Multiple
regression analyses revealed that, when entered together as predictors, both RAPM (β = −.
18, p < .05) and Ospan (β = −.23, p < .01) uniquely predicted learner type, and together they
accounted for 10.4% of the variance in learner type.

In addition, in light of recent reports that working memory capacity is associated with speed
of category learning (Craig & Lewandowsky, 2012; Lewandowsky, 2011), we computed
correlations between Ospan and the efficiency of learning (and RAPM the efficiency of
learning). Learning efficiency was gauged by the block number at which individuals
permanently reached the criterion value for classifying individuals as learners (MAE < 10).
Extending previous work on category learning, Ospan (but not RAPM, r (141) = −.15, 95%

4Study 2 used the 36-item RAPM and Studies 1a and 1b used the 12-item RAPM. Due to the extremely high correlation (r=.88)
reported by Bors & Stokes (1998) between the two versions, we combined the RAPM data across studies in the combined correlation
analysis, using proportion correct as our measure in order to place the two RAPM versions on the same scale.
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CI [−.31, .02]) was significantly associated with the speed of learning the training points in
the function learning task (r (139) = −.26, 95% CI [−.41, −.10], p = .002).

Because working memory capacity might be especially important for rule learning (e.g., to
support relational processing among the stimuli, Ashby & O’Brien, 2005, or for partitioning
training stimuli into subsets of linear segments, Erickson, 2008; Sewell & Lewandowsky,
2012) but not necessarily for learning of the individual training points (exemplar learning),
we computed correlations separately for the rule and exemplar learners. For learners who
appeared to rely on function abstraction (rule learners), Ospan (but not RAPM, r (76) = −.
11, 95% CI [−.33, .11]) was significantly associated with the speed of learning the training
points (r (75) = −.34, 95% CI [−.53, −.13], p =.002). The implication is that for the rule
learners, those with higher working memory capacity were able to more effectively support
the processing needed to determine the functional relation among the training points, thereby
supporting faster learning. By contrast, for the exemplar learners there was no significant
association between Ospan (nor RAPM, r (63) = −.01, 95% CI [−.25, .23]) and speed of
learning in the function task (r (62) = −.06, 95% CI [−.30, .19], p > .60). Further, the Ospan-
criterion block correlation was marginally significantly different between rule and exemplar
learners (z = −1.71, p < .09). As shown in the scatterplot (Figure 7), the absence of a
significant correlation for exemplar learners was not an artifact of restricted range for either
Ospan or the learning criterion measure; exemplar learners scoring at the high end of Ospan
were just as likely to reach criterion after many training blocks (e.g., Block 9) as they were
to quickly reach the criterion.

Abstract Coherent Categories—Rule and exemplar learners (as indexed by the
function learning task) showed similar learning trajectories during the training phase of the
categorization task, as shown in Figure 8. A 2 (learner type) × 6 (Training Block) mixed-
model ANOVA on categorization accuracy confirmed this impression. There was no effect
of learner type and no interaction (F’s < 1). A significant block effect emerged, F(1,35) =
41.85, p < .001, η2 = .54, indicating that both groups showed significant learning across
training blocks, with both groups performing at 97% accuracy on the last block of learning.
These results allow two possible interpretations. One is that the differences in function
learning were idiosyncratic to the function-learning task, with both groups now engaging
similar learning processes on the abstract coherent categories task. The other interpretation
is that, akin to the function learning task, learning in the abstract coherent categories task
was supported by an exemplar orientation for some learners (the exemplar learners
identified in function learning) and a rule orientation by other learners (the rule learners). If
this interpretation has merit, then the two groups should diverge in their transfer
performances.

The two types of function learners did show different patterns of performance during the
transfer phase. On the two-feature test, the rule learners were nominally more accurate (M’s
= .78 vs. .71, F(1, 35) = 1.23, p > .27) and trended toward higher confidence-adjusted scores
as well (M’s = 3.13 vs. 2.09, F(1, 35) = 2.29, MSE = 4.32, p < .14). Most telling, as
predicted, the difference between the two groups was most pronounced on the novel test.
Rule learners were significantly more accurate in their categorization responses (M = .71)
compared to the exemplar learners (M = .57), F(1, 35) = 4.64, MSE = .04, p < .05, η2 = .12,
and rule learners also averaged a higher confidence-adjusted score (M = 2.21) as opposed to
exemplar learners (M = .75), F(1, 35) = 5.07, MSE = 3.89, p < .05, η2 = .13).

The results provide continuing support for our hypothesis that the nature of extrapolation on
the function learning task indexes a somewhat stable learning tendency. There was a
significant association between extrapolation performance on the function learning task and
performance on the novel categorization task, indicating that people who extracted a rule-
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like underlying representation of the function were likely to abstract the underlying
coherence in the categorization task. Further, we have provided a purchase on differentiating
sub-sets of learners who will be likely to transfer (rule learners) from those who will not be
likely to transfer (exemplar learners) on a higher-order concept task that requires acquisition
of underlying abstractions. This is not a trivial advance in light of the current literature,
which remains virtually silent in terms of differentiating and characterizing learners who are
likely to demonstrate transfer and those who are not likely to do so.

General Discussion
The present findings offer initial support for the main tenets of the framework we have
sketched to characterize and anticipate individual differences in higher order concept
learning. First, the framework refines the longstanding debate in the concept literature
concerning whether human conceptual behavior is best characterized by an exemplar model
(Choi, McDaniel, & Busemeyer, 1993; Kruschke, 1992; Nosofsky, 1984, 1986) or an
abstractionist model (Bourne, 1974; Koh & Meyer, 1991; Nosofsky et al., 1994). We
proposed that each approach may reflect the tendencies of different sets of learners. On a
number of fronts, the results were consistent with our proposal. For the function learning
task, Studies 1a, 1b, and 2 all showed that individuals differed in their extrapolation
performances. Some individuals’ extrapolation reflected output values that were generally
within the range of outputs learned in training (see Figures 3, 4, and 6), a topography that is
captured well by an exemplar model (see DeLosh et al., 1997). Other individuals’
extrapolation was characterized by output values extending beyond the learned outputs that
generally followed the slope of the underlying function (Figures 3, 4, and 6), a topography
that implicates a rule (Koh & Meyer, 1991) or abstractionist-based approach (some sort of
relational abstraction, McDaniel & Busemeyer, 2005). Moreover, the classification of these
two groups based on MAE scores does not appear to reflect a partitioning of a uni-modal
distribution of extrapolation performances (assessed by MAE). Inspection of Figure 9,
which shows the distribution of MAE scores for learners in Studies 1a, 1b, and 2 combined,
reveals a substantially bi-modal distribution.

Further supporting the interpretation that one set of learners was attempting to abstract the
function rule and the other set was focusing on acquiring the individual input-output pairs
(exemplars), were the distinctive patterns of correlations across each set of learners. First
consider that the accuracy of output (criterion) responses on the final training block was
correlated with the accuracy of responses on extrapolation trials for the learners
characterized as rule learners but not those characterized as exemplar learners. As discussed
earlier (see Study 1a), for learners focusing on a rule representation, the degree to which the
abstracted rule accurately reflected the given functional relation would drive the accuracy of
responding to both the final training stimuli and the extrapolation stimuli. In contrast, for
learners focusing on an exemplar representation, the precision with which the learners’
acquired the individual cue-criterion pairings in training would have little impact on their
extrapolation accuracy. Thus, the significantly higher correlation for the group identified as
rule learners (in both Studies 1a and 1b, and when participants were combined from all
studies), coupled with the nonsignificant correlation for the group identified as exemplar
learners, converges with the idea that one group focused on abstracting the function rule,
whereas the other group focused on learning the individual exemplars.

A second suggestive pattern of correlations was that Opsan was significantly associated with
the speed of learning during training for the participants characterized as rule learners (when
participants from Studies 1a, 1b, and 2 were combined to achieve high sample sizes). This
finding lends currency to the interpretation that this set of participants was attempting to
learn the function rule during training. Learning the function rule presumably requires
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maintaining and comparing stimuli across trials (“comparative hypothesizing”, Klayman,
1988) and possibly partitioning the stimuli into subsets for the different slopes and switching
back and forth across these partitioned segments during training (Lewandowsky et al., 2002;
Sewall & Lewandowsky, 2012), and these processes require working memory capacity (both
from a theoretical perspective, Craig & Lewandowsky, 2012; and based on empirical
findings, Sewall & Lewandowsky, 2012). Consequently, for participants attempting to
abstract the function rule, higher working memory capacity (as indexed by Ospan scores),
would facilitate learning. By contrast, working memory capacity would not necessarily
speed learning of the individual training points (cf. Ashby & Maddox, 2005), and Ospan was
not significantly associated with the speed of learning for the set of participants that
appeared (based on extrapolation) to focus on learning the individual training points
(exemplars) during training. This pattern must be considered only suggestive, however, as
the difference in the correlations for rule-learning versus exemplar participants were only
marginally significant.

Additional convergence for the idea that some participants attempted to abstract the function
rule and others focused on learning the individual stimuli was the finding that higher RAPM
scores were associated with the likelihood that a participant would show rule-like
extrapolation (significantly so in Study 1b, in the combined Study 1a and 1b sample, and in
the entire combined sample). RAPM assesses an individual’s ability to derive rules that
characterize an assembly of stimuli (see Wiley et al., 2011), and it is sensible that the
participants with more general ability to abstract rules would be likely to recruit these rule-
abstraction skills for a novel learning task. Participants with less general ability to derive
rules would instead likely focus on learning the individual training instances (exemplars) to
achieve proficiency during training.

Though RAPM did correlate with the individual differences in extrapolation patterns in
function learning, the amount of variance accounted for by RAPM was modest (r2 = .053 for
the combined Studies 1a, 1b, and 2 samples). Thus, the tendency to focus on exemplar
versus rule-like representations does not completely overlap with a general ability (or
strategies; Hayes, Petrov, & Sederberg, 2011) for abstracting relations. The RAPM task
instructs individuals to find the relation among patterns; by contrast, during the training
portion of the function learning task, participants are not explicitly instructed to extract a
rule. Further, a successful approach to learning during the training phase does not require
relational processing among the stimuli; learning of the individual training points supports
high levels of performance. Accordingly, differential ability in relational abstraction per se
would not necessarily be a sole determinant in an individual’s spontaneous orientation
toward exemplar versus rule-like representations in function learning. Indeed, another factor
that appeared to play a role in the tendency to rely on rule versus exemplar processing was
working memory capacity. We next consider this important result.

Working Memory and Individual Differences in Rule versus Exemplar Learning
As just noted, working memory capacity (as measured by Ospan following Wiley et al.,
2011) was a significant and unique predictor of the tendency to rely on rule versus exemplar
processes in the function learning task, such that higher working memory capacity was
related to reliance on rule learning. For a number of reasons, greater working memory
capacity could facilitate abstracting the function rule during learning, including the ability to
maintain and compare several stimuli concurrently (Craig & Lewandowsky, 2012), to
partition the training stimuli into two linear segments and switch back and forth between
them during learning (Erickson, 2008; Sewell & Lewandowsky, 2012), and to reject or
ignore initial biases (e.g., a positive linear) in order to discern the given function (cf., Wiley
et al., 2011). Thus, learners enjoying greater working memory capacity might be more
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inclined to engage processes that would support rule learning (relating several training trials,
partitioning training trials, ignoring initial biases) than would learners with more limited
working memory capacity.

Despite the compelling theoretical reasons for why working memory would be linked to
learners’ orientation toward rule versus exemplar representations in conceptual tasks (see
Craig & Lewandowsky, 2012, for more extended discussion), the present findings are
among the first to document a link between working memory and strategy choice in
conceptual tasks. Accordingly, existing related findings warrant close consideration. Craig
and Lewandowsky (2012) examined the relation between working memory capacity and
learners’ strategies in a correlated cues task (accurate categorization depended on the
correlation of values of two of the four stimulus dimensions). Based on learners’ response
profiles in transfer trials, two prominent strategies were identified. One strategy reflected a
bi-conditional rule (if the values on both dimensions matched, classify the stimulus in one
category and if not, classify the stimulus in the other category; see Bourne, 1974), and the
other reflected a conditional rule (the value on one dimension determined a particular second
dimension on which classification was based). Working memory capacity was not related to
which category-learning strategy was adopted. However, both strategies were rule-based,
with both rules involving a focus on several dimensions. Accordingly, there would not be a
strong expectation that working capacity would particularly favor one of these rule strategies
over the other. As discussed above, working memory capacity might be more important in
supporting rule strategies in general versus exemplar strategies. (It is also worth noting that
the conditional rule was prominent with one particular counterbalanced set of materials but
not the other. Thus, affordances of the stimuli impacted the conceptual strategy, thereby
perhaps minimizing contributions of working memory.)

Directly related to this possibility, Craig and Lewandowky (2012) examined the emergence
of a rule versus an exemplar strategy in a low-structured categorization task, a task in which
a logical rule cannot capture the category space (Medin & Schaffer, 1978). Working
memory was not significantly related to whether learners displayed use of a rule or exemplar
strategy. However, the poorly differentiated categories in this task favor an exemplar
approach (see Smith & Minda, 1998, for supporting theoretical and empirical work). In line
with this observation, the rule strategy did not lead to levels of accuracy obtained with the
exemplar strategy (the rule strategy requires that learners also identify an exception(s)
stimulus, and doing so retards learning). Because the category structure favored one strategy
(exemplar) over another in terms of performance, this may have biased against the influence
of working memory on the learners’ approach (i.e., the working memory influence toward a
rule strategy would be opposed by the influence of the category structure toward an
exemplar strategy; Smith & Minda). Favoring this interpretation is that variations in the
structure of a conceptual task, (see for instance, findings in multiple cue prediction tasks,
Juslin et al., 2003; also Smith & Minda) can have strong influences on the degree to which
learners adopt a rule or exemplar-based approach. Thus, one integrative interpretation of the
present results and the existing literature is that working memory capacity may be associated
with the learner’s approach primarily for concept tasks for which rule and exemplar
approaches are equally favored by the structure of the conceptual-learning task.

One limitation of the present study is that a single measure (Ospan) was used to index
working memory capacity. Such an approach is not as robust as using a latent variable
approach (which would use several individual “working memory” tasks) to assess working
memory capacity, because relying on one measure introduces task-specific variance that
may not be associated with working memory per se. We suggest, however, that the patterns
reported herein are likely not restricted to specific Ospan related variance. One prominent
reason is that we replicated in the function learning domain the relation between working

McDaniel et al. Page 24

J Exp Psychol Gen. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



memory and category learning efficiency reported in studies using a latent variable approach
to measure working memory. Specifically, across several types of categorization tasks,
Craig and Lewandowsky (2012) and Lewandowsky (2011) reported significant correlations
between speed of learning and working memory capacity. In the present study, we found a
similar general association between speed of learning in the function task and working
memory capacity as indexed by Ospan alone. These parallel findings add to the emergent
evidence that working memory capacity influences learning on a range of conceptual
learning tasks.

In this regard, a theoretical issue that remains is to delineate the role(s) that working
memory plays in conceptual learning. Lewandowsky (2011) used an exemplar based model
(ALCOVE) to capture the relation between working memory capacity and individuals’
learning performance across a range of categorization problems, and found that working
memory variation was linked predominantly to the learning rate parameter. The process
model proposed was that increased working memory capacity supports additional rehearsal,
thereby promoting associative learning (learning of exemplar—category label associations).
The current finding that working memory capacity (as measured by Ospan) was a significant
predictor of the tendency to rely on rule versus exemplar processes in the function learning
task, might suggest a modified interpretation of Lewandowsky’s (2011) result. Perhaps, the
link between working memory and categorization process obtained in Lewandowsky
reflected qualitative, in addition to (or instead of) quantitative, differences in individuals’
learning processes. The idea is that individuals with higher working memory capacity may
have been more likely to attempt to learn a categorization rule (than to focus on exemplars),
which could have facilitated learning in the classic categorization tasks examined by
Lewandowsky. Note that if the underlying processes for some learners were in fact rule-
based, the ALCOVE (exemplar) model appears robust enough that it still could have
accommodated the categorization performances (which it did; see Choi et al., 1993).

Recently, Sewell and Lewandowsky (2012) provided a more penetrating analysis of the
categorization processes linked to working memory. They suggested that in complex
categorization tasks, working memory serves to selectively consider particular candidate
representations (or strategy) for subsets of stimuli (e.g, a rule for one subset and an
exemplar-based representation for another subset; Erickson & Kruschke, 1998) and to
control attentional shifts so that these candidate representations are appropriately engaged
across the entire set of stimuli. This posited role of working memory in deliberate control of
representation selection and representation shifting could bear on learning the bilinear
function used herein. The idea, as briefly mentioned earlier, is that higher working capacity
could facilitate partitioning the stimuli into more easily learned negative linear and positive
linear segments, and shifting appropriately between these representations on a trial by trial
basis.

This theoretical approach might thus suggest that the association observed in the current
study between working memory capacity and individual differences in rule versus exemplar
tendencies might more specifically reflect learners’ ability to engage and control multiple
representations to achieve learning in complex conceptual tasks. In this regard, it is worth
recalling that participants characterized as exemplar learners displayed a reasonable range of
Ospan scores (Figure 7), and for these learners higher capacity was not related to faster
learning. Thus, having the capacity to engage and control multiple representations appears
not sufficient to spontaneously stimulate partitioning processes (that would support or
suggest rule-like representations). Along these lines, Erickson (2008) found that working
memory capacity was not related to whether individuals partitioned the category space
(according to quadrants in a two-dimensional space) in attempting to learn a complex
categorization task (though, learning accuracy for individuals who did partition the category
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space was positively associated with working memory span). Note that in Sewell and
Lewandowsky’s (2012) Experiment 2, participants were instructed to switch back and forth
across blocks between two representational strategies (rule-like), so the association between
working memory and tendencies to spontaneously display rule versus exemplar
representations could not be determined. Still, an intriguing direction for future research
(using a latent factor approach to assessing working memory capacity) will be to determine
whether working memory’s role in representational flexibility might itself characterize the
individual differences delineated in the present study, might contribute to a learner’s
preference to adopt a rule (which could require multiple representations) or an exemplar
approach (which would require only an exemplar representation), or is possibly not aligned
with learners’ preferences for adopting rule versus exemplar approaches in tasks like those
examined here.

Additional Considerations of Individual Differences in Extrapolation
Individual differences in extrapolation in function learning could reflect quantitative
differences in learning (DeLosh et al., 1997; McDaniel & Busemeyer, 2005). Several
findings disfavor this interpretation for the present results. First, for both groups
(“exemplar” and “rule” extrapolators) and across studies, by the end of training the deviation
(error) between the participants’ responses on the trained values and the actual criterion
values was relatively low, with average MAE generally no worse than about 6 (relative to 16
or greater on the first block). These values suggest that both the “exemplar” extrapolators
and the “rule-based” extrapolators had accurately learned the criterion values that were
associated with the cue values presented for training (see Figures 3, 4, and 6). The exemplar
learners did demonstrate slightly (but significantly) higher MAE than the rule learners by the
end of training. However, the transfer performances for extrapolation were dramatically
different across the two groups. If this difference were simply a consequence of different
amounts of learning, then a difference of similar magnitude might have been expected on
transfer in interpolation (e.g., DeLosh et al., 1997), which we did not obtain. This suggests
that different representations rather than different amounts of learning by the end of training
were mediating the striking differences (across groups) in extrapolation.

Second, formal modeling of transfer in function learning tasks similar to the one used here
suggests that the range of extrapolation behaviors observed cannot be adequately captured
by fitting the parameters (including learning rate parameters) of a rule-like model to
individual learners or the parameters of an exemplar-like model to individual learners (see
McDaniel et al., 2009, Experiment 1). With regard to formal models, an interesting
implication of the present study is that current hybrid models that embrace rule and
exemplar learning (e.g., within an ACT-R formalism; Anderson & Betz, 2001; ATRIUM,
Erickson & Kruschke, 1998; COVIS, Ashby et al., 1998) might more accurately describe
human concept learning by incorporating individual difference parameters to reflect
individual tendencies to rely on either the rule system (module) or the exemplar system
(module) (see Erickson, 2008, for a similar suggestion).

Stable Tendencies for Learning Exemplars versus Abstracting Rules
With regard to the stability of the learning tendencies illuminated herein, one concern that
might be raised is that the appearance of exemplar versus rule tendencies in the function-
learning task reflected an intermediate state in training and not a final state. This possibility
is suggested by work showing that in some categorization tasks, learners’ tendencies toward
a rule or exemplar strategy can switch midway through training (Craig & Lewandowky,
2012). In a function-learning task, Bott and Heit (2004) reported that though learners may
have oriented toward exemplar representations during initial training at the conclusion of
training all learners evidenced rule learning (note that in this paradigm transfer probes were
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inserted in the training task). The results in Study 1b strongly suggest that for the present
training regimen, the learners’ observed tendencies toward exemplar or rule representations
were quite stable. The extended training group, with at least 14 and up to 22 blocks of
training, showed nearly identical patterns to the “moderate” training group (receiving
training comparable to that in Studies 1a and 2). Quantitative indices of performance
indicated that the block at which criterion was reached did not differ across groups, and
accuracy levels on the last block of moderate training were not significantly improved with
extended training. Most telling, the distributions of rule and exemplar learners did not
change with extended training (about 60% rule learners).

The more novel assumption of our framework is that the individual differences discussed
above reflect tendencies that may persist across a range of higher-order conceptual tasks. A
spate of past work has identified individual differences in forming exemplar representations
versus summary (abstract) representations on a single laboratory concept learning (Medin et
al., 1984), a single function learning problem (DeLosh et al., 1997), or a single multiple cue
prediction task (Juslin et al., 2003). The present work substantially advances these earlier
findings by demonstrating that these individual differences may represent fairly stable
learning tendencies. Learners who appeared to rely on exemplar-based representations in
function learning tended to also do so in entirely different non-numerical categorization
tasks. For the categorization task in Study 1c, learners showing exemplar-like extrapolation
in function learning tended to base categorization decisions in transfer on similarity of the
new examples to the trained examples. Especially telling was the classification behavior of
those learners who responded perfectly on the trained items during final testing. For new
“bad” transfer examples with close similarity to trained examples, classification
performance was in direct opposition (i.e., 100% errors) to the categorization decision
specified by an underlying rule. By contrast, learners showing rule-like extrapolation were
better at resisting incorrect similarity-based classification decisions to the new (“bad”)
examples.

In Study 2, again the exemplar and rule-learning tendencies evidenced in function learning
persisted to yet another very different categorization task (different from both the function
learning task, as well as from the categorization task in Study 1c). Those learners that
displayed rule-like extrapolation in the function learning task appeared to extract an abstract
rule (functional coherence or incoherence of the features of the machines), as evidenced by
average transfer performance that was substantially above chance, whereas those learners
that displayed exemplar-like extrapolation were relatively unable to accurately classify new
instances (even though their performance on the final learning trial was nearly perfect).
These findings are theoretically important because they reinforce a distinction between
exemplar and rule-learning tendencies, and they are novel in establishing that these
individual tendencies are relatively persistent across disparate conceptual tasks and are not
limited to mathematically oriented domains.

The Study 2 finding just mentioned also helps illuminate an issue not yet mentioned. Recent
work with complex category spaces that afford several strategies to differentially partition
the category space for categorization responses suggests that common underlying
knowledge was gleaned in learning (rules in this case), but across learners different strategic
coordination of the rules was applied (Yang & Lewandowsky, 2003; 2004). In a similar
vein, in the present study it is theoretically possible that the individual differences observed
in extrapolation reflected a common exemplar learning process but that the exemplar
information was used differently in extrapolation. Specifically, display of rule-like
extrapolation versus exemplar-like extrapolation could indicate that when faced with
extrapolation, some learners applied a linear extrapolation computation to their exemplar
representations, whereas others did not (e.g., see McDaniel & Busemeyer, 2005). However,
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this possibility does not readily accommodate the correspondence between those learners’
rule-like performances in extrapolation and the evidence of transfer in the abstract coherent
category task. Neither an exemplar representation, nor a linear extrapolation tendency,
would support transfer in the abstract-coherent category task. Transfer in this category task
relies on abstracting the underlying rule, and accordingly suggests that the individual-
difference characteristic that was reflected across both the function learning and category
task was a tendency to attempt to abstract the rule that related the training instances (or to
focus on learning exemplars).

The above findings provide initial progress toward a principled analysis of learning
tendencies that enables prediction of which individuals will likely display transfer and which
will not (or the pattern of transfer; cf. Study 1c) on higher-order conceptual tasks. A
learner’s tendency to focus on exemplars versus abstraction of a relation among exemplars
during function learning predicted performance on the novel transfer items in the abstract
coherent category task. Such a finding is not trivial in light of a literature that has attempted
with little success to establish an empirical relation between conceptual problem solving
performance and a theoretically-relevant individual difference measure (e.g., intelligence).
As stated in a recent review, “no convincing empirical evidence exists that would support a
relation, let alone a causal relation, between complex explicit or implicit problem solving
competence on the one hand, and global intelligence on the other” (Wenke, Frensch, &
Funke, 2005, p. 181). The present findings and approach thus represent a potentially
significant extension over the standard theoretical and empirical literature in cognitive
psychology by (1) focusing on understanding individual differences in conceptual learning
and transfer and (2) identifying a theoretically-grounded learning tendency that has
predictive utility.

Further favoring the above conclusion are the results of a study that we completed
(McDaniel, Frey, Kudelka, & Shields, 2012) that examined whether introductory college
chemistry students’ tendencies to display rule learning or exemplar-based learning (as
determined by extrapolation in the present bi-linear function learning task) were predictive
of their grades in the first and second semester courses. In these chemistry classes, the
examinations primarily demanded integration and generalization of the particular problems
and examples presented in class and assigned for homework. Accordingly, we thought it
possible that students who were identified as rule learners in the function learning task
would also tend to attempt to extract the underlying relations in their chemistry classes,
thereby supporting better examination performances. Of 179 learners on the function
learning task, 96 were classified as rule learners and 83 as exemplar learners. This
distinction captured significant variance in the course grades above and beyond that
accounted for by Math ACT scores for both the fall course (change in R2 = .05, relative to .
07 accounted for in the base model with ACT scores) and the spring course (change in R2 = .
06 relative to .06 for the base model). Those students who displayed rule learning in the
function learning task performed better on average than those who displayed a reliance on
exemplar-learning in the function task.

We offer the present findings and framework as a potentially fruitful avenue for identifying
and characterizing important learning tendencies across individuals and for predicting the
nature of transfer based on those tendencies. We also believe that the findings may provide a
basis for further development of hybrid categorization models to accommodate individual
differences in conceptual tasks (which have not been straightforward to accommodate; see
McDaniel et al., 2009). Finally, though the present work is grounded in laboratory
conceptual tasks, based on the preliminary findings just mentioned (from the college
chemistry class), we speculate that the tendency identified in the present study to focus on
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exemplars versus underlying abstractions (rules) may bear on learning and transfer in at least
some educationally relevant conceptual learning domains.

Acknowledgments
Studies 1a, 1b, and 1c were supported by collaborative activity grant # 220020166 from the James S. McDonnell
Foundation. Study 2 was supported by National Institute of Health Grant MH068346. Both grants helped support
the preparation of this article. We thank Cynthia Fadler for her input on Study 1b method, Kwan Woo Paik for
assistance with testing participants in Study 1b, and Charlie Brenner for programming assistance on Study 1b. We
also appreciate encouragement from a preliminary pilot study conducted at the University of New Mexico with
David Trumpower and Nova Morrisette. We thank Larry Jacoby suggesting the use of Regehr and Brooks’ (1993)
materials in Study 1c, and Julie Bugg for helpful comments on an earlier version of this paper. We thank the Hay
Group for allowing access to the Kolb LSI for the purposes of this research. We thank Randy Engle and the
Attention and Working Memory Lab at Georgia Tech for access to the operation span e-prime programs through
their website.

References
Anderson JR, Betz J. A hybrid model of categorization. Psychonomic Bulletin & Review. 2001;

8:629–647. [PubMed: 11848582]

Ashby FG, Alfonso-Reese LA, Turken AU, Waldron EM. A neuropsychological theory of multiple
systems in category learning. Psychological Review. 1998; 105:442–481. [PubMed: 9697427]

Ashby FG, Ell SW, Waldron EM. Procedural learning in perceptual categorization. Memory &
Cognition. 2003; 31:1114–1125. [PubMed: 14704026]

Ashby FG, Maddox WT. Human category learning. Annual Review of Psychology. 2005; 56:149–178.

Ashby FG, O’Brien JB. Category learning and multiple memory systems. Trends in Cognitive
Sciences. 2005; 9:83–89. [PubMed: 15668101]

Baddeley AD, Hitch G. Working memory. Psychology of Learning and Motivation. 1974; 8:47–89.

Balota DA, Yap MJ, Cortese MJ, Hutchison KA, Kessler B, Loftis B, Treiman R. The English Lexicon
Project. Behavior Research Methods. 2007; 39:445–459. [PubMed: 17958156]

Bors DA, Stokes TL. Ravens Advanced Progressive Matrices: Norms for first-year university students
and the development of a short form. Educational and Psychological Measurement. 1998; 58:382–
398.

Bott L, Heit E. Nonmonotonic extrapolation in function learning. Journal of Experimental Psychology:
Learning, Memory, & Cognition. 2004; 30:38–50.

Bourne, LE, Jr. An inference model of conceptual rule learning. In: Solso, RL., editor. Theories in
cognitive psychology: The Loyola symposium. Potomac, MD: Erlbaum; 1974. p. 231-256.

Bower, G.; Trabasso, T. Concept identification. In: Atkinson, RC., editor. Studies in mathematical
psychology. Stanford, CA: Stanford University Press; 1964.

Busemeyer, JR.; Byun, E.; DeLosh, E.; McDaniel, MA. Learning functional relations based on
experience with input-output pairs by humans and artificial neural networks. In: Lamberts, K.;
Shanks, DR., editors. Knowledge, concepts, and categories. Hove, U.K: Psychology Press; 1997.
p. 405-435.

Cacioppo JT, Petty RE. The need for cognition. Journal of Personality and Social Psychology. 1982;
42:116–131.

Carpenter PA, Just MA, Shell P. What one intelligence test measures: A theoretical account of the
processing in the raven Progressive Matrices Test. Psychological Review. 1990; 97:404–431.
[PubMed: 2381998]

Choi S, McDaniel MA, Busemeyer JR. Incorporating prior biases in network models of conceptual
rule learning. Memory & Cognition. 1993; 21:413–423. [PubMed: 8350732]

Conway ARA, Kane MJ, Bunting MF, Hambrick DZ, Wilhelm O, Engle RW. Working memory span
tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review. 2005; 12:769–
786. [PubMed: 16523997]

Craig S, Lewandowsky S. Whichever way you choose to categorize, working memory helps you learn.
The Quarterly Journal of Experimental Psychology. 2012; 65:439–464. [PubMed: 22022921]

McDaniel et al. Page 29

J Exp Psychol Gen. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DeLosh EL, Busemeyer JR, McDaniel MA. Extrapolation: The sine quanon for abstraction in function
learning. Journal of Experimental Psychology: Learning, Memory, and Cognition. 1997; 23:968–
986.

Engle RW. Working memory capacity as executive attention. Current Directions in Psychological
Science. 2002; 11:19–23.

Erickson MA. Executive function and task switching in category learning: Evidence for stimulus-
dependent representation. Memory & Cognition. 2008; 36:749–761. [PubMed: 18604958]

Erickson JE, Chin-Parker S, Ross BH. Inference and classification learning of abstract coherent
categories. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2005; 31:86–
99.

Erickson MA, Kruschke JK. Rules and exemplars in category learning. Journal of Experimental
Psychology: General. 1998; 127:107–140. [PubMed: 9622910]

Fukuda K, Vogel E, Mayr U, Awh E. Quantity, not quality: The relationship between fluid intelligence
and working memory capacity. Psychonomic Bulletin & Review. 2010; 17:673–679. [PubMed:
21037165]

Hayes T, Petrov A, Sederberg P. A novel method for analyzing sequential eye movements reveals
strategic influence on Raven’s Advanced Progressive Matrices. Journal of Vision. 2011; 11:1–11.

Johansen MK, Palmeri TJ. Are there representational shifts during category learning? Cognitive
Psychology. 2002; 45:482–553. [PubMed: 12480477]

Juslin P, Olsson H, Olsson AC. Exemplar effects in categorization and multiple-cue judgment. Journal
of Experimental Psychology: General. 2003; 132:133–156. [PubMed: 12656301]

Kalish ML, Lewandowsky S, Kruschke JK. Population of linear experts: Knowledge partitioning and
function learning. Psychological Review. 2004; 111:1072–1099. [PubMed: 15482074]

Katona, G. Organizing and memorizing. New York: Columbia University Press; 1940.

Klayman, J. On the how and why (not) of learning from outcomes. In: Brehmer, B.; Joyce, CRB.,
editors. Human judgment: The SJT view. Amsterdam, The Netherlands: Elsevier; 1988.

Klein K, Fiss WH. The reliability and stability of the Turner and Engle working memory task.
Behavior Research Methods, Instruments, & Computers. 1999; 31:429–432.

Koh K, Meyer DE. Function learning: Induction of continuous stimulus-response relations. Journal of
Experimental Psychology: Learning, Memory, and Cognition. 1991; 17:811–836.

Kolb, DA. Kolb Learning Style Inventory (Version 3.1). Experience Based Learning Systems, Inc;
2007.

Kruschke JK. ALCOVE: An exemplar-based connectionist model of category learning. Psychological
Review. 1992; 99:22–44. [PubMed: 1546117]

Kucera, H.; Francis, WN. Computational analysis of present-day English. Providence, RI: Brown
University Press; 1967.

Lewandowsky S. Working memory capacity and categorization: Individual differences and modeling.
Journal of Experimental Psychology: Learning, Memory, and Cognition. 2011; 37:720–738.

Lewandowsky S, Kalish M, Ngang SK. Simplified learning in complex situations: Knowledge
partitioning in function learning. The Journal of Experimental Psychology: General. 2002;
131:163–193.

Little DR, Nosofsky RM, Denton SE. Response-time tests of logical-rule models of categorization.
Journal of Experimental Psychology: Learning, Memory, and Cognition. 2011; 37:1–27.

Little, JL.; McDaniel, MA.; Cahill, MJ. Individual differences in category learning: Rule-versus
exemplar-based strategies. Poster presented at the 53rd meeting of the Psychonomic Society;
Minneapolis, MN. 2012 Nov.

McCabe DP, Roediger HL III, McDaniel MA, Balota D, Hambrick J. The relationship between
working memory capacity and executive functioning: Evidence for a common executive attention
construct. Neuropsychology. 2010; 24:222–243. [PubMed: 20230116]

McDaniel MA, Busemeyer JR. The conceptual basis of function learning and extrapolation:
Comparison of rule-based and associative-based models. Psychonomic Bulletin & Review. 2005;
12:24–42. [PubMed: 15948282]

McDaniel et al. Page 30

J Exp Psychol Gen. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



McDaniel MA, Dimperio E, Griego JA, Busemeyer JR. Predicting transfer performance: A
comparison of competing function learning models. Journal of Experimental Psychology:
Learning, Memory, and Cognition. 2009; 35:173–195.

McDaniel, MA.; Frey, R.; Kudelka, C.; Shields, SP. Individual Differences in Concept Learning
Tendencies: Spanning the Laboratory and the Classroom. Invited presentation at the POGIL South
Central Regional Meeting; St. Louis, MO. 2012 Jun.

Medin DL, Altom MW, Murphy TD. Given versus induced category representations: Use of prototype
and exemplar information in classification. Journal of Experimental Psychology: Learning,
Memory, and Cognition. 1984; 10:333–352.

Medin DL, Schaffer MM. Context theory of classification learning. Psychological Review. 1978;
85:207–238.

Minda JP, Desroches AS, Church BA. Learning rule-described and non-rule-described categories: A
comparison of children and adults. Journal of Experimental Psychology: Learning, Memory, and
Cognition. 2008; 34:1518–1533.

Nelson, DL.; McEvoy, CL.; Schreiber, TA. The University of South Florida word association, rhyme,
and word fragment norms. 1998. http://www.usf.edu/FreeAssociation/

Nosofsky RM. Choice, similarity, and the context theory of classification. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 1984; 10:104–114.

Nosofsky RM. Attention, similarity, and the identification-categorization relationship. Journal of
Experimental Psychology: General. 1986; 115:39–57. [PubMed: 2937873]

Nosofsky, RM.; Kruschke, JK. Investigations of an exemplar-based connectionist model of category
learning. In: Medin, DL., editor. The psychology of learning and motivation. Vol. 28. San Diego,
CA: Academic Press; 1992. p. 207-250.

Nosofsky RM, Palmeri TJ, McKinley SC. Rule-plus-exception model of classification learning.
Psychological Review. 1994; 101:53–79. [PubMed: 8121960]

Posner MI, Keele SW. On the genesis of abstract ideas. Journal of Experimental Psychology. 1968;
77:353–363. [PubMed: 5665566]

Raven, JC.; Raven, JE.; Court, JH. Progressive matrices. Oxford, England: Oxford Psychologists
Press; 1998.

Regehr G, Brooks LR. Perceptual manifestations of an analytic structure: The priority of holistic
individuation. Journal of Experimental Psychology: General. 1993; 122:92–114. [PubMed:
8440979]

Rehder B, Ross BH. Abstract coherent categories. Journal of Experimental Psychology: Learning,
Memory, and Cognition. 2001; 27:1261–1275.

Sewell DK, Lewandowsky S. Attention and working memory capacity: Insights from blocking,
highlighting, and knowledge restructuring. Journal of Experimental Psychology: General. 2012;
141:444–469. [PubMed: 22201415]

Smith JD, Minda JP. Prototypes in the mist: The early epochs of category learning. Journal of
Experimental Psychology: Learning, Memory, and Cognition. 1998; 24:1411–1436.

Turner ML, Engle RW. Is working memory capacity task dependent? Journal of Memory and
Language. 1989; 28:127–154.

Unsworth N, Heitz RP, Schrock JC, Engle RW. An automated version of the operation span task.
Behavior Research Methods. 2005; 37:498–505. [PubMed: 16405146]

Wenke, D.; Frensch, PA.; Funke, J. Complex problem solving and intelligence: Empirical relation and
causal direction. In: Sternberg, RJ.; Pretz, JE., editors. Cognition & Intelligence: Identifying the
mechanisms of the mind. New York: Cambridge University Press; 2005. p. 160-187.

Wiley J, Jarosz AF, Cushen PJ, Colflesh GJH. New rule use drives the relation between working
memory capacity and Raven’s Advanced Progressive Matrices. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 2011; 37:256–263.

Wisniewski EJ. Prior knowledge and functionally relevant features in concept learning. Journal of
Experimental Psychology: Learning, Memory, and Cognition. 1995; 21:449–468.

Yang L-X, Lewandowsky S. Context-gated knowledge partitioning in categorization. Journal of
Experimental Psychology: Learning, Memory, and Cognition. 2003; 29:663–679.

McDaniel et al. Page 31

J Exp Psychol Gen. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.usf.edu/FreeAssociation/


Yang L-X, Lewandowsky S. Knowledge partitioning in categorization: Constraints on exemplar
models. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2004; 30:1045–
1064.

Appendix A. Description and Results of the Secondary Individual
Difference Measures

Need for Cognition Scale
The need for cognition (Cacioppo & Petty, 1982) is a domain-general measure of the degree
to which individuals are motivated to expend cognitive effort (e.g., “I would prefer complex
to simply problems.”, “I enjoy thinking about an issue even when the results of my thought
will have no effect on the outcome of the issue.”). This scale is a 34-item, 9-point Likert
Scale with anchors 0 (“Very strong disagreement”) and 8 (“Very strong agreement”).

Kolb Learning Style Inventory
This inventory (Kolb, 2007) is a 12-item scale in which participants are presented with
sentence stems (e.g., “I learn best when:”), and they are asked to rank four response options
(e.g., “I listen and watch carefully.” or “I rely on logical thinking.”) from 1(least like you) to
4(most like you). Each response option corresponds to one of four “learning modes”
(concrete experience, reflective observation, abstract conceptualization, and active
experimentation.), and the rankings of each learning mode are summed across the 12 items
(as specified by Kolb, 2007). These scores are then used to compute two dimensions of
learning: taking in experience and dealing with experience. The dimension of taking in
experience is calculated by subtracting the concrete experience score from the abstract
conceptualization score. The dimension of dealing with experience is calculated by
subtracting the reflective observation score from the active experimentation score.

Free Recall
The English Lexicon Project Database (Balota et al., 2007) was used to generate a pool of
words with the following constraints: nouns with 1–2 syllables, 5–7 letters, Kucera-Francis
frequency (Kucera & Francis, 1967) ranging from 5–25, concreteness ranging from 318–
558, and familiarity ranging from 389–587. From this pool, 24 words were randomly
selected and assigned to two recall lists of 12 words each. For each list, words were
presented in random order, and each word was presented for 2s with a 1s inter-stimulus
interval. After the final word of the list, participants were instructed to type the alphabet
backwards for 30s as a delay task, and then they were asked to type out all of the words they
could remember from the preceding list. List 2 was presented immediately after the recall
phase of List 1

Paired Associates
The pool of words for this task was generated using the same criteria as in the free recall
task. Twenty words were randomly selected from the pool, and it was confirmed, using the
University of South Florida Free Association Norms (Nelson, McEvoy, & Schreiber, 1998),
that no pre-existing associations existed among any of the 20 words (4 of the words--token,
flock, segment, and garment-- were not included in the norms, but there were no obvious
associations between these words and any others in the list). The words were then divided
into 10 cues and 10 targets, and the cues and targets were randomly linked to create 10 cue-
target pairs. At encoding, these 10 pairs were randomly presented, one at a time, on a
computer monitor. The two paired words were presented together onscreen for 2s, and a 1s
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inter-stimulus interval separated each pair presentation. After the 10 word pairs were
presented, participants completed a test phase in which the first word of a pair was
presented, and participants were instructed to type in the word that previously had been
paired with it.

Correlation Results
Due to attrition across sessions, time constraints, and technical issues, three participants
were missing free recall data, two participants were missing need for cognition data, and one
participant was missing paired associates and Kolb Learning Style Inventory data. The
primary objective of the correlational analyses was to investigate the extent to which the
current distinction between learners’ tendencies to focus on exemplars versus the relations
(rule) among the training instances was related to the individual difference measures
described above. Neither of the self-report measures, the need for cognition, r(44) = −.07, or
the Kolb (2007) learning style dimensions, captured the rule/exemplar learning distinction.
At best, the dimension of taking in experience (from Kolb) showed a modest, nonsignificant
correlation r(45) = −.24, p < .10) such that rule learners tended to fall more toward the
“abstract conceptualization” end of the dimension (the opposite anchor being “concrete
experience”). The dimension dealing with experience showed no relationship with rule/
exemplar categories, r(45) = .15. Though it remains possible that the current distinction
might correspond somewhat with the Kolb learning style dimension of how a learner reports
that he or she prefers to “take in experience”, the present results do not compel the
conclusion that the Kolb learning style instrument overlaps with the performance-based
distinction developed in the present work.

The secondary memory measures (free recall and paired associate learning) also did not
correlate with the learners’ tendency to focus on exemplars versus on abstracting the
function rule (for free recall, r(43) = −.08; for pair-associate learning, r(45) = −.04).

Appendix B. Sample Stimuli from the Abstract Coherent Categories Task
(Study 2)

Training Stimuli Novel Test Stimuli

Morkels
operates on land works to gather harmful solids has a
shovel rolls on wheels

Morkels
operates in highway tunnels works to remove carbon
dioxide has a large intake fan flies with a propeller

operates on the surface of the water works to clean
spilled oil has a spongy material slides on skis

operates on the seafloor works to remove lost fishing nets
has a hook swims with fins

Krenshaws
operates on land works to clean spilled oil has a shovel
slides on skis

Krenshaws
operates on the seafloor works to remove broken glass has a
large intake fan flies with a propeller

operates on the surface of the water works to gather
harmful solids has a spongy material rolls on wheels

operates on the beach works to remove carbon dioxide has
a hook rolls on a tread

Note. Morkels are machines whose features combine in a coherent manner. Krenshaws are machines whose features do not
combine in a coherent manner.
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Figure 1.
Top panel: Two learners demonstrating extrapolation that closely follows the function
(Figure 4 reprinted from DeLosh et al., 1997). Bottom panel: Two learners with
extrapolation profiles in which their outputs were similar in value to outputs associated with
inputs from the training stimuli (Figure 6 reprinted from DeLosh et al., 1997).
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Figure 2.
An example of the display screen for the function learning task. The bar on the left is the
given input value, the first bar above the label “expelled” is a participant’s output response,
the second bar above “expelled” is the correct output, and the verbal feedback is given on
the far right of the screen.
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Figure 3.
Top panel: Average predictions on the last training block for the participants classified as
rule learners, the participants classified as exemplar learners, and the participants classified
as non-learners in Study 1a. Middle panel: Interpolation predictions averaged for rule
learners and for exemplar learners. Lower panel: Extrapolation predictions averaged for rule
learners and for exemplar learners.
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Figure 4.
Top left panel: Average predictions on the last training block for the participants classified
as rule learners and participants classified as exemplar learners from the moderate training
condition in Study 1b. Top right panel: Average predictions on the last training block for
rule learners and for exemplar learners in the extended training condition. Second left panel:
Repeat training point predictions for rule learners and for exemplar learners in the moderate
training condition. Second right panel: Repeat training point predictions for rule learners and
for exemplar learners in the extended training condition. Third left panel: Interpolation
predictions averaged for rule learners and for exemplar learners in the moderate training
condition. Third right panel: Interpolation predictions averaged for rule learners and for
exemplar learners in the extended training condition. Bottom left panel: Extrapolation
predictions averaged for rule learners and for exemplar learners in the moderate training
condition. Bottom right panel: Extrapolation predictions averaged for rule learners and for
exemplar learners in the extended training condition.
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Figure 5.
Imaginary animal stimuli for the concept task in Study 1c. Left Panel: A sample training set
and category membership. The category membership listed next to each item is based on the
rule that builders possess at least two of the three features: long legs, angular body, and
spots. Top Right Panel: Good transfer items and their category membership. These items
share category membership with their training “twins.” Bottom Right Panel: Bad transfer
items and their category membership. These items have category membership that opposes
that of their training “twins.”
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Figure 6.
Top panel: Average predictions on the last training block for the participants classified as
rule learners, the participants classified as exemplar learners, and the participants classified
as non-learners in Study 2. Middle panel: Interpolation predictions averaged for rule learners
and for exemplar learners. Lower panel: Extrapolation predictions averaged for rule learners
and for exemplar learners.
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Figure 7.
Top panel: Scatterplot of the association between training block at which learning criterion
was met in function learning and working memory capacity for rule learners across Studies
1a, 1b, and 2. Bottom panel: Scatterplot of the same variables for exemplar learners across
Studies 1a, 1b, and 2.
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Figure 8.
Classification accuracy in Study 2 on each training block for the abstract coherent category
task as a function of learner type (rule learners vs. exemplar learners as determined from
extrapolation performance on the function learning task).
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Figure 9.
Distribution of average MAE values in extrapolation in the function-learning task for
learners in Studies 1a, 1b, and 2. The bold vertical bar indicates the division between those
classified as rule learners and those classified as exemplar learners.
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Table 1

Pre-Manipulation Characteristics of the Moderate Training Condition and Extended Training Condition in
Experiment 1b.

Moderate Training Extended Training

M SD M SD

WMC 56.83 17.56 48.77 20.22

RAPM .61 .22 .65 .19

Block 1 MAE 17.92 4.71 18.05 4.63

Block 8 MAE 4.36 4.03 5.01 2.97

Criterion Block 4.07 2.48 4.03 2.04

Note. WMC, working memory capacity; RAPM, Ravens advanced progressive matrices short form; MAE, mean absolute error; Criterion Block is
the earliest training block at which a participant’s MAE < 10.
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