
InkTag: Secure Applications on an Untrusted Operating System

Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel
The University of Texas at Austin

Abstract
InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance
processes even in the presence of a malicious operating system. InkTag advances the state of the
art in untrusted operating systems in both the design of its hypervisor and in the ability to run
useful applications without trusting the operating system. We introduce paraverification, a
technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to
participate in its own verification. Attribute-based access control allows trusted applications to
create decentralized access control policies. InkTag is also the first system of its kind to ensure
consistency between secure data and metadata, ensuring recoverability in the face of system
crashes.

Keywords
Application protection; Virtualization-based security; Paraverification

1. Introduction
Operating systems are a vexing Achilles heel in the security architecture of modern
computing systems. The OS is the root of trust, so compromising the OS compromises every
program on the system. On discretionary access control operating systems like Linux and
Windows, controlling any process running as root (administrator) is a kernel compromise
because the root user can load code and data into the kernel's address space. If an application
could remain safe even if the operating system were compromised, then operating system
exploits would no longer have the security emergency status that they have today.

This paper introduces InkTag, a system in which secure, trustworthy programs can
efficiently verify an untrusted, commodity operating system's behavior, with a small degree
of assistance from a small, trusted hypervisor. OS implementations are complex. However,
verifying OS behavior is possible without reimplementing OS subsystems in the hypervisor,
because OS services often have simple specifications. OS complexity comes from
supporting these simple services simultaneously for many different processes. Global
behavior and resource management is much more complicated than the specification for an
individual process. For instance, swapping and copy-on-write heuristics in Linux require
many thousands of lines of code, but auditing an application's page tables and
checksumming the page contents requires only a few hundred. Verifying that the OS

Copyright © 2013 ACM

{osh@cs.utexas.edu, sangmank@cs.utexas.edu, adunn@cs.utexas.edu, mzlee@cs.utexas.edu, witchel@cs.utexas.edu}

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

General Terms Security, Verification

NIH Public Access
Author Manuscript
ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

Published in final edited form as:
ASPLOS Proc. 2013 ; : 253–264. doi:10.1145/2451116.2451146.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

provides system services correctly allows InkTag to avoid having to reason about the OS's
implementation of these services.

Though feasible, efficiently and safely verifying OS behavior remains a significant
challenge. The InkTag hypervisor must implement deep introspection into architecture-level
primitives, such as page tables, to isolate trusted applications from an untrusted operating
system. The range of “normal” operating system behavior is large, making recognition of
malicious behavior a challenge. While verifying OS behavior is hard, doing it efficiently is
even harder. Modern virtualization hardware improves performance by relieving hypervisor
software from having to process many common operations. Unfortunately, it is often those
exact operations, e.g., page table updates, that are crucial for verifying OS behavior.

InkTag introduces paraverification, which enables verification of OS behavior with limited
hypervisor complexity. Most previous systems have attempted to verify unmodified
operating systems. InkTag requires the untrusted OS to provide information and resources to
both the hypervisor and application that allow them to efficiently verify the operating
system's actions. Using paraverification to force the OS to make verification easier and more
efficient is similar to the way paravirtualization forces an OS to make virtualization more
efficient.

Prior work on untrusted operating systems [11] has focused on simply isolating trusted code
and data from the OS, with minimal support for securely using OS features. InkTag
addresses important issues in the completeness and usability of untrusted operating systems,
such as providing users of an untrusted OS with flexible access control and crash
consistency for hypervisor and OS data structures. InkTag advances the design and
implementation of OS verification in the following ways:

1. InkTag introduces paraverification, where an untrusted operating system is required
to perform extra computation to make verifying its own behavior easier.

2. InkTag is the first system to provide users of an untrusted OS with flexible access
control, that allows applications to define access control policies for their own
secure files (files with privacy and integrity managed by InkTag). Access control is
vital for sharing data between processes with different levels of privilege. Our
prototype applies flexible access control to a multi-user wiki application, providing
hypervisor-enforced privacy, integrity, and access control for wiki code and data.

3. InkTag is the first system to provide crash consistency between security-critical
metadata managed by the hypervisor and data managed by the untrusted OS.

4. InkTag directly addresses Iago attacks [8], a new class of attacks against systems
providing trusted applications in un-trusted operating systems that manipulates the
return values of system calls (e.g., mmap) to cause a trusted application to harm
itself.

Section 2 gives an overview of InkTag, while Section 3 explains InkTag's high-level design.
Section 4 introduces paraverification. Section 5 describes access control in InkTag, followed
by our design for storage (§6), implementation (§7) and evaluation (§8). Section 9 covers
related work and Section 10 concludes.

2. Overview
InkTag is a hypervisor-based system that protects trusted applications from an untrusted OS,
allowing trusted applications to securely use untrusted OS services. The hypervisor protects
application code, data, and control flow from the OS, allowing applications to execute in
isolation. Mutually trusting secure applications can securely and privately share data without

Hofmann et al. Page 2

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

interference from the OS or other applications. Each secure application coordinates directly
with the InkTag hypervisor via hypercalls to detect OS misbehavior.

Figure 1 shows an overview of the InkTag architecture. Trusted application code executes in
a high-assurance process, or HAP, which is isolated from the OS. Nearly all application-
level changes are contained in a small, 2000-line library (libinktag) the use of which is
largely encapsulated in the standard C library. InkTag extends a standard hypervisor to
monitor the untrusted OS using paravirtualized device drivers and virtualization hardware.
InkTag defines new hypercalls for HAPs to verify OS behavior.

InkTag shares its basic threat model and security guarantees with previous work where a
trusted hypervisor verifies an untrusted operating system's actions; such as SP3 [47], and
especially Overshadow [11]. We first discuss issues generic to all approaches, then starting
with Section 2.4 discuss issues specific to InkTag.

2.1 Threat Model
InkTag assumes that the OS is completely untrusted and can behave in arbitrarily malicious
ways. Applications running on the OS have both an untrusted context maintained by the OS
used for requesting OS services, and a trusted context used for executing code that must be
isolated from the OS. The developer trusts the InkTag hypervisor and the trusted execution
context of the application. The trusted application context is isolated from the OS by the
hypervisor.

InkTag does not address application-level bugs, and will not stop an application that
deliberately divulges secret data (e.g., by putting it in the arguments of a system call that the
OS handles).

InkTag cannot guarantee untrusted OS availability, but can detect this class of misbehavior.
Trivially, a malicious OS could simply shut down every time it was started, though the
InkTag hypervisor will detect such misbehavior. More subtle availability attacks are
possible, such as deleting volatile data, which will be detected in a timely manner, but may
result in the loss of data between misbehavior and detection.

2.2 Size of trusted computing base (TCB)
The operating system consists of millions of lines of code, so its elimination from the trusted
computing base seems, prima facie, to increase security. However, the KVM hypervisor
includes an entire OS (sometimes called a type 2 hypervisor). Eliminating trust in the guest
instance of Linux is of little security value if the hypervisor contains its own instance.

However, simpler hypervisors (type 1) exist, and contain fewer lines of code than a typical
operating system. Additionally, the hypervisor interface is a hardware interface, which is far
simpler and easier to make secure than the hundreds of semantically complex system calls
exported by a general-purpose operating system. For example, from 2010 to 2012, a search
of the National Vulnerability Database [31] returns 12 exploits for Xen and 16 exploits for
KVM that have an impact worse than denial of service. By contrast, there are 53 such
vulnerabilities published for the Linux kernel in 2012, of which only 7 are driver
vulnerabilities. These vulnerabilities spanned many different core kernel services such as
memory management, file systems, network protocol implementations, and syscalls. The
situation is not much better for Windows 7: in 2012, there were 9 privilege escalation and 31
remote code execution bulletins listed [1].

Hofmann et al. Page 3

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2.3 Security guarantees
Here we summarize the security guarantees provided to an InkTag application. The InkTag
hypervisor ensures that a HAP's process context (registers) and address space are isolated
from the the operating system. Then, InkTag ensures that a HAP can use a subset of services
provided by the untrusted OS to interact with secure files (files with privacy and integrity
managed by InkTag through encryption and hashing), and verify that those services were
provided correctly. InkTag shares these basic security guarantees, as well as implementation
techniques, with previous work such as Overshadow.

In addition to the majority of HAP code that executes in a trusted context, each HAP also
contains a small amount of untrusted trampoline code that interacts with the operating
system (this is similar to Overshadow's uncloaked shim). The InkTag hypervisor switches
control between secure HAP code and the untrusted trampoline, while the untrusted
operating system schedules among the un-trusted trampoline and other contexts. This allows
the InkTag hypervisor to control switches into and out of a secure context and ensure control
flow integrity. Then, the InkTag hypervisor encrypts and hashes HAP pages to ensure
privacy and integrity for the HAP's address space: this is analogous to Overshadow's multi-
shadowing technique.

Control flow integrity—As with traditional applications, a HAP running in InkTag may
be interrupted at any time by the operating system. InkTag must not allow the operating
system to read or modify the application's processor registers. Doing so could leak private
data, or allow the operating system to modify the application's control flow or data by
changing the instruction pointer, condition flags, or a register value. The InkTag hypervisor
interposes on every context switch between a secure HAP and the operating system. On
context switches, the hypervisor saves processor registers, and overwrites their values before
switching to the OS.

Address space integrity—In addition to application registers, the InkTag hypervisor
must ensure privacy and integrity for code and data in a HAP's address space. When an
untrusted operating system attempts to read application memory, InkTag hashes memory
and encrypts it, ensuring that the untrusted operating system cannot read application secrets.
When the HAP accesses the memory again, the InkTag hypervisor decrypts it and verifies
the hash, to ensure that the memory was not modified by the operating system.

The position and order of pages in an application's virtual address space is also an important
integrity property. InkTag ensures that every page of memory is mapped at the virtual
address requested by the application, either via information about the HAP's initial state
contained in the ELF binary, or via a request to a memory mapping function such as brk() or
mmap(). The problem of synchronizing the mapping information between application and
hypervisor motivates our primary contribution, paraverification, described in detail in
Section 4.

File I/O—To perform useful work, a HAP isolated from an un-trusted operating system
must still be able to use a subset of OS services. The InkTag hypervisor must ensure that the
application can still rely on those services even when running on a malicious OS.

Most importantly, InkTag provides HAPs with the ability to securely interact with files
despite the fact that they are read from and written to disk by the untrusted operating system,
by guaranteeing integrity for file memory mappings. InkTag applications primarily identify
files through a 64-bit object identifier, or OID. Most file operations are expressed as
operations on OIDs, even though real applications generally expect to use string filenames:
mapping string filenames to OIDs is a contribution of InkTag, as discussed later in this

Hofmann et al. Page 4

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

section. When an application maps an OID into memory (through a call to mmap) and
receives an address for the new mapping, InkTag ensures that later references to that address
will access the desired file. Privacy and integrity for file data are ensured via InkTag's
guarantee of address space privacy and integrity, by hashing and encrypting in-memory file
data in response to accesses by the untrusted operating system. To handle file I/O via read()
and write() system calls, our application-level library translates these calls into operations on
memory-mapped files.

Process control—HAPs may also create new processes through calls to fork() and
execute binaries in these processes with exec(). The InkTag hypervisor ensures that the
untrusted operating system executes these operations correctly. In the case of fork(), InkTag
ensures that the new HAP is a clone of its parent. For exec(), InkTag ensures that the new
HAP, specified by the identifier of the binary file passed to exec() is loaded into memory
correctly (i.e., each section in the binary is loaded unmodified into the correct virtual
address), based on the information specified by the ELF format binary.

Other OS services—Because InkTag guarantees control flow and data integrity for
HAPs, a HAP may safely invoke system calls not explicitly secured by InkTag. However, it
must consider the results of those system calls as it considers any data provided by an
untrusted source. For example, InkTag does not manage network I/O, however it is possible
for applications to safely communicate over the network via mechanisms such as transport
layer security (TLS [13]), that enable secure communication over an untrusted channel.

2.4 InkTag contributions
InkTag advances work on untrusted operating systems along two axes: the underlying
architecture for isolating processes from the operating system, and the set of core OS
services that applications may use securely.

Paraverification—Isolating an application's address space from an untrusted operating
system is a daunting task. Whereas previous work has used unmodified OS kernels, InkTag
employs paraverification, a technique similar to paravirtualization, in which the un-trusted
kernel is required to send to the hypervisor information about updates to process state (that
the hypervisor then checks for correctness). Paraverification simplifies the design of the
InkTag hypervisor by allowing it to directly use high-level information from the kernel,
rather than having to deduce that information from low-level updates such as changes to bits
on process page tables.

Hardware virtualization—The utility of virtualization has prompted the rapid
introduction of hardware support for virtualizing processor state, as well as hardware
support for virtualizing memory management. Eliminating software from these
performance-critical processing paths is a clear advantage, but systems like InkTag require
validation of OS updates to HAP page tables. InkTag minimizes the performance impact of
validation via a combination of the efficiency afforded by paraverification and a two-level
approach to protection. InkTag uses hardware MMU virtualization for coarse-grained
separation between secure and insecure data. Then it uses software only when needed, to
manage the userspace portions of HAP page tables.

Access control and naming—The InkTag hypervisor allows HAPs to specify access
control policies on secure files, with privacy and integrity managed by InkTag through
encryption and hashing. InkTag's access control mechanism is described in detail in Section
5. Although InkTag applications identify files via an integer OID, most applications and
users expect to reference files through a string name. InkTag allows applications to map

Hofmann et al. Page 5

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

from string names to OIDs, while maintaining important integrity properties (such as the
trusted nature of the /etc directory).

Consistency—To protect the integrity of file contents, InkTag, like similar systems, must
maintain additional metadata in the form of hashes of file data pages. InkTag is the first such
system to provide crash consistency between file metadata and data. Consistency is vital in
this setting: without consistent data and metadata, the InkTag hypervisor cannot protect file
integrity. An application must either discard the inconsistent data, or accept the possibility of
tampering by an untrusted OS.

2.5 API
HAPs communicate with the InkTag hypervisor primarily by making hypercalls. InkTag
maintains the simplicity of the hypervisor interface by adding only 14 hypervisor calls.
Table 1 summarizes InkTag's hypercall interface. It refers to several concepts that will be
introduced shortly, but what is clear is that the number of calls is limited and their function
is mostly intuitive.

In addition to invoking operations through hypercalls, the InkTag hypervisor shares two data
structures with the guest kernel and HAPs First, an InkTag application must describe the
layout of its virtual address space. A HAP enters each of its memory mappings into an array
of descriptors in its virtual address space, specifying the base address of the array as part of
the INIT hypercall. Second, the untrusted kernel sends information about updates to process
state to the InkTag hypervisor. These updates are communicated through a shared queue,
similar to existing paravirtual interfaces.

3. Address space management
Address space management is the foundation for InkTag's security guarantees. We discuss

, InkTag's abstraction for secure address spaces, and how InkTag uses hardware
memory management virtualization features that are part of modern virtualization hardware.

3.1 Objects and secure pages
InkTag's basic file abstraction is an object. All files, including binary executables, are
represented by an InkTag object. Objects are identified by a 64-bit object identifier (OID).
Section 5.4 discusses translating between human-readable names and OIDs, however OIDs
are the main abstraction used by the InkTag hypervisor. Throughout the rest of the paper, we
use the term OID interchangeably with object.

Objects are comprised of secure pages , which are the basic mechanism by which
InkTag enforces address space privacy, address space integrity, and access control policy for
files. consist of a block of data (4 KB for most pages on x86 processors), in
memory or on disk, with additional metadata. include a hash of the data contained
with the page, as well as information about which resource the page describes, in the form of
a 〈OID, offset〉 pair. An object identifies a set of pages that share a single OID, and may
refer to a file on disk or a private memory region created dynamically by an application
(e.g., an anonymous mmap).

The InkTag hypervisor encrypts to ensure privacy, and hashes them to ensure
integrity. When a HAP accesses an for which it has read permission, the InkTag
hypervisor transparently decrypts the page, allowing the HAP access to cleartext. If an

 is accessed by the operating system, a regular application, or a HAP without read
permission, the InkTag hypervisor detects the access and re-encrypts the page. Even if a

Hofmann et al. Page 6

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

malicious operating system can read the data within an , InkTag guarantees privacy
because the OS can read only encrypted data.

Similarly, only the hypervisor can update the hash associated with an . When a HAP
updates an for which it has write permission, the InkTag hypervisor updates the
hash. If the OS modifies the data in the , the InkTag hypervisor will detect the
modification, because hashing the modified data will not match the recorded hash.

The untrusted OS views as standard data pages, and remains responsible for
placing in memory and on disk. The additional metadata attached to is
transparent to the guest OS: the InkTag hypervisor updates and tracks metadata as
the operating system or application moves or transforms the data such as by mapping a file
in memory or by writing a page to the virtual disk.

Each HAP must provide a description of its address space to the InkTag hypervisor, in the
form of a list of memory mappings [〈address_range, OID, offset〉, . . .], each of which
defines a sequence of . With a description of the address space, the hypervisor may
then validate individual page table updates requested by the untrusted OS. For example,
suppose the OS attempts to map virtual address V to physical frame P in a HAP's page
tables. The hypervisor examines the HAP's memory map for a range that includes V. If one
exists, the hypervisor then verifies that the HAP has access to the specified OID. Finally, the
hypervisor checks that frame P actually contains the correct , by checking P's hash
against the stored metadata. If all of these checks succeed, the hypervisor now considers P to
be a physical frame containing an , and the HAP has a valid mapping of address V to
P. Thus, when the HAP attempts to access the , InkTag will decrypt its contents and
provide the HAP with cleartext access.

3.2 Nested paging
The InkTag hypervisor is designed to run on modern processors that support hardware
assistance for virtualization. Such processors are designed to simplify the task of writing
hypervisor software by automatically creating a self-contained environment for the guest
OS, without requiring manual intervention by hypervisor software.

One of the primary tasks of any hypervisor (including InkTag), is virtualizing memory
management. The hypervisor must ensure that the guest operating system has access only to
those pages of memory that represent its virtualized physical address space. For early x86
hypervisors, this required intercepting page table updates made by the guest OS,
transforming guest-physical addresses (physical addresses from the point of the virtualized
guest) into host-physical addresses (actual physical addresses of the frames of memory that
constitute the guest's virtualized physical memory), and installing modified page tables for
the guest OS that contain the transformed mappings.

Hardware MMU virtualization—As might be expected, virtualizing memory in this
manner adversely affects both hypervisor complexity and hypervisor performance. In
response, more recent x86 processors have supported nested paging. With nested paging,
guest memory accesses are translated through two separate page tables. First, guest-virtual
addresses are translated into guest-physical addresses by traditional page tables managed
entirely by the guest OS. Then, guest-physical addresses are translated into host-physical
addresses by the extended page table (EPT)1. The EPT is managed by the hypervisor, but

1EPT is the terminology used for nested paging on Intel processors. Although InkTag was designed for Intel processors, we believe
the design to be equally applicable to AMD processors.

Hofmann et al. Page 7

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

does not need to be updated in response to changes to guest page tables, as it only maps
between guest-physical and host-physical address spaces. Meanwhile, the guest OS is free to
perform arbitrary modifications to its own page tables, as all accesses will be restricted by
EPTs to memory explicitly approved by the hypervisor.

Nested paging is a significant step forward for hypervisors. However, as discussed in section
3.1, the InkTag hypervisor's primary means of enforcing privacy, integrity, and access
control is through detailed management of OS page table updates. A key goal for designing
the InkTag hypervisor is to retain the necessary control over guest OS page table updates,
while still being able to harness the performance benefits of modern virtualization hardware.

Nested isolation—InkTag takes advantage of hardware MMU virtualization by using a
combination of hardware EPT support and management of individual OS page table updates.
Rather than use a single EPT for all of guest execution, the InkTag hypervisor uses two
separate EPT trees. The trusted EPT is installed during isolated HAP execution, while the
untrusted EPT is used during execution of the operating system and other applications
(Figure 2). The contents of both EPTs are entirely managed by the hypervisor, and are
therefore trustworthy. The trusted/untrusted label refers to the contents of the physical
frames they map. The trusted EPT primarily maps physical frames that contain cleartext

, while the un-trusted EPT maps all other frames, including encrypted ,
data belonging to the OS, and untrusted applications.

Using separate EPTs for trusted and untrusted contexts allows InkTag to coarsely control
access to secure pages. Physical frames holding cleartext are not mapped in the
untrusted EPT If the OS or an untrusted application accesses a cleartext frame, the
access causes a fault that is handled by the hypervisor. InkTag hashes the contents of the
frame, encrypts the frame's contents, maps it in the untrusted EPT, and unmaps it from the
trusted EPT. If the trusted HAP accesses the frame again, the hypervisor decrypts the frame,
verifies the contents against the hash, maps it in the trusted EPT, and unmaps it from the
untrusted EPT.

In addition to the coarse access control provided by EPTs, InkTag must subdivide access to
physical frames among executing HAPs. When executing in trusted mode, every HAP can
potentially access any physical frame holding a cleartext . However, not every HAP
should have access to all . The InkTag hypervisor restricts access for an individual
HAP to a subset of physical frames by managing OS page table updates for the HAP address
space. Importantly, the InkTag hypervisor is only required to manage HAP page tables, and
only for the part of the address space accessible in user mode (the lower half of the address
space in the x86-64 architecture). All other page tables (including the kernel address space
for HAPs) can be managed by the OS without hypervisor intervention.

By combining the access control for physical frames provided by EPT with management of
guest page tables only when necessary, InkTag isolates HAPs from an untrusted operating
system while still taking advantage of modern virtualization hardware.

4. Paraverification
The task of managing requires that the InkTag hypervisor have deep visibility into
low-level OS operations, such as updating page tables. This kind of detailed introspection
introduces complexity into the hypervisor that can impede efforts to reason about its
correctness. In addition, interposing on low-level operations harms performance with
needless traps into the hypervisor.

Hofmann et al. Page 8

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Previous systems have attempted to remove trust from the operating system in a way that is
largely transparent to both the application and operating system. This section highlights the
significant challenges to application security and system performance presented by this
approach.

4.1 Verification challenges
InkTag creates a secure address space for HAPs by managing only the user mode portions of
HAP page tables, as described in Section 3.2. Here we explain all the steps necessary for the
InkTag hypervisor to detect and interpret a page table update. InkTag must intercept low-
level page table updates (“Set page table entry at address A to x.”), determine their high-
level effects (“Map physical frame P at virtual address V.”), and compare those effects
against the address space specified by an application (“The application wants to map the

 S at address V, do the contents of the physical frame have the same hash as S?”).

Interpreting low-level updates—Consider the task of placing a memory mapping into
an application's page tables. The InkTag hypervisor can protect page table memory so the
OS faults into the hypervisor when it attempts to write the page table. However, in order to
determine the OS's intent, the hypervisor must then unprotect page table memory, wait for
the OS to update the page table, and then retroactively determine what state changed by
examining a significant amount of context information, such as saved backups of previous
page table state and the role of the modified page in the application's page tables.

To efficiently interpret low-level page table updates, InkTag maintains state that allows it to
determine high-level effects without reconstructing the entire address space on each update.
For example, InkTag remembers which physical frames are used in application page tables,
their position in the page table hierarchy, and the range of virtual addresses that they might
map. Then, when the kernel sets a single entry at the leaf of the page table tree, InkTag can
determine which virtual address is affected without tracing the page table from its root.

Maintaining state to efficiently verify page table updates requires InkTag to make basic
assumptions about the structure of page tables. Recording the address mapped by each page
of a page table requires that page tables are arranged in trees, and that separate page tables
do not share any pages. A significant challenge for InkTag is that it is possible for an
operating system to violate these assumptions, while still correctly managing an
application's address space.

Figure 3 shows two applications that both map the same 2MB region of the same file, with
both mappings aligned on a 2MB boundary (2MB is the range of virtual addresses mapped
by a single leaf of a page table in the x86-64 architecture, which maps 512 4KB pages). An
operating system could share a page between the page tables of both applications, while still
correctly mapping each application's address space.

Even with an operating system that is both non-malicious and respects assumptions about
page table structure, it is possible for the order in which the hypervisor receives updates to
create the appearance of malicious or non-standard behavior. The technique of trapping
writes to page tables, allowing the OS to make updates, then later examining the (potentially
multiple) modified entries means that the hypervisor may not perceive updates in the same
order as they were performed by the guest OS. Suppose the OS deallocates a page of file
data, and then reuses that page as a page table for a different process. In this order, these
updates may be benign. In the other order, it appears that the OS is allowing one application
access to another's page tables, a likely violation of address space integrity.

Hofmann et al. Page 9

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Determining application intent—Once a low-level page table update has been
interpreted as an operation on a HAP's virtual address space, InkTag must determine if the
mapping installed by the operating system is consistent with the application's operations on
its address space. The application itself records its address space operations by making a
hypercalls for all such operations, such as the mmap() system call. The hypervisor must
communicate with the application to synchronize this information, and should do so with
low overhead. Page faults can be a performance-critical operation, and mechanisms exist in
the Linux kernel to quickly query the contents of the address space on a page fault, including
balanced trees and caches of recently faulted areas. InkTag should handle faults without
significant additional overhead, and also without simply duplicating these performance-
oriented structures in both the hypervisor and application.

Protecting applications from OS duplicity—Although InkTag can isolate a HAP
from the operating system, the application must still interact with the OS in order to use
essential services, such as opening files and mapping its address space. Traditionally,
through system calls such as mmap(), applications allow the operating system to determine
where in their address space to map resources. Although mmap() allows an application to
specify a fixed address for a mapping, this feature is seldom used by application code.
Applications’ reliance on OS allocation of the address space opens the door to Iago attacks
[8], a class of attacks against systems with untrusted operating systems.

Iago attacks exploit the fact that existing applications and libraries, most importantly the
standard C library, do not expect a malicious operating system. They do not verify that a
virtual address returned by the OS in response to mmap() corresponds to an existing
mapping in the application address space. For example, an application expects to run with its
heap and stack in disjoint regions of its virtual address space. If the application requests a
new memory mapping, the operating system could return an address that overlaps the
application's stack. Writes to the new mapping will overwrite portions of the stack,
introducing a vector to a traditional return-to-libc or return-oriented programming attack
[43].

4.2 Paraverification
We introduce a new technique called paraverification to simplify the hypervisor by
requiring the untrusted operating system to participate in verifying its own behavior.
Paraverification helps InkTag efficiently address the challenges of verifying address space
integrity, drawing inspiration from commonly-used paravirtualization techniques [5], which
improve performance when an OS is run in a virtual machine. Both paraverification and
paravirtualization work by having the OS communicate a high-level description of its intent
directly to the hypervisor. Indeed, our paraverification implementation uses the Linux
kernel's paravirtualization interface. Before modifying a process's page tables in the example
above, the OS must first make a hypercall to correlate the page table update with a high-
level application request. The kernel's paravirtualization interface includes a natural hook for
this hypercall.

Although the guest operating system participates in verification, it safely remains untrusted
because the hypervisor protects resources that it does not trust the OS to modify. Rather than
protecting application page tables, detecting faults from the untrusted OS, and trying to re-
verify address space integrity, the InkTag hypervisor protects application page tables and
then considers any access to be malicious. The OS cannot update the tables directly, it must
use the paravirtual interface, and the hypervisor will respond to unexpected accesses by
taking corrective action (such as killing the OS).

Hofmann et al. Page 10

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

4.3 Paraverified isolation
InkTag isolates a HAP's address space using paraverified operations on secure pages. As
described in section 4.1, InkTag must validate OS page table updates to ensure that HAP
virtual addresses map the correct, unmodified . To do so, the untrusted operating
system must pair each page table update with data proving that the update reflects the
application's intent.

When a HAP maps a region of memory to a file, it provides the untrusted OS kernel a secure
token that describes the mapping. The token is an unforgeable statement from the
application to the hypervisor that fully describes the requested mapping. One possibility for
a token would be an HMAC on a description of the desired mapping, using a secret key
shared between the HAP and the hypervisor. InkTag does not use an HMAC, but a simple
integer, which we now explain.

Because InkTag isolates a HAP from the operating system and must manage HAP page
tables, it can optimize the communication of tokens from application to the untrusted OS to
the hypervisor. All InkTag HAPs maintain a list of the mappings that make up their address
space, in the form of a list with nodes allocated from a single array at a known virtual
address in the application's address space. The untrusted OS cannot forge or modify entries
in the array, as it does not have access to the HAP's address space. Because the hypervisor
intercepts all page table updates for the HAP, it can trivially keep a small translation
lookaside buffer for just the virtual addresses that map the array of nodes. In InkTag, a token
to describe a memory mapping consists of a simple integer index into its list of maps.

On initialization, a HAP invokes a hypercall to inform the hypervisor about the base and
limit of its mapping list. When the HAP creates a new memory mapping, it allocates a new
entry from its array of nodes, initializes it with information about the mapping: the address
range, OID and offset the HAP intends to map, as well as a marker to indicate that this entry
is now valid. The HAP then sends the index of the entry to the untrusted OS as a token.
When the OS incurs a page fault, it uses its existing structures for indexing memory
mappings (already in service to handle the page fault) to locate the token and sends it to the
hypervisor along with the remaining information describing the page table update: the
address of the page table entry, the updated page table value, and the affected virtual
address.

Upon receiving the page table update and token, the hypervisor ensures the token describes a
valid index in the HAP's array. If so, it uses its lookaside buffer to translate the virtual
address and retrieves the mapping information. If the described address range matches the
fault, the hypervisor uses the provided object and offset information to verify the contents of
the newly mapped physical frame. If the address range does not match the fault, the index is
not contained within the HAP's array, or the index does not specify a valid entry, the
hypervisor will not install the new mapping. In the rare event that the virtual address
corresponding to the entry is not mapped, the hypervisor does not install the mapping and
injects a page fault into the application when it is next scheduled. The page fault, if correctly
handled by the untrusted OS, will cause the hypervisor to refill its lookaside buffer, the
application retries the original access and faults again, and the hypervisor may now access
the entry for the token.

Paraverification for HAP address spaces significantly reduces the complexity of the InkTag
hypervisor. Significant OS code is dedicated to efficiently looking up memory ranges during
memory management. Without paraverification, InkTag must duplicate this code so that it
may efficiently respond to changes in the HAP's page tables. Instead, InkTag leverages the

Hofmann et al. Page 11

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

existing OS index structures by requiring that the OS look up the relevant token for a new
mapping.

4.4 Verification of address space invariants
An Iago attack subverts application security by violating invariants that the application
assumes are true about its address space: that mappings returned by the operating system do
not overlap. However, an untrusted OS may violate this invariant at any time. In response, a
HAP could take on the responsibility of allocating regions of its address space, only
requesting new mappings at fixed addresses, and not accepting any variation from the
untrusted OS. However, we wish to avoid importing significant OS functionality into either
the hypervisor or application. Alternately, a HAP may verify that each mapping allocated on
its behalf by the OS respects necessary invariants. We take this approach with InkTag, while
shifting the burden of proving that mappings respect invariants from the HAP to the
untrusted operating system.

InkTag HAPs use an array of descriptors to enumerate the contents of their address space.
They maintain a linked list of entries, sorted in address order, with integer indices serving as
previous and next pointers. When a HAP requests a new mapping from the OS, in addition
to returning the newly allocated address, the OS also must return a token to the application:
the index of the application's entry in its list of maps that is immediately previous to the new
address allocated by the untrusted OS. As a result, the HAP can trivially both validate that
the new map does not overlap any existing maps, and insert it into the list in the proper
location, without needing to maintain its own sorting structures.

As with page table updates, paraverification for address space invariants allows applications
to defend against a duplicitous operating system, while relying on existing indexing
structures within the untrusted OS to perform most verification tasks.

5. Access control
Isolation and address space integrity provide the building blocks for secure HAP execution
under an untrusted operating system. However, real systems require usable mechanisms for
securely sharing data. InkTag is the first system to provide access control under an untrusted
OS.

Access control mechanisms in InkTag should meet the following criteria:

• Efficiency. Ultimately, the hypervisor will be responsible for enforcing access
control, and must do so on performance-critical events, such as updating page
tables. In addition, we wish to avoid bloating the trusted computing base by
requiring the hypervisor to evaluate complex policy decisions. A good access
control mechanism will have a simple and efficient hypervisor implementation.

• Familiarity. A wide spectrum of access control mechanisms exist, both in the
literature and in practice. However, most systems still rely on, and are well served
by, users and groups. InkTag's access control mechanism should map easily onto
these familiar primitives.

• Flexibility. Although users and groups will ease adoption, we also believe that the
security-critical applications that InkTag is designed to support will benefit from
the ability to create custom, descriptive access control policies. A shared,
omnipotent user such as the Unix “root” creates similar security problems to a
shared operating system, so users of InkTag should be able to create policies for
their data without the blessing of a system administrator.

Hofmann et al. Page 12

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Unlike traditional access control systems that define principals (such as users in Unix),
InkTag allows new principals, or even new types of principals, to be defined in a
decentralized way. For example, an InkTag system might implement decentralized groups,
in which any set of users can create a new group and agree to a group administrator.
Similarly, an InkTag system can implement decentralized user login: each user must only
trust her own personal login program, not a special system binary (§5.3).

5.1 Attributes for access control
Access control in InkTag is based on attributes. An attribute is a string, such as .user.alice
or .group.prof. Each HAP in InkTag carries a list of attributes that is inherited across events
such as fork() and exec(), similar to the way in which Unix processes have an effective user
or group id. Each OID has an access control list that specifies the attributes that must be
carried by a HAP for that HAP to access the object. OID access control lists are divided into
three access modes: read, write, and modify. Each access mode specifies an attribute
formula, a logical formula that must evaluate to true for a HAP to access the object.

The read and write access modes of an OID specify formulas that must evaluate to true for a
principal to read or write the object. For example, W = .user.alice is a simple formula that
evaluates to true (allowing write access) if a HAP has the .user.alice attribute.

 is a formula that evaluates to true (allowing read access)
if a HAP has either the .user.alice or the .group.prof attribute. The modify access mode
allows a HAP to modify the attribute formula for any of the access modes in an OID's access
control list.

In addition to access control lists on OIDs, attributes themselves also specify access control
lists, albeit with only two modes: add and modify. The add access mode allows a HAP that
satisfies the associated attribute formula to add the attribute to its own list. Access control
lists on attributes are the mechanism by which HAPs in InkTag can take on the role of
different principals, analogous to a setuid binary in Unix that allows a user to access
resources owned by another principal. For example, the .user.alice attribute might have the
access mode A = .apps.login, which means that any HAP that has the .apps.login attribute
can add the .user.alice attribute. A HAP can drop an attribute it owns at any time via a
hypercall. As with files, the modify access mode for an attribute allows a HAP to change an
attribute's access control list. Modifying attributes is how InkTag HAPs manage their access
control credentials.

All attribute formulas are expressed in disjunctive normal form (DNF) without any
negations. This makes attribute formulas simple to evaluate in the hypervisor, and also easy
for people to understand. Checking attribute formulas requires only 207 lines of code in the
InkTag hypervisor.

5.2 Decentralized access control
An important goal for InkTag's attribute system is decentralization. An InkTag user should
be able to define new principals and policies to control access to her files. Decentralized
access control allows high-assurance, multi-user services to define their own access control
policies, enforced by the hypervisor, without relying on a system administrator.

InkTag decentralizes attributes with hierarchically named attributes. Attributes are named
hierarchically, as a list of components separated with a ‘.’ character. If a HAP has attribute
X, then the HAP may create new attributes named X.Y for any Y. For example, if user alice is
represented using the attribute .user.alice, she might create the attribute .user.alice.photos
for her photo-sharing program. This attribute could be used both to restrict photo access to

Hofmann et al. Page 13

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

specific authorized programs, as well as to ensure that a photo-sharing program does not
access unrelated files, by running it with only the attribute .user.alice.photos, and not the
parent attribute .user.alice.

5.3 Login and decentralized login
User login provides an instructive case study for access control. First, consider a system that
wants to have a single trusted login program. The system must provide a trusted path from
that binary to a shell that runs with a user's attribute (e.g., .user.alice).

The InkTag hypervisor starts every HAP with a special attribute .bin.〈oid〉, where 〈oid〉 is
the string representation of the file's OID. The system administrator defines the .apps.login
attribute with an add access mode A = .bin.〈login oid〉 where 〈login oid〉 identifies the login
binary. When the login binary starts, it makes a hypercall to obtain the .apps.login attribute.
The .user.alice attribute has an add access mode A = .apps.login, allowing the login program
to add the .user.alice attribute when presented with the proper credential (such as a
password). Users trust the login program to drop the .apps.login attribute, so once Alice has
control, the HAP can no longer change users. The login program then execs Alice's shell,
which runs with the .user.alice attribute.

With centralized login, all users trust the login binary (and its administrator). With
decentralized login, a user need only trust her own login binary, though she still must obtain
permission for her user name from an administrator (after all, it is the login process being
decentralized, not the add user operation). The user administrator (whoever can run
programs that have the .user attribute) establishes the .user.alice attribute with an add access
mode A = .apps.login.alice. Alice compiles her login program, informs the login
administrator (who can run programs that have the .apps.login attribute), to create
the .apps.login.alice attribute with add access mode A = .bin.〈alice login oid〉.

To log in, Alice executes her login program, which is given the attribute .bin.〈alice login
oid〉 by the hypervisor. The login program obtains the .apps.login.alice attribute, dropping
the attribute .bin.〈alice login oid〉. It then checks Alice's credential (e.g., password), and if
valid, obtains the .user.alice attribute, dropping the attribute .apps.login.alice, and starting a
shell.

With decentralized login, a user can completely control how they log in, using whatever
credentials and process they desire. There is no single login binary that serves as a target for
malicious attacks. A compromised decentralized login binary gives the attacker credentials
only for the compromised user. In practice, systems would likely provide a default login
binary for users who do not want to create their own.

As part of future work, we plan on investigating the security implications of InkTag's
attribute-based access control.

5.4 Naming and integrity
InkTag does not currently support sets of OIDS (i.e., directories). However, the hierarchical
layout of traditional file systems does convey an important property that is essential for
application security: file integrity. Consider the standard Unix /etc directory. Applications
rely on the property that only trusted system administrators can create or modify files in /etc,
because those configuration files can dramatically change application behavior. InkTag must
provide some mechanism to convey similar security-essential information.

InkTag provides integrity guarantees for files with specialized attributes called namespaces.
Namespaces are strings created hierarchically, as attributes, and have access control lists that

Hofmann et al. Page 14

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

allow a HAP to add the namespace to its list of attributes. Although we consider attributes
for access control and namespaces to be conceptually distinct, they are functionally
identical.

Namespaces convey integrity information by acting as gate-keepers to file creation. When
an application creates a new file, the InkTag hypervisor must assign the file an OID. Each
OID is generated from two components: a namespace and an arbitrary string, similarly to the
way in which a file is created within a directory, with a given file name. To generate an
OID, the application must carry the desired namespace in its list of attributes. The
hypervisor hashes the two components, and uses the result as the new OID. Any HAP that
later accesses the file knows that it was created by a HAP that carried the associated
namespace.

Note that namespaces do not restrict file access—a HAP may open a file created within a
namespace regardless of whether it carries that namespace in its list. Consider a
configuration directory similar to /etc. In InkTag, there would exist a .ns.etc namespace,
with the add access mode A = .group.sysadmin. A HAP run by a system administrator
(member of the sysadmin group, thus carrying the .group.sysadmin attribute) may create a
file by adding the .ns.etc attribute, specifying a name (e.g. “passwd”), and passing both
components to the hypervisor, which permits the OID's creation.

A HAP opening the file generates the OID by hashing .ns.etc and “passwd,” though it is not
required to carry the .ns.etc names-pace, only to know of its existence. The HAP can trust
that the contents of the file were generated by a system administrator, because only a
member of of the sysadmin group could create the file initially (as checked by the
hypervisor), and it trusts such principals to correctly manage access control for files they
create.

6. Storage and consistency
InkTag stores secure page metadata in memory for any secure pages whose data segments
also reside in memory. The untrusted operating system is responsible for placing the data
segments of secure pages on the virtual disk. For secure pages to be durable, InkTag must
also store secure metadata: the OID and offset corresponding to each block of data, its hash,
and the encryption initialization vector (IV) necessary to decrypt the data. This section
addresses a number of practical challenges in persistently and transparently storing
metadata, including addressing consistency between OS and InkTag storage.

Data layout
InkTag must synchronize updates to and metadata, and should store secure
metadata efficiently. When the OS issues a read request for secure page data, the hypervisor
should not require significant additional lookup work in order to also read in secure page
metadata. Also, storing secure metadata should not confound OS disk scheduling by adding
disk seeks to store or retrieve secure metadata.

InkTag addresses these goals by interspersing storage of secure page data and metadata on
the physical disk, then presenting the data storage to the untrusted OS as a contiguous virtual
disk without the sectors employed to store secure metadata. The size of the media, as seen
by the untrusted OS, is smaller than the size of the physical drive or backing file. When
reading or writing a secure page, the secure InkTag metadata will always reside in the
closest metadata storage block, causing limited performance overheads.

Hofmann et al. Page 15

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Synchronizing storage of secure data and metadata—InkTag employs
paraverification techniques to properly synchronize storage of secure data and metadata.
Before the untrusted OS may write out a page via the virtual disk, it must notify the InkTag
hypervisor. If the physical frame being written contains data for an , InkTag ensures
that the page is encrypted, and passes the relevant metadata to the backend driver for the
virtual disk. The backend consumes this metadata while writing pages to the physical disk,
placing each piece of secure metadata in the metadata block closest to disk block containing
the data for the .

Providing guarantees on data availability—Although InkTag is unable to provide
availability guarantees in many cases, the hypervisor can enforce OS deadlines for writing
out dirty data. For example, if a reasonable upper bound for dirty data residing in the OS is
30 seconds, InkTag may suspect OS malfeasance if it has not detected a write of a particular
secure page after 45 seconds. Although the hypervisor may not be able to retrieve
in memory that the OS has simply erased, it can prevent applications from proceeding under
the incorrect assumption that are safely on disk. Similarly, a HAP may notify the
InkTag hypervisor when it explicitly requests that dirty pages be written out (such as when
invoking the msync system call), and receive confirmation when the writeback actually
occurs, or a warning that the OS has not complied.

Preventing deletion or loss of high-assurance data—Because filesystem indexing
structures vary widely between file systems, it is difficult to verify their correctness at
hypervisor level. As a result, a malicious OS could appear to comply with InkTag policy by
writing out file data blocks but not updating filesystem metadata, leaving file data blocks
inaccessible.

InkTag provides a secure fsck mechanism for conservation of high-assurance data in the
face of this threat. Secure page metadata includes file and offset information, allowing
InkTag to reconstruct secure files independently of OS indexing structures. In addition,
InkTag may prevent the OS from overwriting a secure page, unless the OS is replacing the
page with a newer version of the same secure page, or if a newer version of the page has
previously been written elsewhere on disk.

Consistency for secure pages in the face of crashes—InkTag is the first system to
address consistency requirements for an untrusted operating system. Without proper
filesystem consistency, file data may become unavailable, file updates may be lost, and
access control changes may not be honored.

When the OS writes an to disk on behalf of a HAP, both the new and its
hash must be stored. If the system crashes after only writing the contents or the
hash, valid data could become unavailable, because InkTag would be unable to verify its
authenticity. InkTag keeps two versions of each hash: the version for the page on
disk before the update, and after. Before a data write, InkTag will store the updated hash on
disk. Because disk drives write blocks atomically, a hash matching the data will always be
on disk, and high-assurance data on the backing store will always be available.

In our current prototype, per-file metadata (such as access control information and the file's
length) is stored separately from the guest filesystem, in storage private to the hypervisor.
We leave to future work enforcing consistency between per-file and per-page metadata.

Hofmann et al. Page 16

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

7. Implementation
This section describes our prototype implementation of InkTag. InkTag consists of three
major components: the InkTag hypervisor, extensions to the untrusted guest OS to support
paraverification, and tools to compile user-level applications to run as HAPs.

7.1 InkTag hypervisor
The InkTag hypervisor is built as an extension to the KVM (Kernel Virtual Machine)
hypervisor, a standard module included in the Linux kernel. We extend the Linux 2.6.36
kernel and KVM implementation. InkTag is built to support Intel's VMX hardware
virtualization support, although we believe its design to be equally applicable to hardware
virtualization support in AMD processors.

During execution of the untrusted guest operating system and non-InkTag applications, the
hypervisor behaves almost identically to a hypervisor without InkTag support, with most
virtualization tasks handled by hardware virtualization extensions present in the processor.
The untrusted EPT (§3.2) is used to translate guest-physical addresses during untrusted
execution, and most page table operations (except for those on a HAP's address space) occur
without hypervisor intervention.

Scheduling—Upon scheduling a HAP, InkTag must ensure that the untrusted OS cannot
execute any code in a high-assurance context. To protect the HAP from the OS, it disallows
automatic vectoring of interrupts and exceptions by the virtualization hardware. If InkTag
allowed the hardware to vector interrupts automatically, then the operating system would
gain control while still executing in a high-assurance context, with cleartext access to secure
pages. Intel processors allow for fine-grained control over enabled virtualization features via
bits in the virtual machine control structure (VMCS), the hardware descriptor used to control
virtualization. To schedule a HAP, InkTag clears many of the feature bits in the VMCS,
installs the trusted EPT, and then transfers control to the HAP.

When an interrupt or exception occurs during HAP execution, InkTag saves and then clears
the HAP's register file. The untrusted OS must be prevented from reading or writing HAP
registers. InkTag directs the instruction pointer to a small untrusted trampoline in a part of
the HAP's address space unprotected by InkTag. This trampoline is responsible for
interactions between the HAP and the guest OS (such as invoking system calls), and also for
rescheduling the HAP when the HAP's process context is rescheduled by the operating
system. The HAP receives system call results from the trampoline, but does not trust it — all
information is validated as if it came from the untrusted OS.

Page tables—Each HAP has two page tables, and shares the systemwide trusted and
untrusted EPTs. One page table is written directly by the untrusted kernel, which we refer to
as the OS page table. It is written directly by the OS (even when using the paravirtualized
interface, Linux also updates the page table directly), and its contents are not trusted. The
other page table is written only by the InkTag hypervisor in response to calls by the
untrusted OS that are successfully verified, which we refer to as the hypervisor page table.
The hypervisor page table is trusted. For a non-malicious OS, its page table should be a
superset of the hypervisor page table.

When a HAP runs in untrusted mode (e.g., just before making a system call), cr3 points to
the OS page table, and when a HAP runs in trusted mode, the hypervisor points cr3 to the
hypervisor page table. In trusted mode, there is a single untrusted mapping, for the pages
used to marshal and unmarshal system call arguments. InkTag must guarantee that the OS
has not overlapped the mapping of this area with any trusted mapping. In untrusted mode,

Hofmann et al. Page 17

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the process can map any , but access to that page will be detected by the permission
bits in the untrusted EPT, and the hypervisor will encrypt and hash the page before giving
the untrusted code access to the page.

Although the untrusted OS cannot access the hypervisor page tables, it is responsible for
their allocation. On each page table allocation on behalf of a HAP, the guest OS must also
allocate a hypervisor page table page and send both to the InkTag hypervisor in order to
successfully add to the page table tree. The hypervisor protects the hypervisor page table
page from the guest OS until that part of the page table tree is deallocated, at which point the
guest regains access.

7.2 Untrusted OS extensions
We extend the untrusted guest kernel to support paraverification. Information about updates
to HAP page tables form the majority of paraverification events, and take advantage of
existing paravirtualization callbacks present in the Linux kernel. We install an un-trusted
module into the guest kernel to handle these callbacks. The kernel module is responsible for
receiving tokens from HAPs requesting memory mappings, and passing these tokens to the
InkTag hypervisor on page faults.

Although untrusted, the guest kernel module is cooperative when uncompromised, and
attempts to minimize the amount of communication with the InkTag hypervisor. Any
hypercall causes a VM-exit (a context switch from guest to hypervisor), thus unnecessary
communication should be avoided to maximize performance. The untrusted kernel module
tracks which processes contain HAPs, and communicates page table information only for
those processes. In addition, the kernel module performs extensive batching of page table
updates. While the Linux paravirtualization interface supports some batching of address
space updates (such as a series of page table updates occurring before a TLB flush), our
kernel module extends this buffering significantly, because the InkTag hypervisor can safely
wait to process most updates until directly before scheduling a HAP. This allows
communication of paraverification information without any additional VM-exits, as
scheduling a HAP already requires passing control to the InkTag hypervisor.

7.3 Building HAPs
In our current prototype, InkTag HAPs must be compiled from C source code. C
applications are built as HAPs primarily by replacing the standard C library and startup files
with InkTag-specific versions. We modify standard C startup files to initialize the current
process as a HAP before passing control to the C library. On initialization, the HAP sends
the OID of its executable to the InkTag hypervisor, which initializes a HAP context, and
adds the .bin.〈oid〉 attribute. Note that any process may invoke initialization claiming to be
any executable OID. However, after initialization the InkTag hypervisor will ensure
integrity for the process address space. Thus to continue executing as a HAP, the process
must construct an address space that is byte-for-byte identical, and thus functionally
equivalent, to the originally claimed binary.

We automate HAP interaction with the InkTag hypervisor by interposing on system calls in
the standard C library. For example, when an application calls mmap(), the system call is
intercepted by our trusted InkTag library. The library performs the system call, validates the
result to ensure that the untrusted OS does not violate invariants for the address space (§4.4),
and passes a token to the untrusted OS for handling page faults in the newly mapped region
(§4.3).

Hofmann et al. Page 18

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

InkTag does not expose information about hashes and encryption keys for to
applications. Thus HAPs must interact with secure files by mapping them into their address
space. We implement mmap()-based versions of standard read() and write() system calls to
support applications that rely on those calls for file I/O.

7.4 Block Driver
To implement transparent loading of metadata, we add a new block driver
implementation to the QEMU (the userspace portion of KVM) block driver interface. The
new block driver transparently translates read and write requests from the hardware
emulation layer. Doing the translation at this level puts us at the lowest layer before the
actual hardware allowing us to better adjust and handle the block requests.

Our secure metadata consists of two 32-byte hashes, an OID, and an offset. We place secure
page metadata once every 32 pages of normal data. We track which disk sectors contain
valid using a bitmap. This bitmap is mapped and updated as HAPs execute, and is
written to disk only upon shutdown. This policy is safe even in the event of a crash: there
will be enough data on disk to be able to recover the bitmap.

8. Evaluation
In this section we evaluate the performance overhead imposed by our InkTag prototype built
in the KVM hypervisor. We evaluated InkTag's performance using two different machines:
we run latency and SPEC CPU benchmarks on an i7 860 running at 2.80GHz, and InkTag
block storage and application benchmarks on an Intel i7 870 at 2.93GHz. Both machines
have quad-core processors, 8GB of memory, and run Ubuntu 10.04.4.

We modify the 2.6.36 Linux kernel and QEMU 0.12.5 for InkTag, and run unmodified
versions for the baseline. VM guests run with a single virtual CPU, 2GB of memory, and the
same kernel as the host. In the InkTag guest, all benchmark binaries run as HAPs.

8.1 Microbenchmarks
Table 2 shows results from the LMBench [30] suite of OS microbenchmarks. LMBench is a
series of portable microbenchmarks focused on measuring individual OS operations in
isolation. We restrict our evaluation to focus on file operations, memory manipulation, and
process creation, as these are the areas that will be affected by running as an InkTag HAP.
We modify LMBench only enough to turn its components into HAPs: 68 lines of
modifications to the build system and 5 lines of configuration changes.

The null syscall benchmark primarily measures the latency of switching between an
application and the OS, and represents the worst case for InkTag. A HAP must context
switch from user context, to the virtual machine, then into the operating system, and then
return along the opposite path. The high latency for switching between application and OS
directly impacts the performance of nearly all of the LMBench microbenchmarks, as they
measure interactions between an application and the operating system. Additionally,
operations that involve any kind of page table update, such as mmap, fork, and fork+exec,
are also affected due to the InkTag hypervisor validating each page table update. These
overheads appear large in isolation; however, most applications are significantly less
sensitive to system call latency than microbenchmarks. Most of the LMBench benchmarks
show a difference in latency that is 10s of microseconds or less.

Hofmann et al. Page 19

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

8.2 Storage
We evaluate InkTag's storage backend with a benchmark that synchronizes regions varying
in size from a 256MB secure file cached in memory to the virtual disk. We disable host OS
caching for our virtual disk, to best simulate the effect of actual disk scheduling on I/O
throughput. Figure 7 shows the performance of syncing varying window sizes, from 4KB to
1MB, either sequentially through the file or in random order. In addition, we show numbers
for a version of InkTag in which we have disabled encryption and hashing, in order to
isolate the effect of disk scheduling on performance. The encryption and hashing occur
when the OS touches to sync them to disk. Our InkTag prototype interleaves

 data and metadata at an interval of 32 pages (128KB). For window sizes above
128KB, InkTag approaches the performance of a standard block device, as the InkTag block
driver can combine a page of metadata with 32 data pages in a single write to the backing
device. Beneath that threshold, InkTag's performance suffers, especially for sequential
writes. This is due to InkTag's metadata layout. For example, sequential writes to each of the
4KB pages in a single cluster of data pages represents a good case for disk scheduling.
InkTag, however, must write the metadata page followed by the data page for each of these
writes, causing the disk to seek back and forth instead of writing sectors in sequential order.

8.3 Application benchmarks
We measure the overhead imposed by InkTag with three different types of applications:
CPU-bound SPEC benchmarks, the Apache web server, and DokuWiki, a complete wiki
application converted to use InkTag attributes for authentication.

SPEC—With little OS interaction, CPU-bound applications exhibit little performance
overhead when running as HAPs. Figure 8 shows results for selected benchmarks from the
SPEC 2006 [19] suite (InkTag does not support Fortran). Out of twelve benchmarks, nine
benchmarks run within a 3% performance overhead of unmodified KVM, and gcc
benchmark has the largest overhead of 14%.

Apache—Table 3 shows results for our evaluation of the performance of the Apache
webserver when compiled as a HAP. We run the standard ab benchmarking tool included
with Apache on the machine hosting the virtualized guest, providing nearly unlimited
bandwidth from the web server to client. We execute 10,000 requests from client to server,
at a concurrency level of 100. The Apache web server serves requests with a 13% overhead
in latency, and a 2% overhead in throughput relative to normal virtualized execution.
Apache represents a relatively good case for InkTag: with several long-lived processes,
Apache rarely has to pay the increased costs imposed by InkTag for application initialization
and teardown.

DokuWiki—In order to demonstrate the ability of InkTag to provide security for realistic
workloads, we modified the DokuWiki2 wiki server to take advantage of InkTag secure files
and access control. DokuWiki is a wiki written in PHP that stores wiki pages as files in the
server filesystem. We recompiled the PHP CGI binary to work with InkTag and ran
DokuWiki as a CGI script. We added an InkTag authentication module to DokuWiki to
allow a user to log in with their system credentials (similar to the decentralized login process
described in §5.3) and to restrict access to wiki content via InkTag access control.

To test the effect of InkTag on a representative set of modifications to a representative
DokuWiki installation, we downloaded a set of 6,430 revisions of 765 pages from the

2http://www.dokuwiki.org

Hofmann et al. Page 20

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.dokuwiki.org

DokuWiki website (which is itself run using DokuWiki) to simulate wiki activity. We
evaluate DokuWiki with a 90% read workload, which we believe a reasonable
characterization of a wiki workload. Each write replaces a page with the subsequent revision
of a page in the downloaded DokuWiki corpus. We measured the total wallclock time for 10
clients to perform a collective 1,000 requests on the wiki. Our wiki client makes use of an
XML RPC interface that DokuWiki provides to avoid the need for programmatically
interfacing with DokuWiki forms.

As a HAP with InkTag authentication, DokuWiki runs with a 1.54× overhead over a
baseline virtualized execution. As a PHP application, DokuWiki maps a large number of
scripts (with integrity assured by the InkTag hypervisor) into memory and exercises a
significant amount of anonymous temporary memory. As with OS users, InkTag's
authentication aligns along process boundaries. Thus, we must run DokuWiki as an
inefficient CGI application, not as an Apache module. CGI is a performance worst case for
InkTag: each request initializes and destroys an entire application address space.

Virtualization metrics—Table 4 shows counts for a number of performance-critical
events during the execution of our large application benchmarks. Specific to InkTag
execution are the number of times physical frames are hashed, as well the number of times
the hash of the associated is updated (this event also counts the number of times an

 must be encrypted). With a few long-lived processes, most of the address space for
the Apache web server remains mapped in the trusted EPT, requiring relatively few hash
updates. DokuWiki, which constructs and destroys an address space for each request, has a
large number of hash operations.

Of particular note are the number of times InkTag is requested to verify the hash for a page
consisting entirely of zeroes. In fact, the vast majority of hash operations are invoked to
determine if a page is initialized to zero (2.8 out of 2.9 million hash operations for the
DokuWiki benchmark). InkTag optimizes this case: when asked to verify the hash of a
physical frame, InkTag compares the hash value with the hash of a zero page. If the page
should contain only zero, InkTag simply verifies that property, rather than computing a full
digest. As a result, computation of hashes is not a significant factor in InkTag's performance
overhead. Similarly, while encryption is necessary for privacy, it does not significantly
affect running time: the majority of pages that would otherwise be encrypted due to access
by the operating system are in fact anonymous memory regions that have been unmapped by
an application. The entire memory region is being destroyed, so it needs only be erased, not
encrypted for privacy and hashed for integrity.

A major factor for InkTag performance is the number of times the processor must switch
context between the virtual machine and the host. In the DokuWiki benchmark, for example,
InkTag must exit the virtual machine nearly two orders of magnitude more often than a
standard execution. We hope to investigate ways to reduce the cost of such context switches
as part of future work.

9. Related work
Untrusted operating systems

InkTag, XOMOS [26], SP3 [47], and Overshadow [11, 35] share the goal of minimizing the
ability of an untrustworthy system component to tamper with a sensitive application.
Previous work focused on isolating high-assurance applications from the system, while
InkTag focuses on allowing the application to use untrusted system services, providing
access control and crash recovery for persistent storage. For example, while Overshadow
guarantees that user processes are isolated from the operating system, it does not implement

Hofmann et al. Page 21

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

access control for secure data: once an application that has created a secure file terminates,
there is no meaningful way for processes to share access to that file.

Just as InkTag allows a trusted process and hypervisor to stop trusting the OS, CloudVisor
[49] allows a trusted process, OS, and nested hypervisor to stop trusting the hypervisor and
other cloud management software. Another approach, exemplified in Proxos [44],
essentially reimplements portions of the OS in the application; this approach does not
address shared abstractions between mutually untrusting programs.

Virtual machines
The use of virtual machine monitors to help protect operating system and application
execution is not a new concept; there have been systems ranging from providing dedicated
virtual hardware per secure application [18] to enforcing kernel entry and exit points to
provide system integrity [42]. By allowing applications to make use of extensive operating
system facilities for sharing data, while still verifying its behavior, InkTag provides a much
more flexible solution than heavyweight per-application virtualization. At the other end of
the spectrum, simple code integrity is not sufficient to ensure operating system safety [21].

Trusted computing
Recent systems, including Flicker [29], TrustVisor [28], and Memoir [33] leverage the TPM
to completely isolate sensitive computations, such as encryption and random number
generation, from the OS. These systems can protect an application's random number
generator's internals from being leaked to the OS, but they cannot protect larger code that
requires OS functionality, such as file access.

Benign OS integrity
Another related branch of research attempts to prevent malicious inputs from compromising
a non-malicious OS, including HookSafe [45], KernelGuard [39], and several others [2, 10,
27, 40]. These systems often prevent specific classes of security problems and are not
designed for the strong adversarial model InkTag can defend against.

VM introspection
Several systems attempt to enforce security properties on a non-malicious guest OS by
interpreting low-level events based on expert information [24, 34, 38, 46], automatic source
code extraction [17, 20, 23], or inferred from observing program executions [4, 14]. This
interpretation is fragile (called the semantic gap [9]) and, broadly speaking, work in this area
assumes a weak adversarial model. InkTag's paraverification avoids the semantic gap and
provides fundamentally stronger guarantees.

Sandboxing
This work is concerned with assuring the integrity of necessary OS functionality; yet this is
easily conflated with the goal of isolating untrusted applications, or sandboxing. Several
recent sandboxing architectures have explored techniques that limit OS access [15, 36, 48],
or monitor system calls [3, 6, 16, 22, 37] to protect the OS's sharing abstractions from a
malicious application.

Hierarchically Named Access Control
In recent years, work in the area of hierarchical naming and attribute based access control
has landed mostly in the area of distributed systems and grid computing [7, 12]. ABAC [41]
and XACML [32] are both projects aimed at bringing attribute based access control to the
enterprise world. InkTag differs in scope, whereas these projects try to define attributes on

Hofmann et al. Page 22

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

employees, InkTag tries to implement flexible access control at the level of individual
processes.

UserFS [25] allows principals to hierarchically manage creation and deletion of sub-
principals. The system uses traditional UIDs as a namespace for managing access control of
files and resources. UserFS achieves the goals of efficiency and familiarity but has
difficultly easily expressing group semantics and even more flexible access control policy
since processes can have only one UID or effective UID at a time. InkTag does not depend
on the complicated code in the guest operating system, and can achieve more flexible
policies through attributes.

10. Conclusion
InkTag represents a significant step forward in verifying the behavior of untrusted operating
systems. By removing the burden of attempting to verify a completely unmodified operating
system, paraverification enables a simple, high-performance hypervisor implementation.
InkTag is the first such system to enable access control for secure data, as well as address
essential system issues such as crash consistency between OS-managed data and secure
metadata.

Acknowledgments
We thank the anonymous reviewers and Carl Waldspurger for their comments on earlier versions of this paper. This
research is supported by NIH R01 LM011028-01, NSF CNS-0905602, and NSF CAREER CNS-0644205.

References
1. Microsoft security bulletin search. 2012. http://technet.microsoft.com/security/bulletin

2. Abadi, Martín; Budiu, Mihai; Erlingsson, Úlfar; Ligatti, Jay. Control-flow integrity. CCS. 2005

3. Acharya, Anurag; Raje, Mandar. MAPbox: Using parameterized behavior classes to confine
applications. USENIX Security. 2000

4. Baliga, Arati; Ganapathy, Vinod; Iftode, Liviu. Automatic inference and enforcement of kernel data
structure invariants. ACSAC. 2008

5. Barham, Paul; Dragovic, Boris; Fraser, Keir; Hand, Steven; Harris, Tim; Ho, Alex; Neugebauer,
Rolf; Pratt, Ian; Warfield, Andrew. Xen and the art of virtualization. SOSP. 2003

6. Bernaschi, Massimo; Gabrielli, Emanuele; Mancini, Luigi V. REMUS: A security-enhanced
operating system. TISSEC. 2002; 5(1)

7. Bobba, Rakesh; Fatemieh, Omid; Khan, Fariba; Gunter, Carl A.; Khurana, Himanshu. Using
attribute-based access control to enable attribute-based messaging. ACSAC. 2006

8. Checkoway, Stephen; Shacham, Hovav. Iago attacks: Why the system call API is a bad untrusted
RPC interface. ASPLOS. Mar.2013

9. Peter M, Chen, Noble Brian D. When virtual is better than real. HotOS. 2001:133.

10. Chen, Shuo; Xu, Jun; Sezer, Emre C.; Gauriar, Prachi; Iyer, Ravishankar K. Non-control-data
attacks are realistic threats. USENIX Security. 2005

11. Chen, Xioaxin; Garfinkel, Tal; Christopher Lewis, E.; Subrahmanyam, Pratap; Waldspurger, Carl
A.; Boneh, Dan; Dwoskin, Jeffery; Ports, Dan R. K. Overshadow: A virtualization-based approach
to retrofitting protection in commodity operating systems. ASPLOS. May.2008

12. Cirio, Lorenzo; Cruz, Isabel F.; Tamassia, Roberto. A role and attribute based access control
system using semantic web technologies. OTM. 2007

13. Dierks, Tim; Rescorla, Eric. RFC 5246: The Transport Layer Security (TLS) Protocol: Version
1.2.. 2008. http://tools.ietf.org/html/rfc5246

14. Dolan-Gavitt, Brendan; Leek, Tim; Zhivich, Michael; Giffin, Jonathon; Lee, Wenke. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. Oakland. May.2011

Hofmann et al. Page 23

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://technet.microsoft.com/security/bulletin
http://tools.ietf.org/html/rfc5246

15. Douceur, John R.; Elson, Jeremy; Howell, Jon; Lorch, Jacob R. Leveraging legacy code to deploy
desktop applications on the web. OSDI. 2008

16. Fraser, Timothy; Badger, Lee; Feldman, Marc. Hardening COTS software with generic software
wrappers. Oakland. 1999

17. Fraser, Timothy; Evenson, Matthew R.; Arbaugh, William A. VICI—virtual machine introspection
for cognitive immunity. ACSAC. 2008:87–96.

18. Garfinkel, Tal; Pfaff, Ben; Chow, Jim; Rosenblum, Mendel; Boneh, Dan. Terra: A virtual
machine-based platform for trusted computing. SOSP. Oct.2003

19. Henning, John L. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News. 2006; 34(4):1–17.

20. Hofmann, Owen S.; Dunn, Alan M.; Kim, Sangman; Roy, Indrajit; Witchel, Emmett. Ensuring
operating system kernel integrity with OSck. ASPLOS. Mar.2011

21. Hund, Ralf; Holz, Thorsten; Freiling, Felix C. Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. USENIX Security. 2009

22. Jain, Kapil; Sekar, R. User-level infrastructure for system call interposition: A platform for
intrusion detection and confinement. NDSS. 2000

23. Jiang, Xuxian; Wang, Xinyuan; Xu, Dongyan. Stealthy malware detection through VMM-based
“out-of-the-box” semantic view reconstruction. CCS. 2007:128–138.

24. Jones, Stephen T.; Arpaci-Dusseau, Andrea C.; Arpaci-Dusseau, Remzi H. Antfarm: tracking
processes in a virtual machine environment. USENIX. 2006

25. Kim, Taesoo; Zeldovich, Nickolai. Making linux protection mechanisms egalitarian with UserFS.
USENIX Security. USENIX Association. 2010

26. Lie, David; Thekkath, Chandramohan A.; Horowitz, Mark. SOSP. ACM Press; 2003.
Implementing an untrusted operating system on trusted hardware.; p. 178-192.

27. Loscocco, Peter A.; Wilson, Perry W.; Aaron Pendergrass, J.; Durward McDonell, C. Linux kernel
integrity measurement using contextual inspection. STC. 2007

28. McCune, Jonathan M.; Li, Yanlin; Qu, Ning; Zhou, Zongwei; Datta, Anupam; Gligor, Virgil;
Perrig, Adrian. TrustVisor: Efficient TCB reduction and attestation. Oakland. May.2010

29. McCune, Jonathan M.; Parno, Bryan; Perrig, Adrian; Reiter, Michael K.; Isozaki, Hiroshi. Flicker:
An execution infrastructure for TCB minimization. EuroSys. Apr.2008

30. McVoy, Larry; Staelin, Carl. USENIX. USENIX Association; Berkeley, CA, USA: 1996.
LMbench: portable tools for performance analysis.; p. 23-23.

31. NIST. National vulnerability database. 2012. http://nvd.nist.gov/

32. OASIS. eXtensible access control markup language. 2012. https://www.oasis-open.org/
committees/tc_home.php?wg_ abbrev=xacml

33. Parno, Bryan; Lorch, Jacob R.; Douceur, John R.; Mickens, James; McCune, Jonathan M. Memoir:
Practical state continuity for protected modules. Oakland. 2011

34. Payne, Bryan D.; Carbone, Martim D. P. de A.; Lee, Wenke. Secure and flexible monitoring of
virtual machines. ACSAC. 2007

35. Ports, Dan R. K.; Garfinkel, Tal. HotSec. USENIX; San Jose, CA, USA: 2008. Towards
application security on untrusted operating systems..

36. Potter, Shaya; Nieh, Jason. Apiary: Easy-to-use desktop application fault containment on
commodity operating systems. USENIX. 2010

37. Provos, Neils. Improving host security with system call policies. USENIX Security. 2003

38. Anh Quynh, Nguyen; Takefuji, Yoshiyasu. Towards a tamper-resistant kernel rootkit detector.
SAC. 2007

39. Rhee, Junghwan; Riley, Ryan; Xu, Dongyan; Jiang, Xuxian. ARES. Fukuoka, Japan: Mar. 2009
Defeating dynamic data kernel rootkit attacks via VMM-based guest-transparent monitoring..

40. Rhee, Junghwan; Xu, Dongyan. Technical report. Purdue University; West Lafayette, IN: Feb.
2010 LiveDM: Temporal mapping of dynamic kernel memory for dynamic kernel malware
analysis and debugging..

41. Ryan, Mike; Faber, Ted; Su, Mei-Hui; Wroclawski, John; Schwab, Steve. A.B←A.C. 2012. http://
abac.deterlab.net/

Hofmann et al. Page 24

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://nvd.nist.gov/
http://https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://abac.deterlab.net/
http://abac.deterlab.net/

42. Seshadri, Arvind; Luk, Mark; Qu, Ning; Perrig, Adrian. SecVisor: A tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. SOSP. 2007:335–350.

43. Shacham, Hovav. CCS. ACM Press; Oct. 2007 The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).; p. 552-61.

44. Ta-min, Richard; Litty, Lionel; Lie, David. Splitting interfaces: Making trust between applications
and operating systems configurable. OSDI. 2006:279–292.

45. Wang, Zhi; Jiang, Xuxian; Cui, Weidong; Ning, Peng. Countering kernel rootkits with lightweight
hook protection. CCS. 2009

46. Xu, Min; Jiang, Xuxian; Sandhu, Ravi; Zhang, Xinwen. Towards a VMM-based usage control
framework for OS kernel integrity protection. SACMAT. 2007

47. Yang, Jisoo; Shin, Kang G. Using hypervisor to provide data secrecy for user applications on a
per-page basis. VEE. 2008:71–80.

48. Yee, Bennet; Sehr, David; Dardyk, Gregory; Bradley Chen, J.; Muth, Robert; Ormandy, Tavis;
Okasaka, Shiki; Narula, Neha; Fullagar, Nicholas. Native client: A sandbox for portable, untrusted
x86 native code. Oakland. 2009:79–93.

49. Zhang, Fengzhe; Chen, Jin; Chen, Haibo; Zang, Binyu. CloudVisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. SOSP. 2011

Hofmann et al. Page 25

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
InkTag design overview. In InkTag high-assurance processes (HAPs) make hypercalls to the
virtual machine hypervisor to verify the runtime behavior of the operating system. The
hypervisor is trusted.

Hofmann et al. Page 26

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Address space protection using both EPT and management of HAP page tables. The InkTag
hypervisor uses two EPTs to divide access between physical frames containing cleartext

, and those containing untrusted data or encrypted . Then, it manages HAP
page tables to restrict access within the set of secure frames.

Hofmann et al. Page 27

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Two kernels mapping the address space of process that share a file. Both are non-malicious,
but kernel B confounds efficient verification efforts by sharing page tables between
processes.

Hofmann et al. Page 28

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
An Iago attack. An application relying on the OS to allocate its address space may be
subverted by a malicious OS, if the OS allocates memory regions that are not disjoint.

Hofmann et al. Page 29

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Paraverified isolation. A HAP maintains a list of memory mappings in its secure address
space, providing the untrusted OS indices into the list. The untrusted OS must pass the same
index to the InkTag hypervisor in order to handle page faults.

Hofmann et al. Page 30

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
InkTag disk layout. Data and metadata are interleaved to optimize disk scheduling.

Hofmann et al. Page 31

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
InkTag storage backend performance as measured by sequential or random msync()s on a
memory-resident file.

Hofmann et al. Page 32

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
SPEC CPU2006 benchmark performance. “Geomean” indicates the geometric mean of
relative performance.

Hofmann et al. Page 33

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hofmann et al. Page 34

Table 1

The hypercall interface to the InkTag hypervisor

Hypercall Arguments Description

Process control

INIT control addr Starts a new HAP. The HAP passes to the hypervisor the address of a control structure, which
specifies which binary the HAP was loaded from, and the base address of the HAP's list of
virtual memory mappings.

EXEC new HAP OID Start a HAP, ensuring that it is loaded from the binary identified by OID.

CLONE Create a new HAP that is a duplicate of the current state of the calling HAP.

SWITCH_TO_HAP HAP id Invoked by untrusted trampoline code to switch context back into a HAP.

SYSCALL new PC On any hypercall, a HAP may request a switch out of secure execution to invoke a system
call by specifying a program counter value for a service routine in untrusted code. SYSCALL
is used when invoking a system call is the only desired behavior.

Memory management

UNMAP memory range Ensure that S-pages within the specified virtual address range are unmapped.

REMAP old_range, new_range Move any S-page mappings from old_range to new_range.

Files and access control

ACCESS OID Check if the current HAP has access to OID.

CREATE OID, namespace Create a new file within the given namespace.

SET_LENGTH OID Set the length of a file for which the HAP has write permission.

OID_ACL OID, acl Set the ACL on a file.

ADD_DROP add-attr, drop_attr Add and/or drop attributes from a HAP's list of attributes.

Paraverification

MMU_REGISTER queue addr Invoked by the untrusted kernel to specify a location in memory that contains a queue of
updates to HAP address spaces (such as page table updates).

MMU_FLUSH Invoked by the untrusted kernel to notify the InkTag hypervisor that the queue is full, and
must be processed.

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hofmann et al. Page 35

Table 2

LMbench latency microbenchmark results (in microseconds.)

Linux InkTag Overhead

null 0.04 2.23 55.80x

open/close 0.87 6.90 7.95x

ctxsw 2p/0k 0.71 1.01 1.41x

File create 5.46 12.92 2.36x

File delete 3.40 7.56 2.23x

mmap 4059.20 40360.00 9.94x

pagefault 0.89 6.68 7.50x

fork 99.00 567.80 5.74x

fork+exec 290.60 882.60 3.04x

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hofmann et al. Page 36

Table 3

InkTag performance for large applications.

Linux InkTag

Apache latency 195 ms 220 ms (1.13x)

Apache throughput 462.42 req/s 453.93 req/s (1.02x)

Dokuwiki throughput 13.6 req/s 8.83 req/s (1.54x)

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hofmann et al. Page 37

Table 4

Counts of performance-critical events during benchmark execution. We count the number of times InkTag
must hash a data page (“Check hash”), hash a data page that should be zero-initialized (“Check zero hash”),
encrypt a page and update its hash (“Update hash”), fault on a nested page table (“EPT fault”), and context-
switch out of the guest (“VM-exit”).

Apache DokuWiki

Linux InkTag Linux InkTag

Check hash - 209 - 2,911,649

Check zero hash - 57 - 2,893,517

Update hash - 82 - 1,029

EPT fault 689 1,131 10,668 78,055

VM-exit 171,145 1,217,042 138,801 11,216,363

ASPLOS Proc. Author manuscript; available in PMC 2014 January 13.

