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Abstract
Molecular dynamics (MD) simulations now play a key role in many areas of theoretical chemistry,
biology, physics, and materials science. In many cases, such calculations are significantly limited
by the massive amount of computer time needed to perform calculations of interest. Herein, we
present Long Timestep Molecular Dynamics (LTMD), a method to significantly speed MD
simulations. In particular, we discuss new methods to calculate the needed terms in LTMD as well
as issues germane to a GPU implementation. The resulting code, implemented in the OpenMM
MD library, can achieve a significant 6-fold speed increase, leading to MD simulations on the
order of 5 μs/day using implicit solvent models.

1 Introduction
Molecular dynamics (MD) involves solving Newton’s equations of motion for a system of
atoms and propagating the system over a small time step. MD finds uses in studies of protein
folding, virtual drug screening, design of polymers, and sampling of molecular
configurations.

Traditional MD simulations are limited in length by timestep limits. Studies by our group
and others have shown that traditional MD is limited to timesteps of about 2 fs due to high-
frequency resonance frequencies.1–3 Many biologically relevant motions occur on the
microsecond to millisecond range, which is 9 to 12 orders of magnitude greater than the
timesteps possible with traditional MD. Further, each step requires a costly force calculation
(O(N) to O(N2)). As such, simulating medium-size proteins often requires months of
computer time on a large distributed cluster such as Folding@home4,5 to simulate
milliseconds of dynamics, while simulating a large protein (e.g. the β-2 Adrenergic
Receptor) on biologically-relevant time scales (milliseconds through hours) using a standard
desktop computer would take years. Thus, it is not feasible to simulate timescales of
biological interest without substantial advances in MD methods.

Approaches for reducing the computational cost of MD have generally followed two tracks:
improved algorithms and hardware acceleration. Langevin dynamics, which solves a
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stochastic differential equation under dissipation-fluctuation constraints and provides an
attractive thermostat, can be used to overcome instabilities due to resonances of constant
energy integrators3 and achieve larger timesteps.6 However, even Langevin dynamics
integrators require relatively small time steps for stability due to fast frequency motions
within the bonded forces. As a result, algorithms such as Normal Mode Langevin (NML,7,8)
which can achieve timesteps 25 – 50× larger have been developed. NML, referred to here as
Long Timestep Molecular Dynamics (LTMD), runs Langevin dynamics but splits the
motions into fast and slow frequency, then overdamps the fast frequency motions by
applying Brownian dynamics.9 Thus acceleration is only assumed to occur among the slow
frequency motions which allows for the increase in time step. This method has been shown
to achieve adequate sampling over long timescales of microseconds to milliseconds and to
scale well with system size. For instance, it yields 11-fold speedups over conventional
Langevin dynamics for 882-atom Bovine Pancreatic Trypsin Inhibitor (BPTI) and WW
domain folding simulations.

Hardware acceleration allows each timestep to be computed more quickly. D. E. Shaw’s
group has developed Anton, a specialized supercomputer where MD algorithms are
implemented in hardware using application-specific instruction chips (ASICs).10–13 For
explicitly solvated systems, it has been shown that Anton can provide speed ups of up to 2
orders of magnitude over simulations run in HPC environments.

It has been shown that the computation of MD simulations can be sped up considerably by
taking advantage of GPUs.14 NAMD15,16 adapted GPU support for running on large
clusters. GPUs are used accelerate the computation of electrostatics and Generalized Born17

implicit solvent model while the remaining computations and communications are handled
by CPUs. Overlapping GPU non-bonded force calculation (parallelized in a similar way
using blocks) with CPU communication protocols yielded a five to seven fold improvement
in efficiency on NAMD18 when running simulations of the Apolipoprotein A1 (ApoA1,
92000 atoms) and Satellite Tobacco Mosaic Virus (STMV, 1.06 million atoms). This
allowed long-range electrostatic algorithms such as Particle-Mesh Ewald (PME,19) to
proceed on the CPU while bonded and short range non-bonded forces took advantage of the
GPU power.

Other MD packages have focused on running entire MD simulations on one or more GPUs
on a single workstation.20,21 In doing so, GPU-enabled workstations are capable of running
simulations on the same timescales as large clusters at a fraction of the cost, which
significantly increases access and availability for the average researcher. Friedrichs, et al.
have shown that OpenMM,22,23 a library for performing MD on GPUs, is capable of
speeding up simulations of implicitly-solvated systems more than 500 times over an 8-core
CPU. Any MD software package that links against OpenMM can take advantage of the
speed ups offered by GPUs. OpenMM implements all MD algorithms needed to run
constant energy and constant temperature simulations, implicit and explicit solvent, and
different AMBER force fields. OpenMM has been benchmarked at 127 ns/day for implicit
solvent simulations of DHFR with roughly 2,500 atoms on an NVIDIA GTX 580. OpenMM
has a strong emphasis on hardware acceleration, providing not only ease of development but
very high performance as well.

We present a graphical processing unit (GPU) implementation of LTMD in OpenMM, thus
combining the capabilities of LTMD to integrate timesteps 25× – 50× larger than
conventional MD with the hardware acceleration of OpenMM. We use the force calculators
in OpenMM to construct numerical Hessians, and have implemented CUDA kernels that
provide minimization, projection, and propagation routines for LTMD. We demonstrate
correctness of the implementation and speedups of up to 50-fold over GROMACS with 6
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CPU cores and 6-fold over conventional Langevin Leapfrog in OpenMM. This results in
nearly 5 μs per day for implicit solvent simulations of the Villin NLE headpiece.

In the remainder of the paper we discuss LTMD (Section 2), our GPU Implementation
(Section 3), numerical results that show superior performance (Section 4) and correctness
(Section 4.2), and conclusions and future work (Section 5).

2 LTMD
The central concept of LTMD is to increase the timescale of an MD simulation by
computing coarse-grained normal modes (CNMA) and dividing the system’s degrees of
freedom (DOF) into fast and slow frequency motions. Then the fast frequency motions,
which limit the step size, are approximated using Brownian Dynamics (or minimization).
True dynamics are only used for the slow frequency motions, which represent a smoother
energy landscape and where the timestep sufficient for stability is much larger. This
introduces two additional costs to the LTMD method: calculating the mass weighted

Hessian matrix , where ℋ is the system Hessian, and diagonalizing it. This
process must be done repeatedly throughout a simulation such that an accurate frequency
division is always available. The time between diagonalizations is in the range of 10 ps to
100 ps for typical biomolecules. Since naive diagonalization is prohibitively expensive,
O(N3), we have devised an approximate diagonalization method that has complexity
O(N9/5). We will show that this is sufficient to produce real speedups over conventional
MD.

We consider first the propagation of the biomolecule in the fast and slow domains, and then
the method of partitioning the dynamical space into fast and slow domains.

2.1 Propagator
The LTMD propagator uses the same basic technique as the Langevin method.

The canonical Langevin equation is given as

(1)

where f = −∇U(X), t is time, W(t) is a collection of Wiener processes, kB is the Boltzmann
constant, T is the system temperature, v are the velocities and Γ is the diagonalizable
damping matrix. The system diffusion tensor D gives rise to Γ = kBTD−1M−1. D is chosen to
model the dynamics of an implicit solvent.

In LTMD, the forces and random perturbations (heat bath) are partitioned, using a projection

matrix Pf (and its complement ), so that the normal Langevin equation is approximated in
the slow space but is over-damped in the fast space. Here,

(2)

where Q is the set of low frequency eigenvectors as columns and M is the diagonal system
mass matrix. Thus, in LTMD, the projected Langevin equation that models the coarse-
grained dynamics of implicitly-solvated proteins is given as:
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(3)

For the high frequency dynamics Brownian motion (over-damped) is often solved with the
Euler-Maruyama method. This is similar in form to a “steepest descent” minimizer, which
we use for efficient damping. Then,

(4)

where η is determined by a “line search” algorithm, Xn is the current position and Xn+1 is the
new position. This algorithm is iterated until the difference in system energy for successive
steps is less than some threshold value.

After minimization is performed, the rest of the Euler-Maryuma approximation is computed
by adding noise (random terms) to the fast space according to

(5)

where z is a random variable vector sampled from a Gaussian distribution, Γ̄ is the damping
matrix for the fast space, and Δt is the timestep.

2.2 Partitioning of the Dynamical Space of Biomolecules
To partition the dynamical space of the biomolecule we need to calculate the system’s mass
weighted Hessian and then diagonalize it to find a quadratic approximation to the system.
This then identifies collective motions, or normal modes, and their associated frequency. A
choice of cutoff frequency defines a set of normal modes, ordered according to their
eigenvalues, that span the “slow” modes of interest.

The sparsity of the Hessian matrix is dependent on how we calculate the long range forces in
the force field. For methods such as Ewald Summation24 the Hessian is full. Studies7 of
biomolecules have shown that the important low frequency motions are dominated by
motions of the backbone alpha carbon atoms rather than long range forces. In this case
switches are generally used to reduce the forces to zero beyond a given distance so that the
Hessian is sparse and the calculation cost is O(N) (for system size N) for analytical Hessian
calculation. In MD codes such as OpenMM, where analytical Hessians are not available, the
Hessian must be calculated numerically at a cost of O(N2) assuming force calculation cost of
O(N).

Diagonalization of a matrix (“brute force”) is generally O(N3) which would become
prohibitive for large systems, although there are other methods that may offer reduced cost.
The Rotation Translation Block (RTB) method groups sequential residues into blocks,
which are then treated as rigid bodies, and the movement of the entire protein is expressed as
the rotations and translations of these blocks. Thus the dimensionality of the diagonalization
problem is reduced and a diagonalization cost proportional to O(N9/5) is achieved.25,26

Variants of this method exist that perform different approximations.27–30

LTMD uses a coarse grained diagonalization method called Flexible Block Method (FBM)8

that reduces the expected cubic run-time to O(N9/5). FBM is similar to RTB, including the
sequential partitioning method, but also includes the internal flexibility of the blocks, greatly
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increasing accuracy of the resulting eigenvectors with the same complexity. FBM avoids the
calculation of the full Hessian and diagonalizes smaller matrices based on a knowledge of
the structure of the biomolecule. Coarse-graining involves computing instead a block mass
weighted Hessian:

where each Hii is a mass weighted Hessian matrix of the potential energy accounting for
interactions only within some group of one or more residues i, and each block is assumed to
be independent of other blocks.

Computing the Hessian of the potential energy U requires calculating the second-order
derivatives of U(X) where X is the vector of atomic positions. We obtain the force F(X) =
−∇U(X), the gradient of U w.r.t. X, and thus can approximate the Hessian using the first-
order derivatives of F(X). This can be accomplished for the jth column of H using the central
difference method where we perturb the atomic positions by δxj, a small value added to the
jth degree of freedom, and compute both F(X + δxj) and F(X − δxj), then calculate the
column vector as,

(6)

We can then diagonalize each individual block to obtain a set of eigenvalues and
eigenvectors. If the blocks are not at a minimum, then the Hessian will not contain the true
rotational degrees of freedom.31,32 Therefore, the translation and rotational degrees of
freedom are computed explicitly for each block using Eq. (7) – (9), (11). A new set of
eigenvectors is formed by combining the sets of eigenvectors and translation and rotational
degrees of freedom and using a modified Gram-Schmidt process to orthogonalize the set.
Should any vector’s norm become less than 1/20th of its original norm after
orthogonalization, it is assumed that the vector is a duplicate of the explicitly-calculated
translation or rotation vectors and removed from the set.

(7)

(8)

(9)

where

(10)
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(11)

where

(12)

for vector d, with xyz coordinates, representing the difference between the atom position and
the center.

A 3N × k matrix E is assembled from the block eigenvectors corresponding to the k lowest
eigenvalues. An appropriate value of k which still spans the low frequency space will vary
based on the particular composition of the protein’s residues, but we have determined a
typical value of k is around 12 per residue.8

The reduced set of eigenvectors is used to compute the quadratic product S = ET HE. The
matrix S will be of smaller dimension (k × k) than H (3N × 3N) but will still account for the
appropriate degrees of freedom. S is then diagonalized to obtain a set of eigenvectors Q
which by definition satisfy the equation QT SQ = D where D is a diagonal matrix.
Combining our two equations, we get: (EQ)THEQ = D, and so can finally represent V = EQ
as an orthogonal set of vectors that span the low frequency space and with the property that
VTHV = D. If we sort the eigenvectors of Q by corresponding eigenvalue, V will be ordered
as well. We can then select the m slowest frequency modes by simply choosing the first m
vectors of V.

We note that rather than forming the quadratic product S = ET HE in the usual way, which
would require the calculation of the Hessian H, we can calculate an approximation to the
matrix HE directly using a first order numerical differentiation scheme. This is

accomplished by perturbing the positions by  for some small scalar value ε and the
ith column of E (denoted Ei), we then find the force difference scaled by 1/ε and multiply by

. Pre multiplication by ET will then yield S. For example, using Taylor series expansion
for each Ei perturbation,

(13)

for potential energy U(X) and positions X. We note that the system force at positions X is

given by f (X) = −∇U(X). Then, multiplying Eq. (13) by  and re-arranging, we have,

(14)

which represents the ith column vector of HE. By repeating this n times, for each i, we can
assemble the complete matrix HE.

A second order centered difference method is also possible at twice the cost:

Sweet et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(15)

3 Implementation
OpenMM provides an API that performs GPU molecular dynamics calculations while
masking the underlying details of GPU programming. The software employs the Plugin33

design pattern which allows package extensions to be externally compiled into libraries
which are loadable at runtime by (for example) setting a flag. We designed our
implementation of LTMD as an OpenMM plugin that runs in parallel on either or both the
GPU and CPU. MD force calculations are the slowest portions of our algorithm when
running on the CPU, and we thus reserve those for the GPU while running some sparse
matrix calculations using parallel libraries such as Intel’s Math Kernel Library (MKL,34).
We further divide our implementation into two libraries, one for our API which is
responsible for user interaction and the second is the plugin itself which is invoked
dynamically when a GPU calculation takes place.

3.1 Propagator
The implementation of the LTMD propagator GPU kernel follows the same format as the
OpenMM implementation of Langevin. In addition to the propagator kernel mapping sets of
atoms to CUDA threads we also need to project the forces using a local product with
reduction across all nodes. In addition we also implement the minimizer in the kernel to
relax the fast sub-space of the biomolecule after propagation in the slow sub-space. Listing 1
in the Appendix includes the source code for the projection and propagation step from the
kernel.

3.2 Diagonalization with Flexible Block Method
A major aspect of the GPU implementation of LTMD is the frequency partition, which
involves three main areas of the algorithm:

3.2.1 Computation of Block Hessian—To compute the block Hessian, we create a
separate OpenMM context in which all interactions between atoms in different blocks are
removed. New force objects are instantiated for the block context where bonds, angles,
dihedrals, and RB dihedrals that span atoms in multiple blocks are removed. Custom forces
which allow the removal of interactions between atoms in multiple blocks are used for the
non-bonded forces. Implicit solvent (Generalized Born) is not used in the calculation of the
blocks.

As the blocks have no interactions, perturbations to a DOF in one block i have no effect on
the forces of the atoms in the other blocks. This is equivalent to saying that Hi, j = 0 where j
≠ i for blocks i and j. We exploit this behavior to reduce the number of required force
calculations. With each step of the numerical differentiation, we perturb the kth DOF in each
block and then compute the forces once for the context. The components from the resulting
column vector v are then copied into their respective block Hessians such that element
Hi,li+k = vli;+k, where i is a block and li is the first DOF in block i. With this approach, we
only need one or two force calculations (depending on whether first-order or second-order
numerical differentiation is used) for each DOF in the largest block instead of for every
DOF in the system.
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Since OpenMM does not allow two CUDA contexts to be instantiated at the same time, the
forces for the blocks are computed using an OpenCL35 context.

3.2.2 Block Diagonalization—Since individual blocks Hii of the block Hessian are
independent of one another, we can diagonalize them in parallel using OpenMP.36 The
procedure for finding the eigenvectors for each block Hessian is as follows: The block
Hessian is diagonalized using the dysevr routine in LAPACK or Intel MKL. The
eigenvectors are sorted by the magnitude of their eigenvalues. The block’s rotation and
translation vectors are computed geometrically. A new set of eigenvectors is formed from
the rotation and translation vectors and original eigenvectors with care taken to ensure that
the vectors are inserted so as to preserve their relative ordering. Lastly, the new set of
eigenvectors is orthogonalized vector-by-vector using a modified Gram-Schmidt process. If
a vector’s norm is less than 1/20th after orthogonalization, the vector is removed from the
set. Otherwise, the vector is normalized. The process is repeated for each block Hessian,
using OpenMP to parallelize the process such that each block is handled into its own a
separate thread.

3.2.3 Computation of S—As described in Section 2.2, we can calculate the matrix S =
ETHE by first calculating the columns of the matrix ETH and then post multiplying by E.
The columns of the matrix ETH can be found using Eq. (15). The original OpenMM context,
which is also used for propagation, is used to compute the forces for the numerical
differentiation.

4 Results
In the following sections we present results for benchmarking, validation and choice of
parameters. In Section 4.1 we compare relative performance of OpenMM LTMD, OpenMM
Langevin and GROMACS when simulating a range of proteins consisting of 512 to 1251
atoms. In Section 4.2 we validate the LTMD method using Ala5, a small helical peptide, and
Villin NLE a fast folding protein. Finally, in Section 4.3 we consider the effects of the
parameters required for LTMD on accuracy.

4.1 Benchmarks
OpenMM LTMD was benchmarked against OpenMM with Langevin dynamics and
GROMACS for four different protein systems (see below). We evaluated differences in
absolute performance given as ns/day as well as relative speed ups. OpenMM Langevin was
run with the CUDA platform, while OpenMM LTMD used the CUDA platform for
propagation and the OpenCL platform for computing the block forces for the Flexible Block
Method (FBM). GROMACS was configured to run with 6 threads. A single machine with
an Intel Xeon E5645 2.6GHz processor, 24GB of RAM and two NVIDIA GeForce 580GTX
graphics cards, running a 64-bit version of Red Hat Linux 6, was used for all of the tests.
The protein system models were prepared with Amber96-SB and the Generalized Born OBC
implicit-solvent model. All models were run at 370 ° K.

1. Villin NLE (512 atoms, 35 residues)

2. BBL (707 atoms, 47 residues)

3. N-Terminal Domain of L9 (881 atoms, 55 residues)

4. Lambda Repressor (1251 atoms, 80 residues)

4.1.1 Parameter Choices for Optimal Performance—The performance of LTMD is
dependent on a number of parameters. The main determinant is how often new eigenvectors
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are calculated (re-diagonalization of the Hessian). The cost of the eigenvector calculation is,
in turn, influenced by the size of the block Hessians (number of residues per block). It was

shown that the cost of calculating the eigenvectors was  using the Flexible Block
Method8 (FBM) with sparse and analytical Hessians. OpenMM LTMD uses numerical
differentiation for calculating the block Hessians and quadratic-product matrix S. To
quantify the effect of both the period of eigenvector calculation and the number of residues
per block, we calculated the speed up (ns per day for LTMD divided by ns per day for
OpenMM Langevin) for eigenvector calculation periods in the range of 10 ps to 100 ps and
residues per block in the range of 1–6.

OpenMM LTMD’s performance for the four test systems is presented as a function of the
number of residues and rediagonalization period in Figure 1. The parameter space has a
relatively convex shape which makes the method’s performance easy to optimize and
relatively robust to different choices of parameters. Although OpenMM LTMD performance
was optimal with 3 residues per block and a rediagonalization period of 100 ps, similar
choices of parameters (e.g., 2 or 4 residues per block and rediagonalization periods of 60 ps
to 100 ps) provide similar performance.

When compared with OpenMM Langevin, speed ups for the smallest model, Villin NLE,
were limited to just over two times, while speed ups in excess of 5 times were seen for the
larger models (Table 1). LTMD’s absolute performance reached 4.6 μs/day for Villin NLE.

4.1.2 Comparisons of Relative and Absolute Performance—Using the optimal
choices for parameters from Section 4.1.1, OpenMM LTMD’s performance was compared
to that of OpenMM Langevin and GROMACS with 6 cores. Benchmark simulations were
run for each of the four protein systems (Villin NLE, BBL, NTL9, and Lambda Repressor).
Absolute performance numbers (given in ns / day) are shown in Figure 2, while relative
speed ups were computed and presented in Table 1.

OpenMM LTMD showed significant increases on absolute performance in comparison with
GROMACS and OpenMM Langevin. OpenMM LTMD’s absolute performance peaked at
4.6 μs/day for Villin NLE compared to 0.1 μs/day for GROMACS and 1.6 μs/day for
OpenMM Langevin. On larger systems, OpenMM LTMD achieved 2.8 μs/day for BBL, 2.1
μs/day for NTL9, and 1.4 μs/day for Lambda Repressor compared with 0.08 (BBL), 0.06
(NTL9), and 0.03 (Lambda Repressor) μs/day with GROMACS and 0.6 (BBL), 0.4 (NTL9),
and 0.2 (Lambda Repressor) μs/day with OpenMM Langevin.

Comparing relative performance (speed up) of OpenMM LTMD over GROMACS and
OpenMM Langevin shows that OpenMM LTMD scales better for larger systems versus the
other methods. Table 1 details the speed up of OpenMM LTMD over OpenMM Langevin
and GROMACS. OpenMM LTMD provides speed ups of up to 5.8× over OpenMM
Langevin and 49.7× over GRO-MACS. Of particular interest is that the speed up provided
by OpenMM LTMD increases for larger protein systems, implying, along with absolute
performance displayed in Figure 2, that OpenMM LTMD scales better than either OpenMM
Langevin or GROMACS with system size.

4.1.3 Run-time Breakdown—To provide insight as to where time is being spent, we
detailed the steps of the method and profiled the run-time of each step individually.
Simulations were run using the optimal parameters choices detailed in Section 4.1.1. The
steps are as follows:

1. Computation of the block Hessians using numerical differentiation of the forces

2. Diagonalization of the block Hessians
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3. Creation of E by sorting the calculated eigenvalues from the hessian and culling
those below a threshold

4. Computation of HE using numerical differentiation of the forces

5. Multiplication HE and ET to find S.

6. Diagonalization of S to find Q

7. Finding the approximate normal modes U by multiplying E and Q.

8. The propagation of the system.

Table 2 gives the absolute time for each step in milliseconds for each of the four protein
systems, while Figure 3 gives the percent time spent on each step for Villin NLE (our
smallest system) and Lambda Repressor (our biggest system). For smaller systems, such as
Villin NLE, the run time is dominated by the numerical differentiation of the block Hessians
and their diagonalization. Whereas, for larger systems such as Lambda Repressor, run time
is dominated by the numerical calculation of S and its diagonalization. The large amount of
time spent on diagonalization versus propagation explains why longer rediagonalization
periods provide better performance as found in Section 4.1.1.

4.2 Validation
OpenMM LTMD was validated against OpenMM Langevin through simulations of Ala5,37

a small peptide of five alanines, and Villin NLE, a variant of the Villin headpiece that folds
in 0.5 μs.

4.2.1 Dynamics and Sampling of the Small, Helical Peptide Ala5—Ala5 was
simulated with OpenMM LTMD and Langevin to validate that LTMD properly reproduces
dynamics and sampling. The Ala5 model was prepared with the Amber96 forcefield and the
Generalized Born OBC implicit-solvent model. Eighteen simulations for both Langevin and
LTMD, with total aggregate times of 5.4 μs and 4.8 μs each, were run from an extended
confirmation at 300 °K. The LTMD simulations used the following choice of parameters: 16
modes, 5 fs timestep, 625 fs rediagonalization period, 1 residue per block, 18 vectors per
block, a block epsilon of 1 × 10−5 Å, and an s epsilon of 1 × 10−4 Å. The folded “helical”
state for each alanine residue was defined by having φ and ψ angles such that −180° ≤ φ ≤
0° and −120° ≤ ψ ≤ 15°.37

To compare sampling accuracy we measured the state distributions, where the states of the
individual residues are deemed folded or unfolded by the criterion defined above. Ala5 has
32 states defined by the permutation of folded and unfolded states for each of its five
residues. A comparison of the state distributions from the LTMD and Langevin simulations
shows that LTMD samples the states with similar probability as Langevin, indicated by a
correlation of 0.99 (Figure 4). Both methods show Ala5 spending most of its time in state 32
(all of the residues are folded), with the majority of the remaining time in state 16 (one of
the end residues is unfolded). LTMD has a lower probability of being in state 16 and a
higher probability of being in state 32.

To compare the dynamics we define the folded state of the peptide by all three inner alanine
residues being folded, as defined above. We observed the time for each of the simulations to
reach this folded state, from its initial extended state. The mean first passage folding time for
the Langevin simulations was 4.1 ns with a standard deviation of 4.6 ns. The LTMD Ala5
simulations produced mean folding times of 9.5 ns with a standard deviation of 6.9 ns,
which within the error is comparable to the Langevin simulations.
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To measure the dynamics qualitatively we consider the RMSD, relative to the folded helical
structure, during the folding process RMSD was computed for one representative Langevin
simulation (black) and one representative LTMD simulation (blue) (Figure 6). Both
simulations folded in 5.0 ns. The RMSD plots for both simulations show similar collapses at
5.0 ns as well as subsequent folding and unfolding.

4.2.2 Folding of Villin NLE—Villin NLE simulations were run with LTMD and
OpenMM Langevin to validate the correctness of the LTMD implementation over longer
timescales. The Villin NLE model was prepared with the Amber99-SB forcefield and the
Generalized Born OBC implicit-solvent model. The dynamics of the simulations were
analyzed with respect to their ability to fold Villin NLE. It should be noted that our
emphasis is purely on validating the correctness of the LTMD implementation, not on a
large-scale analysis of Villin NLE dynamics.

Figure 7 gives the RMSD plots for two representative LTMD simulations run at 370 °K with
a 50 fs timestep, 10 modes, and a rediagonalization period of 25 ps. The RMSDs were
calculated against the native structure using the Cα atoms, excluding the first and last two
residues. The first simulation (Figure 7a) folds Villin NLE to within 3.6Å of the native
structure, where it remains for around 1 μs. In the second simulation (Figure 7b), the protein
undergoes multiple folding and unfolding events, occurring approximately every 0.5 μs, and
is able to fold to within 3.5 Å of the native structure. While Langevin simulations fold Villin
NLE to within 3 Å of the native structure, it should be noted that the higher RMSD of the
LTMD simulations is an expected result given the coarse-graining used by the method to
obtain better performance. As evidenced by these two simulations, LTMD is able to capture
the dynamics of the proteins, while enabling a significant speed up over traditional MD.

4.3 Parameter Choices and Diagnostics
OpenMM LTMD uses multiple user supplied parameters in order to propagate and
diagonalize the system of interest. In Section 4.3.1 the effect of varying the rate of
rediagonalization on the dynamics is measured and in Section 4.3.2 the effects of the
number of modes used on the dynamics is measured. We look at the effect of parameters on
the accuracy of FBM in Sections 4.3.3 – 4.3.5. Section 4.3.3 compares the FBM
implementation in OpenMM against the reference implementation in ProtoMol and the
approximate eigenvectors with the full eigenvectors. In Section 4.3.4 the effect of the
epsilons, ε, used as the perturbation for the numerical differentiation operations required
within FBM. In Section 4.3.5 the effects of different partitioning schemes within FBM are
compared. In Section 4.3.6 we consider the effects of the “noise” term in the Euler-
Maruyama approximation in the fast space.

4.3.1 Rediagonalization Period—The theory behind LTMD assumes that the modes are
always valid which, in theory, would require diagonalization at every step. In practice it has
been observed that, since we only use a few low frequency modes, this requirement can be
relaxed.

The effect of the rediagonalization period on the folding rate was measured by running Ala5
simulations with different rediagonalization periods (0.625 ps, 1.25 ps, and 2.5 ps) for 300
ns with parameters: 300 °K, 5 fs timestep, 12 modes, 1 residue per block, 14 vectors per
block, and epsilons of 1 × 10−4 Å for the S matrix and 1 × 10−5 Å for the blocks.
Rediagonalization period proved to affect the folding rate significantly. Simulations run with
a rediagonalization period of 2.5 ps folded in an average of 62.5 ns, much larger than the
average folding time of 3.7 ns found from Langevin simulations. Decreasing the
rediagonalization period to 0.625 ps reduced the average folding time to 14.3 ns.
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This test was repeated, using 16 modes instead of 12 (which was found to be more accurate
in Section 4.3.2). Here, we see that simulations run with a rediagonalization period of 2.5 ps
had an average folding time of 20.94 ns. When the period is dropped to 1.25 ps or 0.625 ps,
the average folding time drops to around 10 ns. This seems to indicate that picking the best
number of modes to run, could allow a larger rediagonalization period before losing
accuracy, allowing a trade-off to optimize performance.

4.3.2 Number of Modes—A sweep of the number of modes was performed. Eight Ala5
LTMD simulations were run for each mode setting (8, 10, 12, 14, and 16 modes) for 300 ns
at 300 °K, 5 fs timestep, 1 residue per block, and epsilons of 1×10−5 Å for the blocks and
1×10−4 Å for the S matrix. The number of vectors per block was set to be number of modes
plus two (10, 12, 14, 16, and 18 vectors per block, respectively). With 16 modes, the LTMD
Ala5 simulations were able to consistently achieve folding times of 5.5 ns on average with a
standard deviation of 2.6 ns, which compares favorably to the values obtained from
Langevin simulations (average of 3.7 ns and standard deviation of 3.9 ns).

4.3.3 Approximate Eigenvector Overlap—The implementation of the Flexible Block
Method (FBM) in LTMD was validated against the implementation in ProtoMol using a
metric called “overlap.” Overlap (as described in Tama, et al.26) measures how well a vector
is represented by a space spanned by a set of vectors. The overlap Pj for a reference
eigenvector uj with the set of approximate eigenvectors (v1, v2, …vm) is given by Eq. (16).
An overlap value of 1 indicates that the reference eigenvector is represented completely by
the approximate eigenvectors, while a value of 0 means that the reference eigenvectors is not
represented at all.

(16)

We used overlap to compare the approximate eigenvectors generated from both the
reference CPU Flexible Block Method (FBM) implementation in ProtoMol38 and our
implementation in LTMD. Figure 11 shows the overlap for the approximate eigenvectors
from LTMD with those produced by the FBM implemented in ProtoMol in WW Fip35. The
two implementations show very good agreement for the first 20 modes. We also computed
the overlap between the approximate eigenvectors from LTMD with the full eigenvectors.
The approximate eigenvectors agree with the full eigenvectors for the first 15 modes but are
less accurate for modes 16, 18, and 19. Since only ten or twelve modes are used in
simulations, FBM is able to approximate the eigenvectors reasonably well for our purposes.

4.3.4 Magnitude of Epsilon for Numerical Differentiation Perturbation—As
detailed in the Section 2.2, LTMD uses the Flexible Block Method (FBM) to perform a fast
normal mode analysis which utilizes numerical differentiation (ND). The choice of
perturbation ε is usually made to be as small as possible so that accuracy is maintained,
while being large enough to avoid round-off errors due to the finite precision of floating-
point arithmetic. For single precision arithmetic, an optimal value for ε can generally be
found as .39 Note that OpenMM LTMD uses units of nm internally;
for our configuration files this equates to ε = 3.4 × 10−5 Å. For FBM there are additional
considerations when finding the ε for the formation of the S matrix since it is important that
our perturbation lies in the low frequency space of interest. Since, when projected from

mode space our perturbation vector, δm, is given by  for the ith mode, all of
the values in δm must not have significant round-off. Below, we document the tests carried
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out to determine the optimal values for the ε used in the block and S matrix ND and
compare to theory.

From Langevin simulations, it is known that the extended confirmation of WW-Fip35
rapidly collapses. We have found that LTMD simulations of the collapse are particularly
sensitive to the choice of εs and thus are an excellent test for validation.

To measure the effect of the choice of ε on the dynamics, WW-Fip35 was simulated from an
extended confirmation with a range of values for ε. The WW-Fip35 model was prepared
from the extended confirmation using the Amber96 forcefield and Generalized Born OBC
implicit-solvent model. LTMD simulations were run with a 50 fs timestep, 10 modes, a 100
ps rediagonalization period, and a range of values for ε. RMSD to the extended structure
was calculated between the Cα atoms and plotted as a function of time in Figure 12.
Simulations run with values between 1 × 10−2 Å and 1 × 10−4 Å show similar rates of
collapse, while the simulation with ε = 1 × 10−5 Å shows that the dynamics are damped and
the protein is prevented from collapsing.

To further explore the effects of the S matrix epsilon on the simulation folding time, a sweep
of simulations were run with varying S matrix epsilons using Ala5. In Figure 13, we can see
that this epsilon value should not be a critical factor in simulation accuracy (at least for the
Ala5 model), beyond being within the right range.

4.3.5 Effect of Partitioning Method—The Flexible Block Method (FBM) requires
choosing a method for partitioning the atoms into blocks.26–30 The simulations in this paper,
group entire residues into blocks using a uniform number of residues per block (the last
block may contain fewer if the number of residues is not an integer multiple of the number
of residues per block). To look at the effect of the partitioning, an alternative scheme was
devised where the partitioning occurs after the Cα atoms along the backbone. The atoms in
the blocks for both partitioning methods represent a sequential set.

The two schemes were compared with respect to the overlaps of the first 20 approximate
eigenvectors against the first 20 real eigenvectors (Figure 14) and folding time of Ala5
LTMD simulations. The eigenvectors were calculated using 1 residue per block, 18 vectors
per block, and epsilons of 1×10−5 Å for the blocks and 1×10−4 Å for the S matrix. The
standard partitioning scheme reproduces the first 11 modes very well but is not able to
reproduce modes 14, 17, or 19. The Cα partitioning scheme has similar accuracy for all
modes except for modes 10–12, which it is not able to reproduce well. Reflecting the
difference in the accuracy of the modes with the two partitioning schemes, a LTMD
simulation with the standard partitioning scheme folded Ala5 in 24.8 ns, more quickly than a
simulation with the Cα partitioning scheme at 33.7 ns.

The two schemes were also tested onWWFip35 (Figure 15). The accuracy of the two
schemes is similar, suggesting that the two schemes do not make a significant differnece in
the accuracy of the modes.

4.3.6 Magnitude of Fast Noise—As an approximation to Euler-Murayama method, after
performing minimization in the fast space LTMD adds random noise Eq. (5). Ala5, with
different amounts of fast noise, was simulated to measure the effect of the noise on
dynamics (Figure 16). The simulations were run for 300 ns with the following parameters:
300 °K, 5 fs timestep, 16 modes, a rediagonalization period of 0.625 ps, 1 residue per block,
18 vectors per block, and epsilons of 1×10−5 Å for the blocks and 1×10−4 Å for the S
matrix. The figure shows that the noise factor, for this model, did not have a great effect.
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However, from these results, a noise scaling value of 1.0 allows for the closest average
folding time compared to the Langevin tests.

5 Conclusions and Future Work
We have presented a hybrid CPU/GPU implementation of the LTMD propagator with speed
ups of over 5.8× compared with traditional MD integrators on GPUs. This result illustrates
great potential for testing larger protein systems over a longer biological period of time.
Analysis of the cost of individual sections of the method have yielded insight into how we
may improve performance in the future.

Validation with Ala5 and Villin NLE has shown excellent agreement between Langevin and
LTMD. With Ala5, we showed that LTMD is able to sample the conformational states with
a similar distribution as Langevin, produces comparable folding times, and captures similar
dynamics. Similar folding times and dynamics between Langevin and LTMD were also
reported for Villin NLE.

Analyses of the effects of the various parameters such as rediagonalization period, the
number of modes, epsilons used with the numerical differentiation, partitioning methods,
and fast noise were presented. We found that with the proper parameters, especially the
rediagonalization period and number of modes, LTMD agrees well with Langevin. Further,
by choosing a larger number of modes, rediagonalization can be performed less frequently,
leading to increased performance. The choice of block epsilons for FBM were shown to
agree with the known values from the theory, while the choice of S epsilons were shown to
be robust over a range of values.

We would like to move the entire algorithm to the GPU eventually. CPU portions of the
algorithm currently include block diagonalization, diagonalization of S and numerical
differentiation. We anticipate that porting this code to the GPU should help reduce data
transfers between the two processors and take advantage of the GPU’s ability to parallelize
operation, which will improve performance. Given that the diagonalization dominates the
run-time of the method, performance improvements can lead to even greater gains in raw
simulation performance (e.g., ns/day).

The code for LTMD is part of OpenMM and will be released as a plugin. This
implementation of LTMD, and future improvements to the performance and numerics
promise an order of magnitude improvement over conventional GPU implementations of
MD. We are working on multilevel FBM methods, which should scale as O(N logN) and
thus enable even larger system simulations, and on extensions of LTMD to explicit solvent
systems. These will be reported in future papers.
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A Source Code

Listing 1

Projection Kernel

void Projection Kernel (int atoms , int modes , float4 * vel , float4 
*mode , float *mode_weight) {
extern _ _shared _ _float buffer [ ] ;
for ( int mode = blockIdx . x ; mode < modes ; mode += gridDim . x ) {
Real dot = 0.0f;
for (int atom = threadIdx . x; atom < atoms; atom += blockDim . x ) {
const int modePos = mode * atoms + atom ;
const Real scale = 1. 0 f / sqrt ( vel [atom] . w ) ;
float4 v = vel [atom] ;
float4 m = mode [modePos] ;
dot += scale * ( v . x * m . x + v . y * m . y + v . z * m . z ) ;
}
buffer[ threadIdx . x] = dot ;
_ _ syncthreads ( ) ;
if ( threadIdx . x == 0 ) {
Real sum = 0 ;
for ( int i = 0 ; i < blockDim . x ; i++ ) {
sum += buffer [ i ] ;
}
mode_weight [mode ] = sum;
}
}
}
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A.1 Diagonalization with Flexible Block Method
A.1.1 Computation of Block Hessian

Listing 2

Computation of Hessian

/ / Create copies of the current state
. . .
/ / Set positions to initial state
. . .
/ / Calculate perturbation of the ith degree of freedom in EACH block
TNT : : Array2D<double > h ( n, n, 0.0 ) ;
for ( int i = 0 ; i < LargestBlockSize ; i ++) {
/ / Calculate perturbed positions
for ( int j = 0 ; j < blocks . size ( ) ; j ++) {
const int DOF = 3 * blocks [ j ] + i ;
const int atom = DOF / 3 ;
/ / Cases to not perturb, in this case just skip the block
if ( j == blocks . size ( ) – 1 && atom >= ParticleCount) continue ;
if ( j != blocks . size ( ) – 1 && atom >= blocks [ j + 1 ] ) continue ;
Backward [ atom ] [DOF%3] = Initial [ atom ] [DOF%3] – Delta ;
Forward [ atom ] [DOF%3] = Initial [ atom ] [DOF%3] + Delta ;
}
/ /
Using the GPU
Calculate backwards perturbation
. . .
/ /
Using the GPU
Calculate forwards perturbation
. . .
/ / Revert forward and backward block positions to initial state
. . .
/ / Fill Matrix
for (int j = 0 ; j < blocks . size ( ) ; j ++) {
const int DOF = 3 * blocks [ j ] + i ;
const int atom = DOF / 3 ;
/ / Cases to not perturb, in this case just skip the block
if ( j == blocks . size ( ) – 1 && atom >= ParticleCount ) continue ;
if ( j != blocks . size ( ) – 1 && atom >= blocks [ j +1 ] ) continue ;
const int col = DOF;
const int start_dof = 3 * blocks [ j ] ;
const int end_dof = ( j == blocks . size ( ) – 1) ? 3 * ParticleCount : 3 
*
blocks [ j + 1 ] ;
for ( int k = start_dof ; k < end_dof ; k++) {
double blockscale = 1.0 / (2 * Delta * sqrt ( ParticleMass [ atom ] *
ParticleMass [ k / 3 ] ) ) ;
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h [ k ] [ col ] = ( forces 1 [ k / 3 ] [ k % 3] – forces 2 [ k / 3 ] [ k
%3]) * blockscale ;}
}
}
}

We show our steps for computing the block Hessian matrices in Listing 2. Matrix h is an
n × n matrix initialized to zeroes which will hold the block Hessian matrices on the
diagonal. Each block will be a square matrix which accounts for a certain number of
degrees of freedom, the largest of which is stored in LargestBlockSize. We initialized
blocks[j] to have the starting index of the jth block, thus the ith degree of freedom of
block j becomes 3*blocks[j]+i. We perturb this degree of freedom in both the forward
and backward direction by some small Delta value, then use the GPU to calculate forces
in both directions which we store in forces1 and forces2, respectively. Note that we must
check to make sure that blocks[j]+i falls within block j, otherwise we must discard this
degree of freedom. This is necessary because not all blocks will have a size of
LargestBlockSize.

We then populate the appropriate entries of the block Hessian matrices by using the
second j loop. Once again, the degree of freedom (DOF) becomes equal to 3*blocks[j]+i,
which is the same as the column in the h matrix. The k loop counts over the starting and
ending degrees of freedom for block j, and we approximate the second derivative of the
positions using second-order finite difference with the forward and backward perturbed
forces. Note the entries are mass-reweighted.

A.1.2 Computation of S

Listing 3

Computation of S and HE

/ / Create matrix structures
. . .
/ / Store a temporary copy of the positions
. . .
/ / Loop over all columns of the matrix
for ( int k = 0 ; k < m; k++) {
/ / Calculate forward perterbation
for ( int i = 0 ; i < ParticleCount ; i ++) {
for ( int j = 0 ; j < 3 ; j ++) {
const double RootMass = sqrt ( ParticleMass [ i ] ) ;
Temporary [ i ] [ j ] = Positions [ i ] [ j ]+ eps *E[3* i + j ] [ k ] / 
RootMass ;
}
}
/ /
Using the GPU
calculate forward force
. . .
/ / Calculate backward perturbations
. . .
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/ /
Using the GPU
calculate backward force
. . .
/ / Create HE from the perterbed forces
for ( int i = 0 ; i < n ; i ++) {
const double ScaleFactor = sqrt ( ParticleMass [ i / 3 ] ) *2. 0* eps ;
HE[ i ] [ k ] = ( Forward [ i / 3 ] [ i%3]–Backward [ i / 3 ] [ i %3]) / 
ScaleFactor ;
}
/ / Restore positions
. . .
}

We show our computation of S in Listing 3. After saving our current atomic position
vector, we perturb atom i’s position by a value of ε times E multiplied by the square root
of the atomic mass of particle i. We then calculate the force vector using the perturbed
positions on the GPU by invoking the OpenMM API which is responsible for distributing
molecular force calculations across GPUs by calling routines from CUDA. Upon
completion, the GPU code sends the force vector back which we store in an array
Forward.

We follow our forward perturbed force calculation with an analogous backward
perturbation of positions, this time by −εEiM−1/2. We then calculate the force vector
using the backward perturbed positions on the GPU and store the result in an array
Backward, similar to before. Upon dividing the difference between Forward and

Backward by 2ε, we complete our calculation of , the ith column of ETH. Once we

have done this for all DOF we multiply by  to get S.
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Figure 1.
A comparison of the performance speed up on four proteins versus OpenMM Langevin for
different values of the number of residues per block and the rediagonalization period.
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Figure 2.
Comparison of absolute performance (ns/day) between GROMACS with 6 CPU cores,
OpenMM Langevin, and OpenMM LTMD.
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Figure 3.
A breakdown of the time spent in each section of the analysis portion of the code for the
smallest (Villin NLE) and largest (Lambda Repressor) systems tested.
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Figure 4.
Populations of the 6 most-populated of the 32 defined states of Ala5 from Ala5 Amber96,
GB-OBC implicit-solvent simulations run with LTMD (blue) and Langevin (red). All
simulations started from an extended structure.
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Figure 5.
Folding times of Ala5 Amber96, GB-OBC implicit-solvent simulations run with Langevin
and LTMD. The blue lines give the average folding times for each simulation method.
Eighteen simulations of each type were run, and all simulations started from an extended
structure.
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Figure 6.
RMSD against the folded structure was computed for Langevin (black) and LTMD (blue).
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Figure 7.
RMSD plots for two Villin NLE Amber99-SB, GB-OBC implicit-solvent simulations run
with LTMD. RMSD was calculated using Cα atoms, excluding the first two and last two
residues, against the folded structure. The minimum RMSDs of each simulation are 3.6 Å
and 3.5 Å, respectively. Figure 7b shows multiple folding and unfolding events, occurring
approximately every 0.5 μs.
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Figure 8.
Rediagonalization period’s effect on the folding time using 12 modes. Each bar is a single
simulation, where all bars within a group all use the same parameters. The groups are sorted
within themselves. The blue lines drawn over each set of bars are the average folding time
for that set, while the dashed black line gives the “reference” folding time from Langevin
simulations.
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Figure 9.
Rediagonalization period’s effect on the folding time using 16 modes. Each bar is a single
simulation, where all bars within a group all use the same parameters. The groups are sorted
within themselves. The blue lines drawn over each set of bars are the average folding time
for that set, while the dashed black line gives the “reference” folding time from Langevin
simulations.
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Figure 10.
The effect on the folding time, caused by changing the number of modes. Each bar is a
single simulation, where all bars within a group all use the same parameters. The groups are
sorted within themselves. The blue lines drawn over each set of bars are the average folding
time for that set, while the dashed black line gives the “reference” folding time from
Langevin simulations.
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Figure 11.
Overlap between the approximate eigenvectors forWWFip35 for LTMD and ProtoMol
implementations of FBM (blue) and the approximate eigenvectors and full eigenvectors
(black).
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Figure 12.
Comparison of the collapse of WW-Fip35 from the extended confirmation with different
magnitudes for the numerical differentiation perturbations. RMSD was computed against the
extended confirmation. The other simulations were run with LTMD using different values of
ε. The same choice of ε was used for both the blocks and quadratic product.
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Figure 13.
A sweep of simulations executed with varying S matrix epsilons, with the Ala5 model. Each
bar is a single simulation, where all bars within a group all use the same parameters. The
groups are sorted within themselves. The blue lines drawn over each set of bars are the
average folding time for that set, while the dashed black line gives the “reference” folding
time from Langevin simulations.
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Figure 14.
Overlap for Residue (standard) and Cα partitioning schemes for Ala5 compared with modes
from a “brute force” diagonalization.
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Figure 15.
Overlap for Residue (standard) and Cα partitioning schemes for WW Fip35 compared with
modes from a “brute force” diagonalization.
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Figure 16.
Folding times of LTMD Ala5 simulations run with different values for the amount of noise
added in the fast space. Each bar is an average computed from four simulations. The dashed
black line gives the “reference” folding time from Langevin simulations.
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Table 1

Comparison of relative performance of OpenMM LTMD vs GROMACS on a 6-core CPU and OpenMM
Langevin for four protein systems of different sizes.

Proteins Speed Up of OpenMM LTMD vs

Name Number of Atoms OpenMM Langevin GROMACS

Villin NLE 582 2.9× 38.5×

BBL 707 4.8× 33.6×

NTL9 881 5.2× 37.9×

Lambda Repressor 1251 5.8× 49.7×
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