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Abstract

Background: Mixed Lineage Leukemia 1 (MLL1) is a mammalian ortholog of the Drosophila Trithorax. In Drosophila,
Trithorax complexes transmit the memory of active genes to daughter cells through interactions with Trithorax
Response Elements (TREs). However, despite their functional importance, nothing is known about sequence features
that may act as TREs in mammalian genomic DNA.

Results: By analyzing results of reported DNA binding assays, we identified several CpG rich motifs as potential
MLL1 binding units (defined as morphemes). We find that these morphemes are dispersed within a relatively large
collection of human promoter sequences and appear densely packed near transcription start sites of protein-coding
genes. Genome wide analyses localized frequent morpheme occurrences to CpG islands. In the human HOX loci,
the morphemes are spread across CpG islands and in some cases tail into the surrounding shores and shelves of
the islands. By analyzing results of chromatin immunoprecipitation assays, we found a connection between morpheme
occurrences, CpG islands, and chromatin segments reported to be associated with MLL1. Furthermore, we found a
correspondence of reported MLL1-driven “bookmarked” regions in chromatin to frequent occurrences of MLL1
morphemes in CpG islands.

Conclusion: Our results implicate the MLL1 morphemes in sequence-features that define the mammalian TREs and
provide a novel function for CpG islands. Apparently, our findings offer the first evidence for existence of potential TREs
in mammalian genomic DNA and the first evidence for a connection between CpG islands and gene-bookmarking by
MLL1 to transmit the memory of highly active genes during mitosis. Our results further suggest a role for overlapping
morphemes in producing closely packed and multiple MLL1 binding events in genomic DNA so that MLL1 molecules
could interact and reside simultaneously on extended potential transcriptional maintenance elements in human
chromosomes to transmit the memory of highly active genes during mitosis.
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Background
The DNA in human chromosomes is relatively long [1]. In
addition to protein-coding genes, the genome includes nu-
merous sequence features including gene deserts [2], a
multitude of long noncoding RNAs with little or no
protein-coding capacity [3], and many islands of CpG-rich
sequences [4]. CpG Islands (GIs) include G-tracts and nu-
merous nonmethylated CpGs [4]. CpG-richness is a re-
markable feature since, generally, bulk genomic DNA is
depleted of CpG, owing to selective deamination of 5-meC
[5,6]. CGIs vary in size and CpG content [6-8]. In close
proximity (~2 kb) to CGIs, there are regions (known as
shores) that contain a lower CpG density than the values
computationally selected to define the position of CpG
islands [9,10]. Sequences (~2 kb) that flank the shores are
referred to as shelves [11]. Sequences beyond the shelves
are described as open sea [11]. Both shores and shelves
appear to contribute to developmental and regulatory pro-
cesses that control CpG methylation patterns in chromo-
somes leading to gene repression [12].
Gene repression and activation are regulated by proteins

that interact with DNA, by enzymes that modify the core
histones in nucleosomes and by proteins that bind modi-
fied residues in histones [13]. Core-histone modifications
include methylation (me), acetylation (ac), phosphorylation
(P), and ubiquitination (ub) [14]. A conserved domain
(SET) catalyzes methylation of H3K4 (lysine 4 in histone
H3) producing H3K4me3 [15]. Trimethylated H3K4 is as-
sociated with active or transcriptionally poised chromatin
states [16]. In mammalian cells, H3K4 trimethylation in-
volves several enzymes that include SETD1A, SET1DB,
and members of MLL family. MLL family members are
comprised of MLL1, MLL2, MLL3, and MLL4 [15,17]. In
the literature, the human MLL1 is also referred to as MLL,
ALL-1, and MLLT1; its official symbol is KMT2A. In our
studies, we refer to human KMT2B as MLL2, to KMT2C
as MLL3, and to KMT2D as MLL4.
Earlier studies discovered the MLL1 gene through its

involvement in chromosome translocations that cause
acute leukemia [18,19]. Translocations often produce ab-
normal proteins consisting of the amino-terminus of
MLL1 fused in frame to the carboxyl terminus of another
protein [20]. The normal form of MLL1 is relatively large
and contains several domains: a plant homeodomain, a
bromo domain, a transactivation domain, a SET domain,
and a cysteine-rich CXXC domain [21]. The CXXC do-
main is known as MT since it shows sequence similarity
to DNA methyltransferases [22,23]. A similar domain exists
in MLL2 and CXXC1 (also known as CGBP and CFP1).
Even though the MT domain in MLL1 and CXXC1 binds
non-methylated CpG containing sequences [24-26], swap-
ping experiments have shown that CXXC domains have
specific and nonredundant activities that impact down-
stream regulatory functions [27]. Colony forming ability
and leukemogenicity of a fusion protein (MLL-AF9) was
abrogated when the MLL-derived segment was replaced
with the DNA binding domain of CXXC1 [27]. Further-
more, even though MLL1 and MLL2 displayed almost
indistinguishable DNA-binding properties, their corres-
ponding MT-domains guided the proteins to largely
non-overlapping gene repertoires [25].
Evidence supports central roles for native forms of

MLL1 in mechanisms that preserve “the memory” of
highly active genes during cell division and at specific
stages in embryonic development [28-31]. In Drosophila,
two groups of proteins support heritable memory systems
that maintain the transcriptional state of target genes
[32,33]. Trithorax Group (TrxG) binds TrxG Response El-
ements (TREs) to maintain active states [32]. Polycomb
Group (PcG) perpetuates repressed states through PcG Re-
sponse Elements (PREs) [32,33]. In Drosophila, related
DNA sequence elements are thought to contribute to the
recruitment of both TrxG and PcG complexes to chro-
matin [32]. Mammalian PcG proteins consist of two
groups: Polycomb Repressive Complexes 1 and 2 (PRC1
and PRC2), see [34] and references therein. PRC1 cata-
lyzes mono-ubiquitylation of histone H2A; PRC2 meth-
ylates lysine 27 in histone H3 producing H3K27me2/
me3 [16,35]. The PRC2 complex includes EZH2, EED,
and SUZ12 [36]. EZH2 is the enzymatic component of the
PRC2 complex and produces the repressive H3K27me3
marks in nucleosomes [16,35]. Interestingly, emerging
data indicate that the PRC2 complex is recruited to chro-
matin by CpG islands [34].
Syndromic manifestations support the opposing func-

tions that MLL1 and EZH2 play in embryonic develop-
ment. Mutations in the EZH2 gene cause autosomal
dominant Weaver syndrome characterized by generalized
overgrowth, advanced bone age, marked macrocephaly,
hypertelorism, and characteristic facial features [37,38]. De
novo mutations in the MLL1 gene cause Wiedemann-
Steiner syndrome [39-41]. Symptoms vary and may in-
clude delayed growth and development, asymmetry of the
face, hypotonia, and intellectual disability [39-41]. Muta-
tions often produce frame-shifts removing downstream
domains. Studies of Mll1 knockout mice support a central
role for MLL1 in regulating developmental pathways
[28-30]. Mll1 heterozygous (+/−) mice displayed retarded
growth, haematopoietic abnormalities, and bidirectional
homeotic transformations of the axial skeleton as well
as sternal malformations [28]. Mll1 deficiency (−/−) was
embryonic lethal [28]. In mice, Mll1 was required for
maintaining gene expression early in embryogenesis [42],
necessary for correct development of multiple tissues, and
essential for successful skeletal and neural, and craniofa-
cial development [28,42].
Protein networks that include MLL1 drive coordinated

patterns of gene expression (Figure 1). These networks
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are organized as hubs that receive and transmit infor-
mation to activate, upregulate, downregulate, or re-
press the expression of a given gene [13]. Components
in molecular circuitries include multiprotein com-
plexes that are relatively large and highly dynamic [13].
Depending on environmental milieu, MLL1 associates
directly or indirectly with numerous regulatory pro-
teins including MEN1, RBBP5, WDR5, ASH2L, HCF1,
LEDGF, and CXXC1 (Figure 1). In protein networks,
MLL1, HCF1, and CXXC1 also communicate with
large and dynamic protein complexes that repress tran-
scription (Figure 1). CXXC1 binds non-methylated CpG
[26,43] and interacts with H3K4 methyltransferases known
as SET1A/ SETD1A and SET1B/ SETD1B (Figure 1). These
enzymes play a more widespread role in H3K4 trimethyla-
tion than do MLL1 complexes in mammalian cells [17].
These and related findings indicate that in addition to H3K4
methylation, MLL1 performs histone methyltransferase-
independent functions [31].
As the main component in trithorax-based regulation

networks, MLL1 plays a central role in preserving tran-
scriptional memory during mitosis [31]. Analyses of syn-
chronized human cells identified a globally rearranged
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Figure 1 A subset of protein networks that involve MLL1. Proteins are
bind unmethylated CpGs; red, proteins found in repressive complexes. The
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multiprotein complexes.
pattern of MLL1 occupancy during mitosis in a manner
favoring genes that were highly transcribed during the
interphase stage of cell-cycle [31]. However, how MLL1
bookmarks genes to maintain transcriptional memory has
not been addressed. The finding that gene-bookmarking
by MLL1 is largely independent of the methylation status
of H3K4 on mitotic chromosomes [31] provokes the ques-
tion of whether interactions of MLL1 with genomic DNA
may play a role in bookmarking events that preserve the
memory of highly transcribed genes at the onset of mi-
tosis. To explore this question, we have analyzed data
concerning interactions of MLL1 with DNA and chro-
matin. We show that DNA sequences that bind the
MLL1 MT-domain can be described as minimal units or
morphemes: the smallest ‘words’ in DNA that select-
ively bind the MT-domain in MLL1. We find that the
MLL1 morphemes occur in chromatin segments that
are bookmarked by MLL1 during mitosis. Furthermore,
we show that frequent morpheme occurrences map to
genomic sequences that correspond to CGIs. Collect-
ively, our results suggest that CGIs include TREs that
bind MLL1 to maintain the memory of highly active
genes at the onset of mitosis.
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Results and discussion
Localization of CpG-rich motifs in promoters of human
protein-coding genes
Protein coding genes are transcribed by RNA polymerase
II (POLII). Earlier studies deduced that MLL1 exclusively
regulated the expression of homeotic genes and proper
segmental identity in mammals [28,42]. However, emer-
ging data indicate that MLL1 associates with a substantial
fraction of human POLII promoters, supporting a global
role for MLL1 in regulation of transcription [31,47].
To uncover sequence motifs that may selectively interact

with MLL1, we analyzed sequences of 19 cloned inserts
that the MT-domain in MLL1 selected in DNA binding as-
says [24]. In 16 inserts, we identified motifs consisting of
CGCG with 0–2 nucleotides between the two CpGs.
The remaining 3 inserts contained CpG but lacked dis-
cernable motifs (Figure 2A). To explore the relevance of
the identified motifs to gene regulation, we examined a
relatively large collection of human POLII promoters.
We focused on the region upstream of transcription
start sites (−500 to −1) since this DNA segment contrib-
uted to formation of protein complexes that regulated
initiation of mRNA synthesis [13]. In promoter selec-
tion, we imposed filtering criteria to eliminate redun-
dancy. The final promoter set included nearly 16,000
sequences. We analyzed this set for occurrences of CGCG,
CGNCG, and CGNNCG. Additional file 1: Figure S1
shows that these motifs are spread across the DNA seg-
ment that precedes the transcription start sites (TSSs).
Motif frequencies steadily increase in sequences ap-
proaching proximal promoters and TSSs in genomic
DNA (Additional file 1: Figure S1). Certain motifs appear
A
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CCGTGCTAGTGCGTCGTACCCGCC
CGTGTCTGGCTGTGTCGGTGACCG
CTGCGGGCCCATCGNGANTCGCGG

XXTTACGTGCGGTGAGATGCGTCA
TTCGGCATGGCGTTTGACCTGCGC
CGTACGTGTCGTAAGTGTTGCGAT
XXTTACGTGCGGTGAGATGCGTCA
CGGCGCGATGTATCGTCCTCGTTT
ATCGCCCG CGAGTGGGGGCTTTGT
CGACGACTACGGTGCCGTTGCGCT
CGGTGCTGCGCGTGTCGTTGCTCG
ACGCCGTAATTCGCGCGGGTGCG
CGACGTCGTGATCGTAGTTACGTC
TACGTGGACCGACGTCGTACGGT
CGTACGGTGGGATAGACGTCGCG
CTGGCGATGTCTCCGAGTTGTGTG
ACGTACTTCTTGGATGCCTGCGTC
ATCACGCGACTCTCGACGTGAATT
CGTCACGTATTTGTGGGCTTCGGG

Figure 2 Analysis of cloned inserts obtained from SELEX assays. (A) T
numbered the inserts as shown on the left. Bold numbers highlight inserts
the position of morpheme overlaps. Yellow boxes highlight CpGs that did
distinguishing various MLL1 morphemes.
more prevalent than others, displaying the following
trend: CGNNCG>CGNCG >CGCG.

Lexical units recognized by the MLL1 MT-domain and
their localization to POLII promoters
Encouraged by results of preliminary promoter analyses,
we asked whether the cloned inserts obtained from SELEX
assays included sequence-elements that may correspond to
MLL1 recognition sites. To approach this question, we
separated motifs consisting of CGNCG and CGNNCG
according to nucleotides that appeared at N position.
We uncovered several motifs, which we refer to equiva-
lently as MLL1 binding sites, binding units, or morphemes
(Figure 2B). Examples include CGCG, CGTCG or its com-
plement (CGACG), CGGCG or its complement (CGCCG),
and CGTACG, a palindromic sequence (Figure 2B). Thus,
the MLL1 morphemes derived from CGNCG include all
possible bases at the N position: A, G, C, or T. Among the
combinatorial permutations of NN (in CGNNCG), we did
not find CGGCCG, CGAACG, CGATCG, CGAGCG, and
CGACCG. We refer to these sequences as non-motifs.
Results of promoter analyses prompted examination of

a sequence pattern that appeared frequently at the 5′
boundary of human POLII genes [48]. This pattern consists
of BVSCGSSSCB: where B corresponds to C, G, or T; V to
A, C, or G; S to C or G. We find that this pattern describes
three of the MLL1 morphemes (CGCGCG, CGCCCG,
CGCCG), supporting a possible role for such morphemes
in regulation of transcription. Additionally, earlier studies
analyzed human POLII promoters for frequently occurring
8-mers and 9-mers [49-52]. When ranked according to
statistical criteria, including occurrences in total human
B
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he inserts were isolated and sequenced by Birke et al. [24]. We
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genomic DNA, we find that a relatively large proportion of
promoter 9-mers are composed of CpG-rich sequences
[49,50] that include MLL1 morphemes.
Therefore, we reanalyzed the POLII promoter set for

morpheme occurrences (Figure 3, Additional file 2: Table
S1). We find that as observed for CGCG, CGNCG, and
CGNNCG (Additional file 1: Figure S1), the MLL1 mor-
phemes are spread across POLII promoters and their dens-
ity increases in sequences approaching the TSSs (Figure 3).
For morpheme frequencies, we observe the following
trend: CGCG > CGGCG > CGACG > CGCCCG > CGG
ACG > CGCGCG > CGTGCG > CGTACG (Additional
file 2: Table S1). In toto, results of complementary ana-
lyses support a role for MLL1 morphemes in promoter-
associated functions.

Morpheme occurrences in functional DNA sequences
Since the MLL1 morphemes were identified from the re-
sults of SELEX assays, we asked whether the morphemes
have any relevance to sequences that bind MLL1 in a
cellular context. In literature surveys, we found studies
that dealt with interactions of MLL1 with both synthetic
and naturally occurring DNA sequences [53-55]. One
study examined a naturally occurring DNA derived from
the proximal GC-box in the HSV TK promoter [53]. We
found that the GC-box in the HSV TK promoter in-
cluded a sequence (CGGCGCG) produced from two
overlapping MLL1 morphemes: CGGCG and CGCG
(Figure 4A). In transient expression assays, the GC-box
recruited MLL1 to DNA to activate expression of a
linked reporter gene [53]. This finding supports a role
for MLL1-DNA interactions in activation of transcrip-
tion. Furthermore, amino acid substitutions in the region
encompassing the MT-domain abrogated transcription
Figure 3 MLL1 morpheme distribution and occurrences in promoters
blue full circles; CGCCCG, magenta empty circles; CGACG, green emp
circles; CGTGCG, x magenta; CGTACG, + red.
and reporter gene activation [53]. These findings support
a role for interactions of the MT-domain with DNA in
the regulation of transcription.
Results of another study provide evidence for functional-

ity of MLL1 morphemes in vivo. Specifically, in an up-
stream promoter of the mouse Hoxa9 gene, the study
localized several CpG-rich clusters that were associated
with MLL1 [54]. Gene-knockout experiments showed that
MLL1 was required for protection of the CpG clusters from
methylation [54]. We find that the CpG clusters in the
Hoxa9 promoter include MLL1 morphemes (Figure 4B).
Isolated morphemes include CGCG, CGCCG, and CGC
GCG. A MLL-protected cluster (CGGGCGGGCG) is pro-
duced from overlap of CGGGCG and CGGGCG. Thus, re-
sults of MLL-knockout experiments provide support for a
role for MLL1 morphemes in an in vivo context.

Morpheme occurrences in CpG islands
The finding that the MLL1 morphemes are CpG-rich
raises the question of whether they are localized in CGIs
in order to recruit MLL1 to chromatin. However, since
the morphemes are relatively short a priori one could
suspect that they may appear frequently in human gen-
omic DNA just by chance: once every 256 bps for a 4-
nucleotide motif; once every 1024 bps for a 5-nucleotide
motif; once every 4094 bps for a 6-nucleotide motif. To
examine this issue, we counted morpheme occurrences
in total human genomic DNA. We find that morpheme
frequencies in genomic DNA are relatively low. For ex-
ample: CGCG (4 bps) occurs once per 53,977 bps;
CGACG/CGTCG (5 bps) occurs once per 210,681 bps;
and CGCGCG (6 bps) occurs once per 1,546,669 bps.
To evaluate more rigorously a possible connection be-

tween MLL1 morphemes and CGIs, we followed a
of human protein-coding genes: CGCG, red full circles; CGGCG,
ty circles; CGGACG, light blue empty circles; CGCGCG, black
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Figure 4 Morphemes in DNA fragments that interact with MLL1 in DNA binding and functional assays. (A) Sequences analyzed in DNA
binding or transient expression assays. Probe 1 corresponded to insert 1, shown in Figure 2A; probe 2 was derived from the HSV TK promoter
[53]. Colored sequences highlight the position of MLL1 morphemes in probe 1 and probe 2 (B) MLL1 morphemes in a DNA segment from the
mouse Hoxa9 gene. This segment includes the promoter of a Hoxa9 transcript [54]. Colored sequences highlight CpG-rich clusters that in vivo
MLL1 protected from methylation [54]. Color-coding follows the scheme in Figure 2B.
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previously described statistical model [49]. The statistical
procedure partitions the human genome according to oc-
currences of a given MLL1 morpheme in CGIs and in re-
gions outside CGIs. The probabilistic model assumes that
the total genomic DNA is generated by a memoryless or
Markov source. The statistical derivations are based on
the principle of large deviations, often referred to as p-
value analyses [56]. Results revealed that frequent mor-
pheme occurrences in CGIs were statistically significant
with β ≈ 10−50 (detailed in methods section).
To further assess a possible association of MLL1 mor-

phemes with CGIs, we examined individual human
chromosomes and total genomic DNA for morpheme
occurrences. The analysis compared expected frequencies
for random occurrences to observed morpheme frequen-
cies in CGIs. We found that morpheme-occurrences in
CGIs exceeded the values expected for random distribu-
tion in each human chromosome and in total genomic
DNA (Additional file 3: Table S2).
For morpheme frequencies in CGIs, we noted the fol-

lowing trend: CGCG > CGCCG/ CGGCG > CGCCCG/
CGGGCG>CGCGCG>CGTCG/ CGACG>CGTGCG /C
GCACG >CGTCCG/CGGACG>CGTACG. As expected,
the frequencies are influenced by morpheme-length.
Nonetheless, the trend indicates a bias in favor of GC-
rich morphemes. For example, in CGIs, a 5-bp mor-
pheme (CGCCG/ CGGCG) occurred 188,320 times while
CGTCG/ CGACG occurred 38,647 times. In CGIs, a 6 bp
morpheme (CGCCCG/ CGGGCG) occurred 62,702 times
while CGTGCG /CGCACG occurred 18,184 times. Over-
all, the observed trend is consistent with a possible con-
nection between MLL1 morphemes and CGIs since a high
G +C content is a hallmark of sequences localized in CpG
islands [5].
Additionally, we performed statistical evaluations of

CpG-rich motifs that did not appear in results of SELEX
assays. The analysis revealed that the non-motifs also are
associated with CGIs. However, except for CGGCCG, the
overall frequencies of non-motifs in CGIs were much
lower than those observed for MLL1 morphemes
(Additional file 4: Table S3). For example: in CGIs,
CGAGCG/CGCTCG occurs 23,438 times; CGACCG/
CGGTCG occurs 10,009; CGAACG/CGTTCG occurs
5,019 times; CGATCG occurs 1,686 times.

Occurrences of MLL1 morphemes in classified POLII
promoters
Human POLII promoters can be classified into three
groups: group I (about ~ 30%) does not have a CpG is-
land at their TSS. Group II (about ~ 60%) has a single
CpG island at their TSS. Group III (about ~ 10%) has
two or more CpG islands in the vicinity of their TSSs [57].
Generally, the density of CpG dinucleotides in genomic
DNA positively correlates with positions of H3K4me3
marks in chromatin, indicating that these two properties
are mechanistically linked [57,58]. CpG-rich promoters
may be enriched in RNA polymerase II poised for tran-
scription [16]. In contrast, by default, AT-rich promoters
are transcriptionally inactive (19).
Promoter classifications [57] led us to examine the dis-

tribution pattern of MLL1 morphemes in human gen-
omic DNA with respect to CGI positions, overall CpG
occurrences, and H3K4me3 modification patterns. We
present three representative examples, chosen for com-
parison with results of POLII promoter classification [57].
The first example covers a region that does not include a
CGI (Figure 5). The depicted segment is about 211,000 bp
long. It includes a protein-coding gene (SCN1A), many
CpGs but not a CGI. Figure 5 shows that MLL1 mor-
phemes are scattered throughout the segment, possibly
reflecting random occurrences (track labeled MLL1 sites).
As observed previously [57], we did not find H3K4me3
marks for nucleosomes associated with that region in
human genomic DNA (Figure 5, track labeled Layered
H3K4me3).
The second example shows a region that includes a sin-

gle CGI [57] encompassing TSSs of various POLR1B tran-
scripts (Figure 6). Consistent with sequence characteristics
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of CGIs, frequency of CpG dinucleotides is relatively high
within the island and tails into flanking sequences desig-
nated in literature as shores and shelves (Figure 5, lane la-
beled short match). The MLL1 morphemes are primarily
localized within the island (Figure 6). Layers of H3K4me3
marks encompass the CpG island and extend into the
island’s shores and shelves.
The third example shows a DNA segment that con-

tains several CGIs and includes a region spanning a
protein-coding gene known as SIX2 [57]. Figure 7 shows
that the MLL1 morphemes are densely packed within
the islands. In contrast, the distribution of CpGs occur-
rences is significantly more broad and extends to sur-
rounding shores and shelves of the CGIs. As noted
previously [57], the H3K4me3 marks encompass the re-
gions that includes a high CpG density. Since SIX2 func-
tions in myogenesis [60], H3K4me3 marks are primarily
observed for HSMM cells, human skeletal muscle myo-
blast (Figure 7).

Morpheme occurrences in human HOX loci
In both Drosophila and vertebrates, the homeotic genes
play essential roles in correct patterning of the body plan
[61]. TrxG complexes and PcG complexes maintain the
expression pattern of genes localized in appropriate do-
mains [61,62]. As in mice, the human homeotic genes are
organized into four clusters: HOXA, HOXB, HOXC, and
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myoblasts (HSMM), human umbilical vein endothelial cells (HUVEC), erythro
(NHEK), and normal human lung fibroblasts (NHLF) [59]. A layered represen
profiles [59].
HOXD [63]. This group of genes encode a family of
transcription factors that play fundamental roles in
morphogenesis during development [42]. Notably, sev-
eral genes in the clusters include known MLL1 targets
[42,47,55].
Numerous CGIs are spread across the human HOX

loci: about 31–36 CGIs/locus (Figures 8, 9, 10, 11 and 12).
In these loci, the MLL1 morphemes are primarily local-
ized in CGIs and in some cases tail into the shores and
shelves of the islands (Figures 8, 9, 10, 11 and 12). A CGI
may be associated with a bidirectional promoter regu-
lating the expression of a HOX gene and a noncoding
RNA. Examples include a CGI that include HOXA1
and HOTAIRM promoters (Figure 8). Transcription of
HOTAIRM1 originates from the same CpG island that
embeds the start site of HOXA1 [64]. Similarly, a CGI
encompasses a bidirectional promoter that regulates
the expression of HOXA13 and HOTTIP (Figure 8).
Transcription of HOTTIP produces a noncoding RNA,
implicated in maintaining active chromatin to coordi-
nate the expression of genes in HOXA locus [65]. Tran-
scription initiation site of another noncoding RNA gene
(HOXD-AS1) is within a CGI that includes the coding re-
gion of HOXD1 (Figure 11).
In the human HOXA locus, a previous study discov-

ered extensive MLL1 binding events to a transcription-
ally active chromatin domain [47]. In ChIP assays of a
hg19
113,301,000 113,302,000 113,303,000 113,304,000

, CCDS, Rfam, tRNAs & Comparative Genomics)

nds < 300 Bases are Light Green)

 Near Promoters) on 7 cell lines from ENCODE

hes to Short Sequence (CG)

A MLL Morphemes

NA MLL-non-motifs

ene. Horizontal green bar marks the CGI position. Track labeled “Short
eme positions; “non-motifs” mark the position of sequences not found
position of H3K4me3 marks, determined by the ENCODE project using
embryonic stem cell line (H1-hESC), human skeletal muscle
leukemia type cell line (K562), normal human epidermal keratinocytes
tation is displayed in order to provide an overview of H3K4me3



Scale
chr2:

CpG Islands

Short Match

MLL1 sites

Non-motifs

10 kb hg19
45,225,000 45,230,000 45,235,000 45,240,000 45,245,000 45,250,000

UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)

CpG Islands (Islands < 300 Bases are Light Green)

H3K4Me3 Mark (Often Found Near Promoters) on 7 cell lines from ENCODE

Perfect Matches to Short Sequence (CG)

BINA MLL Morphemes

BINA MLL-non-motifs

SIX2

Layered H3K4Me3
150 _

0 _

Figure 7 Human genomic DNA with several CGIs and SIX2 gene. Horizontal green bars mark the position of CGIs. Track labeled “Short
Match” marks the position of CpGs. Track-labeled “MLL1 sites” marks morpheme positions; “non-motifs” mark the position of sequences not found
in results of SELEX assays [24]. Track labeled “Layered H3K4me3” shows the position of H3K4me3 marks [59].

Bina et al. BMC Genomics 2013, 14:927 Page 8 of 16
http://www.biomedcentral.com/1471-2164/14/927
human monocytic cell-line (U937), MLL1 was localized
to chromatin segments encompassing HOXA1 and the 5′
HOXA subcluster including HOXA7, HOXA9, HOXA10,
HOXA11, and HOXA13 (Figure 8). Binding of MLL1 to
these genes correlated with high-levels of their expression
[47]. We find that MLL1 morphemes occur frequently in
chromatin regions with which MLL1 associates (Figure 8).
We cover several examples illustrating the correspond-

ence of morpheme occurrences to CGIs in human HOXA
locus and to MLL1 associated regions determined by ChIP
assays [47]. These regions are marked by horizontal
brown-bars in Figure 8. ChIP assays localized an MLL-
bound segment that included the TSS of HOXA1, extend-
ing into the transcribed region of the gene [47]. We find
that the corresponding genomic DNA segment encom-
passes two CGIs that contain clusters of MLL1 mor-
phemes (Figure 8). A short MLL-associated chromatin
segment includes the HOXA5 promoter and extends to
the second exon in HOXA6 [47]. The MLL-bound seg-
ment is within a CGI that contains two clusters of MLL1
morphemes (Figure 8). A long MLL-bound segment en-
compasses four CGIs that include several clusters of mor-
pheme. A shorter MLL1 associated segment overlaps with
a CGI that includes a cluster of morphemes; similarly
sized MLL-bound segments also encompass CGIs that
contain clusters of MLL1 morphemes (Figure 8).
In the human HOXB locus, CGIs are associated with

promoters of several genes including HOXB5, HOXB7,
and HOXB9 (Figure 9). Intra- and inter-genic islands
occur often and include both isolated and overlapping
MLL1 morphemes (Figure 9). The HOXC locus primarily
contains intra- and inter-genic CGIs (Figure 10). HOXC8,
Figure 8 Localization of CGIs and MLL1 morphemes in DNA segment
position of CGIs. Horizontal brown bars mark MLL1 binding segments obse
positions; “non-motifs” mark the position of sequences not found in results
position of H3K4me3 marks [59].
HOXC9, and HOXC10 promoters are within CGIs that
extend into coding sequences. These CGIs also include
MLL1 morphemes (Figure 10). TSSs of genes in HOXD
locus are often within CGIs that contain MLL1 mor-
phemes (Figure 11). Examples include CGIs encompass-
ing HOXD1, HOXD6, HOXD8, HOXD9, HOXD12, and
HOXD13 promoters (Figure 11).

Morpheme occurrences in chromatin regions bookmarked
by MLL1 during mitosis
To further assess the relevance of MLL1 morphemes to
biological functions, we examined chromosomal regions
reported to bind MLL1 during mitosis [31]. Binding of
MLL1 to these regions preserved the memory of genes
that were highly active prior to the onset of cell division
[31]. The assays primarily focused on regions encompas-
sing promoter sequences of POLII genes [31]. Therefore,
we analyzed results of ChIP assays to determine whether
the MLL-bound chromatin segments mapped to CGIs
and to evaluate whether the bookmarked segments in-
cluded MLL1 morphemes. We cover three representative
examples, selected to compare our findings to figures dis-
cussed in a previous publication [31]. The first example
deals with association of MLL1 with a chromatin segment
that includes the TSS of EEF1A1 gene. This association
appeared exclusively in mitotic chromosomes [31]. The
MLL-bound segment included the major TSS of EEF1A1,
extending into the first exon and the first intron of the
gene (brown-bars in Figure 12). We find that the corre-
sponding genomic DNA is within a CGI and includes
clusters of both isolated and overlapping MLL1 mor-
phemes (Figure 12, track labeled MLL1 sites).
s encompassing human HOXA locus. Horizontal green bars mark the
rved in ChIP assays [47]. Track-labeled “MLL1 sites” marks morpheme
of SELEX assays [24]. Track-labeled “Layered H3K4me3” shows the



Figure 9 Localization of CGI and MLL1 morphemes in DNA segments encompassing human HOXB locus. Horizontal green bars mark the
position of CGIs. Track labeled “MLL1 sites” marks the position of MLL1 morphemes; “non-motifs” mark the position of sequences not found in
results of SELEX assays [24]. Track-labeled “Layered H3K4me3” shows the position of H3K4me3 marks [59].
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The second example covers the association of MLL1
with the MYC locus (Figure 13). ChIP assays revealed that
MLL1 was preferentially bound to the MYC locus during
mitosis whereas POLII occupied the locus in the inter-
phase stage of cell-cycle [31]. In mitotic chromosomes,
the MLL1-associated chromatin segment included se-
quences from ~0.5 kb upstream to ~1 kb downstream of
the TSS of MYC [31]. The corresponding DNA segment
encompasses a CGI that contains numerous clusters of
MLL1 morphemes (Figure 13). PABPC1 locus provides an
example of numerous occurrences of both isolated and
overlapping morphemes in a region bookmarked by
MLL1 during mitosis [31]. The bookmarked segment
(2.5 kb) is within a CGI that spans the promoter, the
first exon, and part of the first intron of PABPC1 gene
(Figure 14). MLL1 morphemes are spread across the
DNA segment localized in ChIP assays (Figure 14). The
segment includes several morpheme-overlaps produced
from permutations of CGCG, CGCCG, CGCCCG, and
complements of these sequences. Examples include CG
CGCCG, CGCCGCG, CGCGGGCG, CGCGGCG, CG
CGGCG in PABPC1 promoter. Notably, the PABPC1 as-
sociated CGI contains multiple occurrences of mor-
phemes that also occur in a region that in vivo MLL1
protected from CpG methylation (Figure 4B).

On gene bookmarking during mitosis
Overall, results of our analyses implied that interactions
of MLL1 with its morphemes may contribute to gene
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Figure 10 Localization of CGI and MLL1 morphemes in DNA segment
position of CGIs. Track-labeled “MLL1 sites” marks morpheme positions; “no
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bookmarking events that preserved the memory of genes
that were highly active prior to mitosis [31]. However, evi-
dence is lacking for involvement of other MLL1 family
members in gene bookmarking events. As MLL1, MLL2/
KMT2B binds non-methylated CpGs [25]. Furthermore, a
study has shown binding of MLL2 to a POLII promoter
within a CpG island [66]. However, ChIP assays revealed
that MLL2 was evicted from mitotic chromatin indicating
that MLL2 did not contribute to gene bookmarking
during mitosis [31]. The structure of the other two family
members (MLL3/ KMT2C and MLL4/ KMT2D) does not
contain an MT-domain. Therefore, it seems unlikely that
MLL3 and MLL4 would interact with CpG rich motifs lo-
calized in CpG islands.
MLL1 is a component of relatively large and dynamic

multiprotein complexes [13]. Therefore, one may ask
whether other components in these complexes would
contribute to gene-bookmarking by MLL1 [31]. In pro-
tein networks, MLL1 interacts with several proteins, in-
cluding MEN1, RBBP5, and ASH2L [67], (Figure 1). All
three proteins associate with MLL1 during both inter-
phase and mitosis [31]. In MLL-deficient cells, most of
RbBP5, ASH2L, and MEN1 were localized to the cyto-
plasm, indicating that their association with mitotic chro-
matin was MLL-dependent [31]. Even though MEN1
interacts with DNA, the binding is not DNA-sequence-
specific [68]. MEN1 also associates with a variety of DNA
structures, including Y-structures, branched structures,
and 4-way junction structures [68]. In literature surveys,
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we did not find evidence for direct interactions of MEN1
with CpG-containing sequences. Furthermore, while dur-
ing mitotic silencing of highly expressed genes MEN1 was
associated with mitotic chromatin, MLL1 was required for
this association [31].
Other candidates for gene-bookmarking include LEDGF/

p75 (Figure 1). LEDGF is best known for its role in tether-
ing to chromatin protein-complexes that integrate the
HIV-1 genome into the host-cell chromosomes [69].
LEDGF primarily associates with chromatin in regions
downstream of TSSs, to effect gene-specific HIV-1 inte-
gration [70]. Furthermore, in contrast to MLL1 [24,53],
LEDGF does not bind CpG-rich DNA sequences.
Since MLL1 is best known for its H3K4 methyltransfer-

ase activity, one may expect that gene bookmarking by
MLL1 could involve mechanisms dealing with trimethyla-
tion of histone H3 [31]. However, MLL1 was dispensable
for preserving histone H3K4 methylation during mitosis,
indicating that MLL1 served H3K4 methyltransferase-
independent functions to propagate active chromatin
during mitosis [31]. Furthermore, during mitosis, SETD1A
was evicted from mitotic chromosomes, implying that
it did not contribute to gene-bookmarking events [31].
SETD1A is the major H3K4 methyltransferase during the
interphase and targets many nucleosome-associated genes
for histone H3 modifications [17]. Both SETD1A and
SETD1B interact with a protein (CXXC1/Cfp1) that binds
unmethylated CpG [26,43], Figure 1. Earlier genome-wide
studies localized CXXC1 to CGIs and deduced that CXXC1
functions included recruitment of SETD1A and SETD1B to
chromatin for trimethylation of H3K4 [71]. However, sub-
sequent studies revealed that while CXXC1 played a key
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Figure 12 Zoom-out view of MLL1 morpheme occurrences in EE1F1A
brown bar marks the chromatin segment bookmarked by MLL1 during mit
motifs” mark the position of sequences not found in results of SELEX assay
H3K4me3 marks [59].
role in organizing genome-wide H3K4me3 in mouse ES
cells, its DNA binding domain was not required for re-
cruitment of enzymes that produced H3K4me3 marks
on CGI-associated nucleosomes [72]. While CXXC1 is
crucial for early embryonic development and regulates
genomic cytosine methylation patterns [73-75], it remains
to be determined whether CXXC1 may also play a role in
gene bookmarking during mitosis.

Occurrences of overlapping MLL1 morphemes
We noted that in some cases, morphemes overlapped in
various orders and combinations. Based on statistical
criteria (described in the Methods section), occurrences
of morpheme overlaps in CGIs are even rarer events
than those obtained for isolated morphemes. We found
that morpheme overlaps creating long sequences appeared
infrequently in human genomic DNA. We noticed that
morpheme overlaps could be produced from a repeated
DNA sequence element. Examples include CGG repeats
associated with genetic abnormalities. (CGG)n creates mor-
pheme overlaps of the following form: CGGCGGCGG
CGGCGGCGG etc.
Notable examples include the FMR1 locus in which

CGG expansion causes mental retardation [76]. This ex-
pansion arises in a CGI associated with Fragile X Syn-
drome, in the 5′ untranslated region of the FMR1 gene
[77]. In normal individuals, repeat-size varies from 6 to 54
CGG [78]. All alleles with greater than 52 repeats, inclu-
ding those identified in a normal family, are mitotically
unstable [78]. Remarkably, in carriers FMR1 transcription
increases, displaying a positive correlation between repeat
number and levels of FMR1 transcripts [79]. Additionally,
hg19
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carriers display changes in TSS utilization [76]. Thus, re-
peated overlapping morphemes, downstream of tran-
scription initiation sites, may influence TSS utilization
and upregulation of gene expression.
Several overlapping MLL1 morphemes are dispersed

across the human HOX loci (Figures 8, 9, 10 and 11). In
some cases morpheme overlaps are localized upstream or
near TSS of specific genes. Examples include morpheme
overlaps in promoter/upstream sequences of genes in vari-
ous loci: CGCGCGCGCG, HOXA4; CGCCCGCCCGCCG
CCCGCCCG HOXA6; CGCCCGCGCCCGGCG, HOXA7;
CGGCGCGCGCG, HOXA11; two repeats (CGCCGCCG
CCGCCGCCGCCGCCCG and CGCCGCCCGCCGCCG
CCGCCG),HOXC8; and CGGCGGCGGCGGCG,HOXD10.
In some cases, overlapping morphemes are localized

in coding regions producing repeated amino acid resi-
dues in a polypeptide chain. Notable examples include
morpheme overlaps in HOXA13 and HOXD13 coding
sequences producing tracts of alanines. Amplification of
DNA sequences in a HOXD13 exon causes Syndactyly,
fusion of digits in fingers [63]. It is thought that Syndac-
tyly is due to expansion of alanine-tracts [63]. However,
it seems plausible that overlapping morphemes in coding
sequences may play a regulatory role at the level of gene
expression. In fact, an emerging view is that gene regula-
tory and coding sequences are more intermingled than
once believed [80].
Statistical criteria indicate that morpheme overlaps are

rare events in genomic DNA, raising the question of
whether occurrences of overlapping morphemes could
play a role in cellular functions regulated by MLL1. In
this context, we noted that a previous study found that
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Figure 14 Zoom-out view of morpheme occurrences in PABPC1 locus
marks the chromatin segment bookmarked by MLL1 during mitosis [31]. Tr
the position of sequences not found in results of SELEX assays [24]. Track la
the SET domain in MLL1 self-associated to form homo-
oligomeric complexes [81]. This association was observed
in various experimental settings including yeast two-
hybrid methodology, biochemical studies, and deletion
analyses [81]. The study found a similar self-association
for the SET domain in the Drosophila trithorax [81].
In leukemogenic MLL1 fusion proteins, the SET do-

main is deleted and replaced with over 40 different
translocation partners [20]. Invariably, the MLL1 MT-
domain is retained at the amino-terminus of fusion pro-
teins [20]. MLL1 fusion partners include transcriptional
activators that upregulate gene expression in leukemic
cells. Also, there are partners that impart transcriptional
activating properties to MLL1 fusion proteins by pro-
moting dimerization [82]. Dimerization of fusion pro-
teins immortalized hematopoietic cells by upregulating
transcription of several endogenous genes [82]. Interest-
ingly, protein-dimerization enhanced the binding of
MLL1 amino-terminus to regulatory regions leading to
upregulation of linked genes [82].
Since normal forms of MLL1 self-associate via the SET

domain [81] to produces homo-oligomeric complexes
[81], it seems plausible that as observed for leukemic cells
[82], association of MLL1 molecules could enhance the af-
finity of MLL1 for DNA. Furthermore, self-association
might operate in linking MLL1 molecules so that they
would reside simultaneously on different maintenance ele-
ments in chromosomes [81]. This mechanism would inte-
grate the activity of MLL1 in activation of a target gene,
shared target genes, or both [81]. Propagation of MLL1
association with DNA may arise from a combination of
two molecular events: binding of MLL1 to overlapping
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morphemes and MLL1 oligomerization via the SET do-
main. Cooperative DNA binding, via self-association,
often increases the DNA binding specificity of a protein.
We imagine that overlapping MLL1 morphemes may fa-
cilitate MLL1 self-association linking MLL1 molecules
to reside cooperatively on DNA sequence elements
(TREs) that maintain cellular memory during develop-
ment. Our data indicate that such TREs also could func-
tion in gene-bookmarking to preserve the memory of
highly active genes during mitosis. Also, one could imagine
that overlapping morpheme occurrences may facilitate lo-
calized propagation of MLL1 binding to DNA to maintain
a nucleosome-free region and, thus, an open chromatin
configuration.

Conclusions
Annotation of the human genome has involved numerous
experimental and computational strategies to identify and
describe DNA sequences that are important to cellular
functions. However, despite cutting-edge advances, we lack
a complete understanding of the function of CpG islands,
which were discovered some time ago [4,5]. Results of our
analysis provide suggestive evidence for specific sequence
motifs in CGIs that may function in the recruitment of
MLL1 to mitotic chromatin. We show that various combi-
nations of MLL1 morphemes occur in chromatin regions
bookmarked by MLL1 during mitosis [31]. Thus, our re-
sults implicate the MLL1 morphemes in sequence-features
that define the mammalian TREs. Our results also suggest
a role for overlapping morphemes in producing multiple
MLL1 binding events, linking MLL1 molecules so that they
would reside simultaneously on different maintenance ele-
ments in chromosomes, as previously proposed [81].
Our findings also may explain why CGIs often extend to

include promoter, exonic, and intronic sequences of genes.
By binding CGIs, MLL1 might preserve and maintain an
open chromatin configuration to regulate gene expression
and to facilitate rapid gene activation upon mitotic exit.
Association of MLL1 with CGIs agrees with a global role
for MLL1 in regulation of transcription [47].
Apparently, our findings provide the first evidence

for the existence of potential TREs in mammalian
genomic DNA and the first evidence for a connection
between CGIs and gene-bookmarking by MLL1 to
transmit the memory of highly active chromatin states
during cell-division. Because of the strong connection
of TREs and PREs in Drosophila [32], we speculate
that the MLL1 morphemes may play a dual role: (1)
contribute directly to the recruitment of mammalian
TrxG complexes to chromatin and (2) contribute in-
directly, or directly, to the recruitment of PRC2 complexes
to chromatin to repress transcription. This possibility is
consistent with the finding that the mammalian PRC2 re-
pressive complex binds CGIs [34] and our discovery of
frequent occurrences of MLL1 morphemes in CpG
islands.

Methods
Identification of MLL1 morphemes and their localization
in human genomic DNA
We identified the MLL1 binding units by analyzing re-
sults of reported SELEX- and PCR-based assays. These
assays were conducted to determine the DNA binding
properties of the MLL1 MT-domain [24]. In our ana-
lyses, we included counting schemes to assess the num-
ber of CpGs and to identify nucleotides that appeared
between CpG dinucleotides in each cloned inserts.
To count genomic occurrences of MLL1 morphemes,

we downloaded nucleotide sequences of CGIs and hu-
man chromosomes from the human genome browser at
UCSC [83]. A Perl script was written to determine oc-
currences of each morpheme in downloaded sequences
and to create outputs displaying the results. We followed
various counting schemes. We found including or omit-
ting morpheme overlaps gave about the same number of
counts (variation among procedures was less than 10%).
To localize genomic positions of MLL1 morphemes,

we retrieved genomic DNA (Hg19) from the Genome
Browser at UCSC [83]. Sequence analyses involved scan-
ning the human genome for morpheme occurrences, using
Perl scripts [50]. Similarly, we developed script to create
outputs (bed files) to display the position of MLL1 mor-
phemes on the Genome Browser at UCSC [50]. Tools of-
fered by the browser facilitated examining genomic maps
in context of landmarks, including the position of genes,
CGIs, and chromatin modification patterns [83,84].

Studies of promoter sequences of human genes
To analyze promoter sequences of POLII genes, we ob-
tained the accession number of human cDNAs from the
UCSC database [83]. Heather Trumbower (at UCSC) wrote
queries and retrieved the accession number of 44,338
cDNAs, organized according to their position in human
chromosomes. To reduce sequence-redundancy, we se-
lected one cDNA per gene. Subsequently, we computa-
tionally removed cDNAs that appeared to be incomplete.
Accession numbers of remaining cDNAs were uploaded
on the table browser at UCSC to obtain the nucleotide se-
quence of corresponding promoters: -500 to transcription
start site. Since the human genome may contain multiple
copies of a given gene [85], we chose one promoter to rep-
resent redundant genes.
Afterwards, we followed previously described methods

[49,50,86] to create a database for retrieving information
about the final set (15,906) of promoters. The database
(RF_data_06) tracked the number of occurrences as well
as the position of all possible 9-mers in POLII pro-
moters, with respect to TSSs. For statistical evaluations,
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the database included counts of 9-mers in total human
genomic DNA and in repetitive DNA sequences [49].
For promoter analyses, we queried RF_data_06 to obtain
counts for a given subsequence (i.e. CGCG, CGNCG,
CGNNCG, and MLL1 morphemes) at each nucleotide
position (−500 to −1).

Statistical evaluation
For statistical evaluation, we followed a previously de-
scribed approach [49]. Briefly, Regnier and Szpankowski
have shown that occurrences of words in a randomly
generated text (based on either Bernoulli or Markov
model) are normally distributed around a mean [87]. We
used their findings to perform statistical derivations
based on the principle of large deviations [49].
We chose the following notations: LG length of total gen-

omic DNA, LE total length of CGIs, and LF length of re-
gions that do not correspond to CGIs. Thus, LF = LG − LE
Subsequently, we created a motif table (w1, …, wM),

consisting of MLL1 morphemes to identify elements that
matched sequences in LE and LG
For 1 ≤ i ≤M, we denote by Ei, Fi, and Gi, respectively,

the frequency of the ith element (wi) in LE, LF , and LG
Since LE is significantly shorter than LG as an approxi-

mation we assume |LE| < |LF| ≈ |LG|
Quantities of interest are total counts normalized with

respect to length of analyzed sequences:

ei ¼ Ei

LE

f i ¼
Fi

LF

gi ¼
Gi

LG

We made two additional justifiable approximations:
fi ≈ gi and fi ≈ p(wi)
Since |LG| is very large, within the margin of error, fi

approximates the probability of occurrence of mor-
pheme wi in genomic DNA.
As previously [49], we aimed to determine a threshold

αth so that we could assign statistical significance to
cases in which ei > αfi (or ei > αgi). Evaluations require
comparing empirical data to a reference model. For ref-
erence, we chose a probabilistic model assuming that
the genome is generated by a memoryless or Markov
source. In this model, ei and fi become random variables.
As detailed above, we simplified the analysis by assuming

that fi = p(wi) is a constant. Subsequently, we determine
whether for a given β, the event ei > αfi is statistically
significant provided that the probability of ei > αfi is
smaller than β. That is, P(ei > αfi) < β (the chance of
randomness that generates the event ei > αfi is very
small). We set β = 10−50 to compute the αth threshold.
From [87], we knew that Ei values should be normally

distributed around a mean

E Ei½ � ¼ LEp wið Þ
When Ei does not deviate more than O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LEp wið Þp� �

EieN LEp wið Þ;LEσ
2 wið Þ� �

Where, N(μ, σ2) denotes the normal distribution with
mean μ and variance σ2

When Ei deviates from O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LEp wið Þp� �

another prob-
abilistic law would govern the Ei behavior: namely, the
large deviations law [56]. Previously Regnier and Szpan-
kowski [87] proved

p Ei < 1þ δð ÞLEp wið Þð Þ < 1ffiffiffiffiffiffiffiffiffiffiffi
2πLE

p exp −LEI δð Þð Þ ð1Þ

Where, I(δ) is a complicated function of δ that de-
pends on moment generation functions [88]. To com-
pute threshold α = 1 + δ > 1, we estimate δ from

P ei < 1þ δð Þp wið Þð Þ < β

That equation translates into P(Ei > (1 + δ)LEp(wi)) < β
which is clearly within the large deviations domain.
For the analyses, we need to apply Eq. (1). However,

numerical computations of the large deviation function I
(δ) are rather cumbersome. Therefore, we followed ap-
proximations, noting that a good bound was needed
only for the large deviation probability. Ignoring overlap-
ping morphemes, Ei would be a sum of Bernoulli inde-
pendent random variables. If that case, the following
bound can be found (cf. for example, Ref. [88]):

P Ei > 1þ δð ÞLEp wið Þð Þ < exp −LEI δ2=3
� �� � ð2Þ

To be rigorous and take into account overlapping
morphemes, we must somewhat relax equation (2). Re-
ferring to Azuma’s inequality (cf. Ref. [56]), we obtain:

P Ei > 1þ δð ÞLEp wið Þð Þ≤exp −LEp wið Þδ2=2� � ð3Þ
From equation (2) and (3), we obtain the following es-

timate for threshold αth = 1 + δ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnβ−1

LEp wið Þ

s
≤ αth ≤1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 lnβ−1

LEp wið Þ

s
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Additional file 1: Figure S1. Occurrences of CpG-rich motifs in promoter
regions of human protein-coding genes. Full magenta-circles correspond to
CGNNCG, blue-circles to CGNCG, and empty red-circles to CGCG. Motif
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frequencies are shown as the function of nucleotide positions in promoter
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Additional file 2: Table S1. Frequency of morphemes and non-motifs
in promoter sequences of POLII genes.

Additional file 3: Table S2. Counts of expected and observed
morpheme occurrences in CpG islands.

Additional file 4: Table S3. Counts of expected and observed
non-motif occurrences in CpG islands.
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