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Abstract

In many semiparametric models that are parameterized by two types of parameters – a Euclidean 

parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are 

bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter 

of interest as part of its argument. For example, in a linear regression model for censored survival 

data, the unspecified error distribution function involves the regression coefficients. Motivated by 

developing an efficient estimating method for the regression parameters, we propose a general 

sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory 

for the sieve maximum likelihood estimation in the linear regression model for censored survival 

data. The numerical implementation of the proposed estimating method can be achieved through 

the conventional gradient-based search algorithms such as the Newton-Raphson algorithm. We 

show that the proposed estimator is consistent and asymptotically normal and achieves the 

semiparametric efficiency bound. Simulation studies demonstrate that the proposed method 

performs well in practical settings and yields more efficient estimates than existing estimating 

equation based methods. Illustration with a real data example is also provided.
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1. Introduction

In a semiparametric model that is parameterized by two types of parameters – a finite-

dimensional Euclidean parameter and an infinite-dimensional parameter, oftentimes the 

infinite-dimensional parameter is considered as a nuisance parameter, and the two 
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parameters are separated. In many interesting statistical models, however, the parameter of 

interest and the nuisance parameter are bundled together, a terminology used by [12] when 

they reviewed the linear models under interval censoring, which means that the infinite-

dimensional parameter is an unknown function of the parameter of interest. For example, in 

a linear regression model for censored survival data, the unspecified error distribution 

function, often treated as a nuisance parameter, is a function of the regression coefficients. 

Other examples include the single index model and the Cox regression model with an 

unspecified link function.

There is a rich literature of asymptotic distributional theories for M-estimation in a variety 

of semiparametric models with well separated parameters, see e.g. [9, 10, 11, 23, 29, 32], 

among many others. Though many methodologies of M-estimation for bundled parameters 

have been proposed in the literature, general asymptotic distributional theories for such 

problems are still lacking. The only estimation theories for bundled parameters we are aware 

of are the sieve generalized method of moment of [1] and the estimating equation approach 

of [5, 18].

In this article, we consider an extension of existing asymptotic distributional theories to 

accommodate situations where the estimation criteria are parameterized with bundled 

parameters. The proposed theory has similar flavor of Theorem 2 in [5], but they are 

different because the latter requires an existing uniform consistent estimator of the infinite 

dimensional nuisance parameter with a convergence rate faster than n−1/4, which is then 

treated as a fixed function of the parameter of interest in their estimating procedure, while 

we need to simultaneously estimate both parameters through a sieve parameter space; 

furthermore, their existing nuisance parameter estimator needs to satisfy their condition 

(2.6), which is usually hard to verify when its convergence rate is slower than n−1/2. Our 

proposed theory is general enough to cover a wide range of problems for bundled 

parameters including afore-mentioned single index model, the Cox model with unknown 

link function, and linear model under different censoring mechanisms. Rigorous proofs for 

each of the models, however, will take lengthy derivations. We only use the efficient 

estimation in the semiparametric linear regression model with right censored data as an 

illustrative example that motivates such a theoretical development, and will present results 

for other models elsewhere. Note that the considered example can not be directly put into 

the framework of restricted moments due to right censoring, thus can not be handled by the 

method of [1].

Suppose that the failure time transformed by a known monotone transformation is linearly 

related to a set of covariates, where the failure time is subject to right censoring. Let Ti 

denote the transformed failure time and Ci denote the transformed censoring time by the 

same transformation for subject i, i = 1, ⋯, n. Let Yi = min(Ti, Ci) and Δi = I(Ti ≤ Ci). Then 

the semiparametric linear model we consider here can be written as

(1.1)

where the errors e0,i are independent and identically distributed (i.i.d.) with an unspecified 

distribution. When the failure time is log-transformed, this model corresponds to the well-
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known accelerated failure time model [15]. Here we assume that (Xi, Ci), i = 1, …, n, are 

i.i.d. and independent of e0,i. This is a common assumption for linear models with censored 

survival data, which is particularly needed in [21] to derive the efficient score function for 

β0. Such an assumption, however, is stronger than necessary in the usual linear regression 

without censoring, for which the error is only required to be uncorrelated with covariates 

(see e.g. [3]). We also avoid trivial transformations such as log(0) so that we always have 

Yi’s bounded from below.

The semiparametric linear regression model relates the failure time to the covariates directly. 

It provides a straightforward interpretation of the data and serves as an attractive alternative 

to the Cox model [6] in many applications. Several estimators of the regression parameters 

have been proposed in the literature since late 70’s, including the rank-based estimators (see 

e.g. [19], [28], [25], [30], [13], [14]) and the Buckley-James estimator (see e.g. [2], [20], 

[16]). There are two major challenges in the estimation for such a linear model: (1) the 

estimating functions in the aforementioned methods are discrete, leading to potential 

multiple solutions as well as numerical difficulties; (2) none of the aforementioned methods 

is efficient. Recently, [31] developed a kernel-smoothed profile likelihood estimating 

procedure for the accelerated failure time model. In this article, we consider a sieve 

maximum likelihood approach for model (1.1) for censored data. The proposed approach is 

much intuitive, easy to implement numerically, and asymptotically efficient.

It is easy to see that T and C are independent conditional on X under the assumption e0 ⊥ (C, 

X). Hence the joint density function of Z = (Y, Δ, X) can be written as

(1.2)

where Λ0(·) is the true cumulative hazard function for the error term e0 and λ0(·) is its 

derivative. H (y, δ, x) only depends on the conditional distribution of C given X and the 

marginal distribution of X, and is free of β0 and λ0. To simplify the notation, we will ignore 

the factor H from the likelihood function. Then for i.i.d. observations (Yi, Δi, Xi), i = 1, ⋯, n, 

from equation (1.2) we obtain the log likelihood function for β and λ as

(1.3)

The log likelihood given in (1.3) apparently is a semiparametric model, where the argument 

of the nuisance parameter λ involves β, thus β and λ are bundled parameters. To keep the 

positivity of λ, let g(·) = log λ(·). Then the log likelihood function for β and g, using the 

counting process notation, can be written as

(1.4)

where Ni(t) = ΔiI(Yi ≤ t) is the counting process for subject i.

We propose a new approach by directly maximizing the log likelihood function in a sieve 

space in which function g(·) is approximated by B-splines. Numerically, the estimator can be 
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easily obtained by the Newton-Raphson algorithm or any gradient-based search algorithms. 

We show that the proposed estimator is consistent and asymptotically normal, and the 

limiting covariance matrix reaches the semiparametric efficiency bound, which can be 

estimated either by inverting the information matrix based on the efficient score function of 

the regression parameters derived by [21], or by inverting the observed information matrix 

of all parameters, taking into account that we are also estimating the nuisance parameters in 

the sieve space for the log hazard function.

2. The sieve M-theorem on the asymptotic normality of semiparametric 

estimation for bundled parameters

In this section, we extend the general theorem introduced by [29], which deals with the 

asymptotic normality of semiparametric M-estimators of regression parameters when 

convergence rate of the estimator for nuisance parameters can be slower than n−1/2. In their 

theorem, the parameters of interest and the nuisance parameters are assumed to be separated. 

We consider a more general setting where the nuisance parameter can be a function of the 

parameters of interest. The theorem is crucial in the proof of asymptotic normality given in 

Theorem 4.2 for our proposed estimators.

Some empirical process notation will be used from now on. We denote Pf = ∫ f(z) dP(z) and 

, where P is a probability measure and ℙn is an empirical probability 

measure, and denote nf = n1/2(ℙn − P)f. Given i.i.d. observations Z1, Z2, ⋯, Zn ∈ , we 

estimate the unknown parameters (β, ζ(·, β)) by maximizing an objective function for (β, ζ(·, 

β)), , where β is the parameter of interest and 

ζ(·, β) is the nuisance parameter that can be a function of β. Here “ · ” denotes the other 

arguments of ζ besides β, which can be some components of Z ∈ . If the objective function 

m is the log-likelihood function of a single observation, then the estimator becomes the 

semiparametric maximum likelihood estimator. Here we adopt similar notation in [29].

Let θ = (β, ζ(·, β)), β ∈ ℬ ⊂ ℝd and ζ ∈ ℋ, where ℬ is the parameter space of β and ℋ is a 

class of functions mapping from  × ℬ to ℝ. Let Θ = ℬ×ℋ be the parameter space of θ. 

Define a distance between θ1, θ2 ∈ Θ by

where | · | is the Euclidean distance and ‖ · ‖ is some norm. Let Θn be the sieve parameter 

space, a sequence of increasing subsets of the parameter space Θ growing dense in Θ as n → 

∞. We aim to find θn̂ ∈ Θn such that d(θ̂n, θ0) = op(1) and β̂
n is asymptotically normal.

For any fixed ζ(·, β) ∈ ℋ, let {ζη(·, β) : η in a neighborhood of 0 ∈ ℝ} be a smooth curve in 

ℋ running through ζ(·, β) at η = 0, i.e., ζη(·, β)|η=0 = ζ(·, β). Assume all ζ(·, β) ∈ ℋ are at 

least twice-differentiable with respect to β, and denote
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Assume the objective function m is twice Frechet differentiable. Since for a small δ, we have 

ζ(·, β + δ) − ζ(·, β) = ζ̇β(·, β)δ + o(δ), here ζ̇β(·, β) = ∂ζ(·, β)/∂β, then by the definition of 

functional derivatives it follows that

where the subscript 2 indicates that the derivatives are taken with respect to the second 

argument of the function. The last equality holds because

Similarly we have

and

Thus according to the chain rule of the functional derivatives, we have
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As noted before, the subscript 1 or 2 in the derivatives indicates that the derivatives are 

taken with respect to the first or the second argument of the function, and h inside the square 

brackets is a function denoting the direction of the functional derivative with respect to ζ. 

Note that for the second derivatives m̈βζ and m̈ζβ, we implicitly require the direction h to be a 

differentiable function with respect to β. It is easily seen that when ζ is free of β, all the 

above derivatives reduce to that in [29]. Following [29], we also define

and

Furthermore, for h = (h1, h2, ⋯, hd)′ ∈ ℍd, we denote

and define correspondingly
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To obtain the asymptotic normality result for the sieve M-estimator β̂
n, the assumptions we 

will make in the following look similar to those in [29], but all the derivatives with respect 

to β involve the chain rule and hence are more complicated, which is the key difference to 

[29]. Additionally, we focus on sieve estimators in the sieve parameter space. We list the 

following assumptions:

A1 (Rate of convergence) For an estimator θn̂ = (β̂
n, ζ̂n(·, β̂

n)) ∈ Θn and the true 

parameter θ0 = (β0, ζ0(·, β0)) ∈ Θ, d(θ̂n, θ0) = Op(n−ξ) for some ξ > 0.

A2 Ṡβ(β0, ζ0(·, β0)) = 0 and Ṡζ(β0, ζ0(·, β0))[h] = 0 for all h ∈ ℍ.

A3 (Positive information) There exists an , where  for j = 1, 

⋯, d, such that

for all h ∈ ℍ. Furthermore, the matrix

is nonsingular.

A4 The estimator (β̂
n, ζ̂

n(·, β̂
n)) satisfies

A5 (Stochastic equicontinuity) For some C > 0,

and

A6 (Smoothness of the model) For some α > 1 satisfying αξ > 1/2, and for θ in a 

neighborhood of θ0 : {θ : d(θ, θ0) ≤ Cn−ξ, θ ∈ Θn},
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and

Note that ξ in A1 depends on the entropy of the sieve parameter space for ζ and can not be 

arbitrarily small – it is controlled by the smoothness of the model in A6. The convergence 

rate in A1 needs to be achieved prior to obtaining asymptotic normality. A2 is a common 

assumption for the maximum likelihood estimation and usually holds. The direction h* in 

A3 may be found through the equation in A3. It is the least favorable direction when m is the 

likelihood function. A4 and A5 are usually verified either by the Donsker property or the 

maximal inequality of [27]. A6 can be obtained by the Taylor expansion. The following 

theorem is an extension to Theorem 6.1 in [29] when the infinite-dimensional parameter ζ is 

a function of the finite-dimensional parameter β.

Theorem 2.1. Suppose that assumptions A1–A6 hold. Then

where

and A is given in assumption A3. Here a⊗2 = aa′.

Proof. The proof follows similarly along the proof of Theorem 6.1 in [29]. Assumptions A1 

and A5 yield

Since Ṡβ,n(β̂
n, ζ̂

n(·, β̂
n)) = op(n−1/2) by A4 and Ṡβ(β0, ζ0(·, β0)) = 0 by A2, we have

Similarly,
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Combining these equalities and assumption A6 yields

(2.1)

and

(2.2)

Since α > 1 with αξ > 1/2, the rate of convergence assumption A1 implies 

, then (2.1) – (2.2) together with A3 yields

that is,

This yields
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3. Back to the linear model: the sieve maximum likelihood estimation

By taking logarithm to the positive function λ(·) in (1.3), the function g(·) in (1.4) is no 

longer restricted to be positive, which eases the estimation. We now describe the spline-

based sieve maximum likelihood estimation for model (1.1). Under the regularity conditions 

C.1–C.3 stated in Section 4, we know that the observed residual times 

 are confined in some finite interval. Let [a, b] be an interval 

of interest, where −∞ < a < b < ∞. Let TKn = {t1, ⋯, tKn } be a set of partition points of [a, 

b] with Kn = O(nν) and max1≤j≤Kn+1 |tj − tj−1| = O(n−ν) for some constant ν ∈ (0, 1/2). Let 

n(TKn, Kn, p) be the space of polynomial splines of order p ≥ 1 defined in [22][Definition 

4.1]. According to [22][Corollary 4.10], there exist a set of B-spline basis functions {Bj, 1 ≤ 

j ≤ qn} with qn = Kn + p such that for any s ∈ n(TKn, Kn, p), we can write

(3.1)

where we follow [24] by requiring maxj=1,…,qn |γj | ≤ cn that is allowed to grow with n 

slowly enough.

Let γ = (γ1, …, γqn)′. Under suitable smoothness assumptions, g0(·) = log λ0(·) can be well 

approximated by some function in n(TKn, Kn, p). Therefore, we seek a member of n(TKn, 

Kn, p) together with a value of β ∈ ℬ that maximizes the log likelihood function. 

Specifically, let θ̂n = (β̂
n, γ̂

n) be the value that maximizes

(3.2)

Taking the first order derivatives of ln(β, γ) with respect to β and γ and setting them to zero, 

we can obtain the score equations. Since the integrals here are univariate integrals, their 

numerical implementation can be easily done by the one-dimensional Gaussian-quadrature 

method. Newton-Raphson algorithm or any other gradient-based search algorithms can be 

applied to solve the score equations for all parameters θ = (β, γ), e.g.,

where θ(m) = (β(m), γ(m)) is the parameter estimate from the mth iteration, and

are the score function and Hessian matrix of parameter θ. For any fixed β and n, it is clearly 

seen that ln(β, γ) in (3.2) is concave with respect to γ and goes to −∞ if any γj approaches 

either ∞ or −∞, hence γ̂
n must be bounded which yields an estimator of s in n(TKn, Kn, p).
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As stated in the next section, the distribution of β̂
n can be approximated by a normal 

distribution. One way to estimate the variance matrix of β̂
n is to approximate the (inverse of 

the) information matrix based on the efficient score function for β0 by plugging in the 

estimated parameters (β̂
n, λ̂

n(·)). The consistency of such a variance estimator is given in 

Theorem 4.3. Another way is to invert the observed information matrix from the last 

Newton-Raphson iteration, taking into account that we are also estimating the nuisance 

parameter γ. The consistency of the latter approach may be proved in a similar way as 

Example 4 in [23] or via Theorem 2.2 in [8], and we leave detailed derivation to interested 

readers. Simulations indicate that both estimators work reasonably well.

4. Asymptotic results

Denote εβ = Y − X′β and ε0 = Y − X′β0. We assume the following regularity conditions:

(C.1) The true parameter β0 belongs to the interior of a compact set ℬ ⊆ ℝd.

(C.2) (a) The covariate X takes values in a bounded subset  ⊆ ℝd; (b) E(XX′) is 

nonsingular.

(C.3) There is a truncation time τ < ∞ such that, for some constant δ, P(ε0 > τ|X) ≥ δ 

> 0 almost surely with respect to the probability measure of X. This implies that 

Λ0(τ) ≤ −log δ < ∞.

(C.4) The error e0’s density f and its derivative ḟ are bounded and

(C.5) The conditional density of C given X and its derivative ġC|X are uniformly 

bounded for all possible values of X. That is,

for all t ≤ τ with some constants K1, K2 > 0, where τ is the truncation time 

defined in Condition C.3.

(C.6) Let p denote the collection of bounded functions g on [a, b] with bounded 

derivatives g(j), j = 1, …, k, and the kth derivative g(k) satisfies the following 

Lipschitz continuity condition:

where k is a positive integer and m ∈ (0, 1] such that p = k + m ≥ 3, and L < ∞ is 

an unknown constant. The true log hazard function g0(·) = log λ0(·) belongs to 
p, where [a, b] is a bounded interval.

(C.7) For some η ∈ (0, 1), u′V ar(X|ε0)u ≥ ηu′E(XX′|ε0)u almost surely for all u ∈ ℝd.
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Condition C.1 is a common regularity assumption that has been imposed in the literature, 

see e.g. [16]. Conditions C.2(a) and C.3–C.4 were also assumed in [25]. Condition C.5 

implies Condition B in [25]. In Condition C.6, we require p ≥ 3 to provide desirable controls 

of the spline approximation error rates of the first and second derivatives of g0 (see 

Corollary 6.21 of [22]), which are needed in verifying Assumptions A4–A6. Condition C.7 

was also proposed for the panel count data model in [29]. As noted in their Remark 3.4, this 

Condition C.7 can be justified in many applications when Condition C.2(b) is satisfied. The 

bounded interval [a, b] in C.6 may be chosen as a = infy,x(y − x′β0) > −∞ and b = τ < ∞ 

under C.1–C.3, which is what we use in the following.

Now define the collection of functions ℋp as follows:

where

and p is defined in C.6. Here ζ is a composite function of g composed with ψ. Note that ζ(t, 

x, β0) = g(t). Then for ζ(·, β) ∈ ℋp we define the following norm

(4.1)

We also have the following collection of scores

in which h(t, x, β) = w(ψ(t, x, β)) = w(t − x′(β − β0)).

For any θ1 = (β1, ζ1(·, β1)) and θ2 = (β2, ζ2(·, β2)) in the space of Θp = ℬ × ℋp, define the 

following distance

(4.2)

Let . Denote

and . Clearly  for all n ≥ 1. The sieve estimator θ̂n = 

(β̂
n, ζ̂

n(·, β̂
n)), where ζ̂n (t, x, βn) = ĝn(t − x′(β̂

n − β0)), is the maximizer of the empirical log-

likelihood n−1ln(θ; Z) over the sieve space . The following theorem gives the convergence 

rate of the proposed estimator θn̂ to the true parameter θ0 = (β0, ζ0(·, β0)) = (β0, g0).
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Theorem 4.1. Let Kn = O(nν), where ν satisfies the restriction  with p being 

the smoothness parameter defined in Condition C.6. Suppose Conditions C.1–C.7 hold and 

the failure time T follows model (1.1), then

where d(·, ·) is defined in (4.2).

Remark. It is worth pointing out that the sieve space  does not have to be restricted to the 

B-spline space – it can be any sieve space as long as the estimator  satisfies 

the conditions of Theorem 1 in [24]. We refer to [4] for a comprehensive discussion of the 

sieve estimation for semiparametric models in general sieve spaces. Our choice of the B-

spline space is primarily motivated by its simplicity of numerical implementation, which is a 

tremendous advantage of the proposed approach over exiting numerical methods for the 

accelerated failure time models, in particular, the linear programming approach.

We provide a proof of Theorem 4.1 in the online Supplementary Material by checking the 

conditions of Theorem 1 in [24]. Theorem 4.1 implies that if ν = 1/(1 + 2p), d(θ̂
n, θ0) = 

Op(n−p/(1+2p)) which is the optimal convergence rate in the nonparametric regression setting. 

Although the overall convergence rate is slower than n−1/2, the next theorem states that the 

proposed estimator of the regression parameter is still asymptotically normal and 

semiparametrically efficient.

Theorem 4.2. Given the following efficient score function for the censored linear model 

derived by [21]:

where

is the failure counting process martingale and

was shown by [20]. Suppose that the conditions in Theorem 4.1 hold and 

 is nonsingular, then
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in distribution.

The proof of Theorem 4.2 is where we need to apply our general sieve M-theorem proposed 

in Section 2. We prove by checking the assumptions A1–A6. Details are provided in Section 

7. The following theorem gives consistency of the variance estimator based on the above 

efficient score.

Theorem 4.3. Suppose the conditions in Theorem 4.2 hold. Denote

Then  in probability.

It is clearly seen that X̄ (t, β̂
n) in Theorem 4.3 estimates P(X|Y − X′β0 ≥ t) in Theorem 4.2. 

The proof of Theorem 4.3 is provided in the Supplementary Material.

5. Numerical examples

5.1. Simulations

Extensive simulations are carried out to evaluate the finite sample performance of the 

proposed method. In the simulation studies, failure times are generated from the model

where X1 is Bernoulli with success probability 0.5, X2 is independent normal with mean 0 

and standard deviation 0.5 truncated at ±2. This is the same model used by [14] and [31]. 

We consider six error distributions: standard normal; standard extreme-value; mixtures of 

N(0, 1) and N(0, 32) with mixing probabilities (0.5,0.5) and (0.95,0.05), denoted by 0.5N(0, 

1) + 0.5N(0, 32) and 0.95N(0, 1)+0.05N(0, 32), respectively; Gumbel(−0.5μ, 0.5) with μ 

being the Euler constant and 0.5N(0, 1) + 0.5N(−1, 0.52). The first four distributions were 

also considered by [31]. Similarly to [31], the censoring times are generated from Uniform 

[0, c] distribution, where c is chosen to produce a 25% censoring rate. We set the sample 

size n to 200, 400 and 600.

We choose cubic B-splines with one interior knot for n = 200 and 400, and two interior 

knots for n = 600. We perform the sieve maximum likelihood analysis and obtain the 
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estimates of the slope parameters using the Newton-Raphson algorithm that updates (β, γ) 

iteratively. We stop iteration when the change of parameter estimates or the gradient value is 

less than a pre-specified tolerance value that is set to be 10−5 in our simulations. Log-rank 

and Gehan-weighted estimators are included for efficiency comparisons. We calculate the 

theoretical semiparametric efficiency bound I−1(β0), and scale it by the sample size, i.e., 

, which serves as the reference standard error under the fully efficient 

situation. Table 1 summarizes the results of these studies based on 1000 simulated datasets. 

The bias of the proposed estimators of β1 and β2 are negligible. Both variance estimation 

procedures, denoted as 1SEE (the standard error estimates by inverting the information 

matrix based on the efficient score function) and 2SEE (the standard error estimates by 

inverting the observed information matrix of all parameters including nuisance parameters), 

yield nice standard error estimates for the parameter estimators comparing to the empirical 

standard error SE, and the 95% confidence intervals have proper coverage probabilities, 

especially when the sample size is large. For the N(0, 1) error and the two mixtures of 

normal errors that are also considered in [31], the proposed estimators are more efficient 

than the log-rank estimators and have similar variances to the Gehan-weighted estimators. 

For the standard extreme-value error, the proposed estimators are more efficient than the 

Gehan-weighted estimator and similar to the log-rank estimator that is known to be the most 

efficient estimator under this particular error distribution. For the Gumbel(−0.5μ, 0.5) and 

0.5N(0, 1) + 0.5N(−1, 0.52) errors, the proposed estimators are more efficient than the other 

two estimators. Under all six error distributions, the standard errors of the proposed 

estimators are close to the efficient theoretical standard errors. The sample averages of the 

estimates for λ0 under different simulation settings are reasonably close to corresponding 

true curves (results not shown here, see [7] for details).

5.2. A real data example

We use the Stanford heart transplant data [17] as an illustrative example. This dataset was 

also analyzed by [14] using their proposed least squares estimators. Following their analysis, 

we consider the same two models: the first one regresses the base-10 logarithm of the 

survival time on age at transplant and T5 mismatch score for the 157 patients with complete 

records on T5 measure, and the second one regresses the base-10 logarithm of the survival 

time on age and age2. There were 55 censored patients. We fit these two models using the 

proposed method with five cubic B-spline basis functions.

We report the parameter estimates and the standard error estimates in Table 2 and compare 

them with the Gehan-weighted estimators reported by [14] and the Buckley-James 

estimators reported by [17]. For the first model, the parameter estimates for the age effect 

are fairly similar among all estimators and the standard error estimate from the proposed 

method tends to be smaller, while the parameter estimates for the T5 mismatch score vary 

across different estimators with none of them being significant at the 0.05 level. The 

disparity of the T5 effect may be due to what was pointed out by [17]: the accelerated failure 

time model with age and T5 as covariates does not fit the data ideally. For the second model 

with age and age2 being the covariates, the point estimates are very similar across all 

methods and the standard error estimates from the proposed method are the smallest.
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6. Discussion

By applying the proposed general sieve M-estimation theory for semiparametric models 

with bundled parameters, we are able to derive the asymptotic distribution for the sieve 

maximum likelihood estimator in a linear regression model where the response variable is 

subject to right censoring. By providing a both statistically and computationally efficient 

estimating procedure, this work makes the linear model a more viable alternative to the Cox 

proportional hazards model. Comparing to the existing methods for estimating β in a linear 

model, the proposed method has three advantages. Firstly, the estimating functions are 

smooth functions in contrast to the discrete estimating functions in the existing estimation 

methods, thus the root search is easier and can be done fast by conventional iterative 

methods such as the Newton-Raphson algorithm. Secondly, the standard error estimates are 

obtained directly by inverting either the efficient information matrix for the regression 

parameters or the observed information matrix of all parameters, either method is more 

computationally tractable compared to the re-sampling techniques. Thirdly, the proposed 

estimator achieves the semiparametric efficiency bound.

The proposed general sieve M-estimation theory can also be applied to other statistical 

models, for example, the single index model, the Cox model with an unknown link function, 

and the linear model under different censoring mechanisms. Such research is undergoing 

and will be presented elsewhere.

7. Proof of Theorem 4.2

Empirical process theory developed in [26, 27] will be heavily involved in the proof. We use 

the symbol ≲ to denote that the left hand side is bounded above by a constant times the right 

hand side and ≳ to denote that the left hand side is bounded below by a constant times the 

right hand side. For notational simplicity, we drop the superscript * in the outer probability 

measure P* whenever an outer probability applies.

7.1. Technical lemmas

We first introduce several lemmas that will be used for the proofs of Theorems 4.1, 4.2 and 

4.3. Proofs of these lemmas are provided in the online Supplementary Material.

Lemma 7.1. Under Conditions C.1–C.3 and C.6, the log-likelihood

where ε0 = Y − X′β0, has bounded and continuous first and second derivatives with respect 

to β ∈ ℬ and ζ(·, β) ∈ ℋp.

Lemma 7.2. For g0 ∈ p, there exists a function  such that
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Lemma 7.3. Let θ0,n = (β0, ζ0,n(·, β0)) with ζ0,n(·, β0) ≡ g0,n defined in Lemma 7.2. Denote 

. Assume that Conditions C.1–C.3 and C.6 hold, then the ε-

bracketing number associated with ‖ · ‖∞ norm for ℱn is bounded by (1/ε)cqn+d, i.e., N[ ](ε, 

ℱn, ‖ · ‖∞) ≲ (1/ε)cqn+d for some constant c > 0.

Lemma 7.4. Let , where 

, j = 1, …, d. Assume Conditions C.1–C.6 hold, 

then there exists  such that , or 

equivalently,  where .

Lemma 7.5. For  defined in Lemma 7.4, denote the class of functions

Assume Conditions C.1–C.6 hold, then  for some 

constant c > 0.

Lemma 7.6. For j = 1, ⋯, d, define the following two classes of functions

and

where l̇βj (θ; Z) is the jth element of l ̇β(θ; Z), ġ(·) denotes the derivative of g(·), and  is 

defined in Lemma 7.5. Assume Conditions C.1–C.6 hold, then 

 and  for some 

constants c1, c2 > 0.

7.2. Proof of Theorem 4.2

We prove the theorem by checking Assumptions A1–A6 in Section 2. Here the criterion 

function of a single observation is the log-likelihood function l(β, ζ(·, β); Z). So instead of m, 

we use l to denote the criterion function. By Theorem 4.1 we know that Assumption A1 

holds with ξ = min(pν, (1 − ν)/2) and the norm ‖ · ‖2 defined in (4.1). A2 automatically holds 

for the scores. For A3, we need to find an  with h* (t, x, β0) = w* (t) such 

that

for all h ∈ ℍ with h(t, x, β) = w(t − x′(β − β0)). Note that
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Since P{l̇ζ (β0, ζ0(·, β0); Z)[h]|X} = 0 for all h ∈ ℍ, replacing h(·, β0) by ẇ we have

Hence we only need to find a w* such that

One obvious choice for w* (or h*) is

(7.1)

Then it follows
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which is the efficient score function for β0 originally derived by [21], where

By the fact of zero-mean for a score function, it is straightforward to verify the following 

equalities:

Then together with the fact that

the matrix A in Assumption A3 of Theorem 2.1 is given by

Ding and Nan Page 19

Ann Stat. Author manuscript; available in PMC 2014 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which is the information matrix for β0.

To verify A4, we note that the first part automatically holds since β̂
n satisfies the score 

equation Ṡβ,n(β̂
n, ζ̂

n(·, β̂
n)) = ℙnl̇β (β̂

n, ζ̂n(·, β̂
n); Z) = 0. Next we shall show that

where , j = 1, ⋯, d, is the jth component of w* (t) given in 

(7.1). According to Lemma 7.4, there exists  such that . 

Then by the score equation for γ: Ṡγ,n (β̂
n, γ̂

n) = ℙnl̇γ(β̂
n, γ̂

n; Z) = 0 and the fact that 

can be written as  for some coefficients  and the 

basis functions Bk(t) of the spline space, it follows that

So it suffices to show that for each 1 ≤ j ≤ d,
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Since , we decompose In into In = I1n + I2n, where

and

We will show that I1n and I2n are both op(n−1/2).

First consider I1n. According to Lemma 7.5, the ε-bracketing number associated with ‖ · ‖∞ 

norm for the class  defined in Lemma 7.5 is bounded by (η/ε)cqn+d. This implies that

which leads to the bracketing integral

Now we pick η to be ηn = O{n−min(2ν,(1−ν)/2)}, then

and since p ≥ 3,

Therefore, . Denote tβ = t − X′(β−β0) for notational 

simplicity, for any , it follows that
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where the first inequality holds because of the Cauchy-Schwartz inequality. Since 

, by the same argument of [24] on page 591 for slowly growing cn (their 

ln), e.g. , we know that  is bounded by some constant 0 < 

M < ∞ and  for a slightly enlarged ηn obtained by a fine 

adjustment of ν. Then by the maximal inequality in Lemma 3.4.2 of [27], it follows that

where the last equality holds because 0 < ν < 1/2. Thus by the Markov’s inequality, 

.

Next for I2n, the Taylor expansion for  at θ0 yields

where (β̃
n, ζ̃

n(·, β̃
n)) is between (β0, ζ0(·, β0)) and (β̂

n, ζ̂n(·, β̂
n)). Then it follows that
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where the second inequality holds because g̃n and its first derivative  are bounded (or 

growing with n slowly enough so it can be effectively treated as bounded based on the same 

argument of [24] on page 591), and the last equality holds due to the Corollary 6.21 of [22] 

that . Thus,

Also,
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By the Cauchy-Schwartz inequality and the boundedness of g̃n, we have

Hence |I3n| ≲ d(θ̂n, θ0) and

Since , it follows that I2n = O{n−min((p+1)ν,(1+3ν)/2)} = o(n−1/2). Thus In = 

I1n + I2n = op(n−1/2) and Condition A4 holds.

Now we verify Assumption A5. First by Lemma 7.6, the ε-bracketing numbers for the 

classes of functions  and  are both bounded by (η/ε)cqn+d, which implies that 

the corresponding ε-bracketing integrals are both bounded by , i.e.,

Then for l̇βj (θ; z) − l̇βj (θ0; z), by applying the Cauchy-Schwartz inequality, together with 

subtracting and adding the terms ġ(ε0), eg0(tβ) ġ(tβ), eg0(t) ġ(tβ) and eg0(t) ġ0(tβ), we have
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For B1, since g̈ is bounded and the largest eigenvalue of P(XX′) satisfies 0 < λd < ∞ by 

Condition C.2(b), it follows that

For B2, we have

For B3, by using the mean value theorem, it follows that

where g̃ = g0 + ξ(g − g0) for some 0 < ξ < 1 and thus is bounded. Finally for B4, by the mean 

value theorem, it follows that
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Therefore we have P{l̇βj (θ; Z) − l̇βj (θ0; Z)}2 ≲ η2. Using the similar argument, we can show 

that . By Lemma 7.1, we also have ‖l̇βj (θ; Z)− l̇βj (θ0; 

Z)‖∞ and  are both bounded. Now we pick η as ηn = 

O{n−min((p−1)ν, (1−ν)/2)}, then by the maximal inequality in Lemma 3.4.2 of [27], it follows 

that

where the last equality holds since p ≥ 3 and . Similarly, we have 

. Thus for ξ = min(pν, (1 − ν)/2) and Cn−ξ = O{n−min(pν,(1−ν)/2)}, by 

the Markov’s inequality,

This completes the verification of Assumption A5.

Finally, Assumption A6 can be verified by using the Taylor expansion. Since the proofs for 

the two equations in A6 are essentially identical, we just prove the first equation. In a 

neighborhood of  with ξ = min(pν, (1 − ν)/2), the Taylor 

expansion for l̇β(θ; Z) yields
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where θ̃ = (β̃, ζ̃(·, β̃)) is a midpoint between θ0 and θ. So

Then by direct calculation we have
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By applying the similar argument that we used before for verifying A5 and Condition C.6, 

we can show

Similarly, we can show

and

where ξ = min(pν, (1 − ν)/2). Therefore,

and thus
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where the last equality holds since p ≥ 3, so  and 

. Similarly we can show

Therefore, we have

where  and αξ > 1/2.

Therefore, we have verified all six assumptions and thus we have

where  is the efficient score function for β0 and 

, which is shown when verifying A3. Hence A = B and 

A−1B(A−1)′ = A−1 = I−1(β0), and

Thus we complete the proof of Theorem 4.2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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