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Abstract
BACKGROUND: MicroRNA 132 (miR-132) is dysregulated in a range of human malignancies; however, its role
in glioma has not been reported. The aim of this study was to profile miR-132 expression in a cohort of patients
with primary glioblastoma multiforme (GBM) treated with the Stupp regimen and to correlate microRNA levels
with patient outcome. METHODS: miR-132 levels relative to RNU44 were assessed by quantitative reverse
transcription–polymerase chain reaction in 43 GBMs and normal brain tissue. The cohort comprised patients less
than 72 years of age with Eastern Cooperative Oncology Group (ECOG) scores between 0 and 2 who had under-
gone 6-week concomitant radiation and temozolomide followed by adjuvant temozolomide. Survival data were
available for all cases. Tumors were characterized for O6-methylguanine–DNA methyltransferase (MGMT ) methyl-
ation and isocitrate dehydrogenase (IDH) 1/2mutation status. Associations between miR-132 expression and clinical
indicators were analyzed. RESULTS: Tumor miR-132 levels ranged from 0.07- to 40.4-fold increase (mean = 5.5-fold
increase) relative to normal brain. High-level miR-132 (above the mean) independently predicted for a significantly
shorter overall survival (P = .008). miR-132 was a stronger prognostic indicator than ECOG score (P = .012) and
age at diagnosis (P = .026) but did not correlate with MGMT methylation status or extent of tumor resection. Cox
regression analysis confirmed high miR-132 as the strongest predictor of outcome (P = .010) with a hazard ratio of
2.8. CONCLUSIONS: This study identified high miR-132 expression as a biomarker of poor prognosis in patients with
primary GBM treated with the Stupp regimen.
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Background
Glioblastoma multiforme (GBM, grade 4 astrocytoma) is the most
common primary brain tumor in adults. Current standard therapy
for these patients involves surgical debulking, followed by radiotherapy
plus concomitant and adjuvant temozolomide (Stupp regimen) [1].
Despite aggressive therapy, prognosis is still dismal, with a 5-year
survival rate of just 9% [2]. Few chemotherapeutic agents have any
impact on disease outcome, and new therapies are urgently needed.
MicroRNAs (miRNAs) are small noncoding RNAs, 20 to 25

nucleotides in length that modulate gene expression in crucial cel-
lular processes including apoptosis, differentiation, and development
[3]. miRNAs regulate gene expression by direct cleavage of mRNA
or by inhibiting translation through perfect or near perfect comple-
mentarity to target mRNA at the 3′ untranslated region. miRNAs are
involved in virtually all biologic processes, and it is estimated that
miRNAs regulate up to 60% of human gene expression [4]. miRNAs
play a crucial role in human malignancy, where they have been
shown to act as tumor suppressors (miR-15 and miR-16) or onco-
genes (miR-155) [5,6]. Global alterations in miRNA expression have
now been identified in a large number of human malignancies [7,8].
miRNA expression patterns in cancer have been shown to correlate
with diagnosis, prognosis, and response to therapy [7,8]. Their utility
as biomarkers is currently being evaluated in clinical trials for a range of
human malignancies, including non–small cell lung carcinoma, breast
cancer, leukemias and lymphomas, neuroblastoma, and ovarian and
prostate cancers [8]. miRNAs have also been shown to modulate cancer
cell sensitivity to chemotherapy and radiotherapy. For example, target-
ing of oncogenic miR-21 in glioblastoma cell lines, using an antagomir
(antisense oligonucleotide), significantly increases the cytotoxic effect
of taxol and 5-fluorouracil [9,10].
MicroRNA 132 (miR-132), transcribed from an intergenic region

on human chromosome 17, is aberrantly expressed in lung and pan-
creatic cancers and in breast carcinoma tumor endothelium [11,12].
More recently, miR-132 has been shown to regulate a host of cen-
tral nervous system–specific processes, including neurogenesis [13],
synaptic plasticity [14], neuroendocrine-modulated inflammation
[15], and differentiation of dopamine neurons [16]. It is dysregulated
in several brain-related diseases, including Huntington disease [17],
Parkinson disease, and schizophrenia [18]. However, a potential role
for miR-132 in primary GBM has not been explored.
When evaluating the significance of a potential biomarker, it is

essential to study its expression in a clinically similar group of patients
to minimize potential bias from unrelated factors. In the current study,
we profiled miR-132 expression in newly diagnosed patients with
primary GBM who successfully completed a minimum of 18 weeks of
therapy and whose standard prognostic measures were within a defined
narrow range. We correlated tumor miRNA levels with these and other
measures of clinical outcome to determine the potential of miR-132
levels as an independent indicator of prognosis in primary GBM.

Methods

Study Cohort
Following approval by the Northern Sydney Central Coast Health

Human Research Ethics Committee (Protocol No. 1011-363M),
patients with GBM who had consented to tissue banking and were
treated between 2005 and 2010 were selected from the Sydney Neuro-
Oncology Group database. All tumors were reviewed by two neuro-
pathologists and classified as grade 4 astrocytoma (GBM), on the basis
of the World Health Organization (WHO) classification criteria. A
clinical cohort of GBM cases was defined according to guidelines of
reporting of tumor marker studies. Cases were excluded if tumor tissue
was only available from tumor recurrences or if they had a prior history
of a lower-grade brain tumor. To ensure a cohesive clinical cohort,
patients were excluded if age at diagnosis was greater than 72 years
of age, if they had not completed treatment with 6 weeks of adjuvant
temozolomide radiotherapy followed by two cycles of adjuvant
temozolomide (18 weeks of therapy) or if they had an Eastern Coop-
erative Oncology Group (ECOG) score above 2. As part of standard
practice in our unit, most patients received dexamethasone at least
24 hours before surgery. Clinical follow-up data were available for
all cases, with a census date of 27 March 2013.

DNA and RNA Extraction
DNA for the determination of O6-methylguanine–DNA methyl-

transferase (MGMT ) promoter methylation and isocitrate dehydrogenase
(IDH) 1/2 mutation status and RNA for quantification of miR-132
levels were extracted from formalin-fixed paraffin-embedded tumor
tissue (2 × 10 μM sections per specimen), using the RecoverAll Total
Nucleic Acid Isolation Kit (Ambion/Life Technologies Australia Pty
Ltd, Mulgrave, Australia), according to the manufacturer’s protocol.
Following extraction, nucleic acid purity was assessed (A260/A280,
NanodropND-1000; Thermo Scientific,Wilmington,DE), withmean
A260/A280 values of 1.9 for RNA and 1.8 for DNA obtained.

Determination of MGMT Promoter Methylation Status
Bisulfite conversion of DNA (1 μg) was performed using the

EpiTect Bisulfite Kit (Qiagen Pty Ltd Australia, Chadstone Centre,
Australia). Pyrosequencing of bisulfite-converted DNA was performed
on a PyroMark 24 (Qiagen), using the human MGMT PyroMark
CpG Assay (Qiagen) and commercial controls (Epitect, Qiagen) in
addition to in-house validated controls.

Determination of IDH1/2 Mutation Status
To determine the mutation status at IDH1 codon R132, which

accounts for approximately 90% of IDH1 mutations in glioma [19],
DNA was amplified by polymerase chain reaction (PCR), purified
using the DNA Clean and Concentrator kit (Zymo Research, Irvine,
CA), and commercially sequenced (Australian Genome Research
Facility, Westmead, Australia) using primers spanning exon 4
[CATTTGTCTGAAAAACTTTGCTT (forward) and TCACATTA-
TTGCCAACATGAC (reverse); amplicon size, 359 bp]. The muta-
tion status at IDH2 codon R172 was performed as described above,
except using primers spanning IDH2 exon 4 [GGTTCAAATT-
CTGGTTGAAAGATG (forward) and GCTAGGCGAGGAGCTC-
CAGT (reverse); amplicon size, 289 bp].

Relative Quantification of miR-132
cDNA was synthesized from 10 ng of total RNA from each tumor

or a commercial pool of normal brain RNA (Ambion FirstChoice
Human Brain Reference Total RNA, a pool of 23 subjects; Life
Technologies) using the TaqMan MicroRNA Reverse Transcript-
ion Kit (Applied Biosystems/Life Technologies). Relative quantifica-
tion using TaqMan assays [quantitative reverse transcription–PCR
(qRT-PCR); Applied Biosystems] was performed on an AB7900HT
real-time PCR instrument (Applied Biosystems). Small nucleolar
RNA C/D box 44 (SNORD44, also referred to as RNU44) was
chosen as the endogenous normalizer for miR-132 expression because
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of its low variance between normal brain tissue and tumor irrespec-
tive of grade (data not shown) [20]. All assays were performed in
triplicate. All procedures were performed according to the manufac-
turer’s instructions.

Statistical Analysis
We examined correlations between miR-132 expression and indi-

cators of clinical outcome using linear regression analysis. Clinical
biomarkers were analyzed by Kaplan-Meier survival analysis (using a
log-rank test) and by multivariate analysis using a Cox proportional
hazards regression model. The prognostic strength of miR-132 was
further validated using k-fold validation test, which assessed the sus-
ceptibility of the data set to outliers. Statistical analyses were performed
using SPSS software version 21 (SPSS Australasia Pty Ltd, Chatswood,
Australia). In all cases, a P value of ≤.05 was regarded as significant.

Results

Characterization of a Clinical Cohort of Patients with GBM
A cohort of 43 patients with primary GBM uniformly treated with

concurrent and adjuvant temozolomide therapy was selected for
inclusion in this study. The median age at diagnosis was 59 years,
and median overall survival was 15 months (Table 1). Our cohort
included only patients with a favorable preoperative ECOG score
of 0 (53%), 1 (42%), or 2 (5%; Table 2) and who had completed
the initial 18 weeks of the Stupp regimen. This provided a homog-
enous group in terms of diagnosis, treatment, and overall perfor-
mance suitable for the evaluation of novel prognostic biomarkers.
Gross total resection was performed in 91% of cases (Table 2).
In this cohort, age at diagnosis (<50, 50-65, and >65 years) was
significantly correlated with patient outcome (P = .026), as was ECOG
score (P = .012; Table 2). MGMT status and extent of resection were
not prognostic. Using DNA extracted from fixed tumor tissue spe-
cimens, we determined either IDH1 or 1DH2 mutation status for
91% of cases. No tumors contained a mutation for IDH1 or 1DH2
or had elements of a lower-grade lesion on histopathology, con-
sistent with primary GBM. In three patients (12%), we identified a
synonymous variant at IDH1 G105 [single nucleotide polymorphism
database identifier (dbSNP ID), rs11554137; catalogue of somatic
mutations in cancer identifier (COSMIC ID), COSM253316]. This
has been previously reported as a somatic variant in hematopoietic
and lymphoid tissue but not in glioma (COSMIC: http://cancer.
sanger.ac.uk/cancergenome/projects/cosmic/).
High Expression of miR-132 in GBM Independently Predicts
for a Worse Survival Outcome

We quantified the expression of miR-132 and the endogenous ref-
erence RNU44 by qRT-PCR in tumor RNA from our cohort of pa-
tients with GBM and the pooled normal brain RNA. miR-132
(normalized to RNU44) was found to be increased in the GBM co-
hort, with expression ranging from 0.07- to 40.4-fold increase rela-
tive to normal brain RNA and a mean increase of 5.5-fold (Figure 1).

Patients were then dichotomized into two subgroups, using the
mean overexpression of miR-132 in the cohort (n = 43 cases) as
the threshold. High miR-132 expression (≥5.5-fold up-regulation)
was prognostic for a significantly worse survival outcome, with a me-
dian overall survival of 13 months [95% confidence interval (CI) =
6.9-19.1, n = 10] versus 17 months (95% CI = 9.1-24.9, n = 33) in
the low-expression subgroup (P = .008; Figure 2). A k-fold validation
test was performed to examine the possibility that our result was in-
fluenced by outliers. This analysis showed that median overall sur-
vival months in the high–miR-132 subgroup was 13 months (95%
CI = 7.0-16.0) versus 17.5 months (95% CI = 13.0-22.0) in the
low–miR-132 subgroup, confirming that miR-132 expression is a
robust prognostic marker.
Table 1. Basic Characteristics of the GBM Cohort (n = 43).
Variable
 Range
 Median (SD)
Overall survival
 6-50 months
 15.0 months (10.7)

Age at diagnosis
 27-71 years
 59.0 years (9.8)
Table 2. Clinicopathologic Features of the GBM Cohort and Association with Clinical Outcome.
Variable
 Percentage
of Cohort
Overall Survival*
Median (95% CI)
Significance
Age at Diagnosis
 0.026†
<50 years
 23%
 15 months (5.7-24.3)

50-65 years
 61%
 17 months (12.0-22.0)

>65 years
 16%
 12 months (5.6-18.4)

Gender
 0.472

Male
 77%
 17 months (11.4-22.6)

Female
 23%
 13 months (6.9-19.1)

ECOG score
 0.012†
0
 53%
 19 months (15.5-22.5)

1
 42%
 13 months (12.2-13.7)

2
 5%
 10 months

Extent of Gross Resection
 0.295

Partial
 9%
 22 months (10.2-33.8)

Total
 91%
 15 months (12.3-17.7)

MGMT Methylation
 0.432

Unmethylated
 76%
 13 months (10.1-15.9)

Methylated
 24%
 16 months (7.7-24.3)
Figure 1. miR-132 expression in the GBM cohort (n = 43). Indi-
vidual qRT-PCR results for miR-132 (normalized to RNU44) were
Status
Alive
 5%

Deceased
 95%
 plotted as fold change relative to the normal brain control. Mean

of miR-132 expression of the GBM cohort (5.5-fold expression) is
indicated by the line.
*Kaplan-Meier survival analysis results.
†Statistically significant.



Figure 2. Kaplan-Meier survival analysis according to miR-132 level.
Patients with high miR-132 levels (≥5.5-fold up-regulation; n = 10)
had a significantly poorer outcome than those with low miR-132
levels (<5.5-fold up-regulation; n = 33; P = .008).
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Linear regression analyses confirmed that miR-132 expression was
not related to other markers of clinical outcome, including ECOG
score, age at diagnosis, MGMT methylation status, or extent of re-
section (Table W1). We also performed Cox regression analysis to
compare prognostic miR-132 with age at diagnosis and ECOG score,
also shown to be prognostic in this cohort. This analysis showed that
miR-132 was the strongest prognostic indicator for outcome (P =
.01; Table 3). The analysis also revealed that the hazard ratio for
patients with a higher miR-132 level was 2.8.
Discussion
The ability of miRNAs to guide clinical decision making is becoming
evident, with more than 100 ongoing trials utilizing miRNAs as
biomarkers [8]. miRNA modulation is also being pursued as a novel
therapeutic intervention in patients with cancer, with the unique
ability to fine-tune the expression of multiple targets/pathways simul-
taneously, which is of particular relevance to GBM, given its molec-
ular heterogeneity [21]. In this study, we identified miR-132 to be
upregulated in a subset of primary GBM tumors and prognostic for
a poor outcome in these patients (P = .008). The prognostic value
of miR-132 was confirmed by k-fold leave-one-out cross-validation.
Furthermore, miR-132 was a stronger indicator for outcome than the
established factors age at diagnosis and ECOG score. The prognostic
ability of miR-132 was also independent of MGMT methylation
status, another established marker of outcome, predictive of sensitivity
to alkylating chemotherapy [22] and radiotherapy [23].
miR-132 has been reported to modulate a range of processes within

the endothelial, neuronal, and immune compartments (Table 4) [24]
with targets involved in neuronal morphogenesis, inflammation and
chromatin remodeling, and angiogenesis [12,14–16,18,24–35]. In
glioma cells, knockdown of p300, a validated target of miR-132, has
been shown to promote invasion [36]. Overexpression of miR-132
increases the excitability of cortical neurons in response to glutamate
[34], which is released at excitotoxic levels by glioma cells [37]. This
in turn is thought to contribute to the death of peritumoral neurons,
facilitating tumor expansion, tumor necrosis, local inflammation, and
glioma-related seizures [37]. In support of our findings, a previous
study has also shown that levels of miR-132 are high in GBM tumors
(n = 12 tumors). However, this study compared levels to oligoden-
droglial tumors (n = 14 tumors) rather than normal tissue and did
not classify GBM tumors on the basis of IDH mutation status [38].

The relevance of miR-132 in glioma is further highlighted by re-
search linking miR-132 levels to current treatment as well as potential
targeted therapeutic approaches for this malignancy. Both dexa-
methasone and extracellular signal-regulated kinase 1/2 (ERK1/2)
inhibitors (UO126 and PD98059) have been shown to attenuate
miR-132 expression mediated by brain-derived neurotrophic fac-
tor (BDNF) in cortical neurons [14]. Dexamethasone is an anti-
inflammatory and immunosuppressive glucocorticoid that is used
routinely in the treatment of patients with GBM [39]; however, its
mechanism of action is not fully understood. Given this relationship
between miR-132 and dexamethasone, we cannot rule out the possibil-
ity that miR-132 expression was modulated by dexamethasone dose.
However, as patients with miR-132 elevation as well as those without
would have received dexamethasone before the sample being taken,
this should not have influenced the study outcome. miR-132 may also
be involved in a positive feedback mechanism with ERK activation.
This is of interest as blockade of ERK signaling using mitogen-activated
protein/extracellular signal-regulated kinase (MEK) inhibitors is cur-
rently being trialed in glioma [40]. miR-based interventions may also
sensitize patients to therapy. In an orthotopic mouse model of GBM,
established using patient-derived prominin-1 (CD133) positive cancer
stem cells, intracranial delivery of polyethyleneimine encapsulated
miR-145 (a tumor-suppressor miRNA) synergized with radiotherapy
and temozolomide treatment [41].

Conclusions
In conclusion, we identified that high expression of miR-132 was
associated with poor prognosis for primary GBM treated with the
Stupp regimen and independent of age of diagnosis, ECOG score,
and MGMT methylation. These results in combination with the
demonstrated mechanistic links between miR-132 and glioma treat-
ment warrant future evaluation of this biomarker in patients with
GBM treated with the Stupp regimen as well as those receiving
radiation alone or those with secondary GBM. Therapeutic strategies
aimed at modulating miRNA expression hold strong potential
and represent just under half of US patents relating to miRNAs
[21,42]. New treatments for GBM are urgently needed, and combining
Table 3. Multivariate Analysis of Prognostic Markers Using a Cox Proportional Hazards Regres-
sion Model.
Prognostic Marker
 Regression
Coefficient
SE
 P Value
 Hazard Ratio
 95% CI for
Hazard Ratio
Lower
 Upper
miR-132 mean
 1.044
 0.407
 .010†
 2.842
 1.281
 6.305

Age at diagnosis
 0.340
 0.292
 .245
 1.405
 0.792
 2.491

ECOG score
 0.670
 0.312
 .032†
 1.953
 1.059
 3.601
*Performed using 1 df.
†Statistically significant.
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Table 4. Reports of miR-132 Expression and Function.
Pathway
 Finding
 Profiling Method
 Validated mRNA Target
 References
Angiogenesis
 • miR-132 expression in HUVEC cells is induced by VEGF and bFGF
 qRT-PCR
 p250RasGAP
 [12]

• miR-132 is highly expressed in the endothelium of human breast
carcinoma (n = 12 tumors) and hemangiomas (n = 68 tissues) but
not in normal endothelium
LNA probes (in situ hybridization)
• Transfection of HUVEC cells with miR-132 increases their proliferative
and tube-forming capacity

• Treatment of HUVEC cells with anti–miR-132 significantly decreases
VEGF-induced phosphorylation of MEK-1

• Targeted delivery of anti–miR-132 to tumor endothelium (through
a liposome carrier and αvβ3 integrin–targeting peptide) suppresses
angiogenesis and tumor burden in an orthotopic xenograft model of
human breast cancer
Immune function/
inflammation
• miR-132 is highly upregulated in lymphatic endothelial cells following
infection with Kaposi sarcoma–associated herpesvirus and after infection
of monocytes with herpes simplex virus and human cytomegalovirus
miRNA microarray and qRT-PCR
 p300
 [43]
• miR-132 is upregulated in primary human macrophages treated with LPS
 Spotted microarray (customized,
in-house miRNA microarray)
and qRT-PCR
AChE
 [15]

• Overexpression of miR-132 through lentiviral infections downregulates
acetylcholine activity in primary bone marrow–derived macrophages

• miR-132 is one of three miRNAs upregulated in NK cells following
prolonged treatment with IL-12 and negatively regulates the IL-12
signaling pathway, modulating NK cell responsiveness to further
IL-12 stimulation
qRT-PCR
 STAT4
 [28]
• miR-132 is significantly upregulated in IgE-activated human and mouse
mast cells
miRNA microarray and qRT-PCR
 HB-EGF
 [29]
• miR-132 is one of five miRNAs significantly upregulated in peripheral
blood mononuclear cells isolated from patients with rheumatoid arthritis
(n = 16) compared to controls (n = 4)
qRT-PCR
 [35]
• miR-132 is induced in primary human adipose-derived stem cells following
serum deprivation. Overexpression of miR-132 in this cell line promotes
an increase in proinflammatory chemokines IL-8 and MCP-1 and
promotes NF-κB activation (through an increase in acetylated p65)
qRT-PCR
 SIRT1
 [31]
Glial/neuronal signaling
 • Overexpression of miR-132 in embryonic stem cells reduces the
differentiation of dopamine neurons
qRT-PCR
 [16]
• miR-132 is significantly upregulated in cultured cortical neuronal cells in
response to BDNF treatment
qRT-PCR
 NR2B, NR2A, GluR1*
 [14]
• miR-132 is significantly upregulated in cultured astroglial cells in response
to bFGF
qRT-PCR
 [44]
• miR-132 expression is significantly upregulated in LβT2 pituitary gonadotrope
cells, following treatment with GnRH
qRT-PCR
 [45]
• miR-132 expression is rapidly induced by synaptic activity in hippocampal
neurons. miR-132 expression promotes dendrite growth and branching
qRT-PCR
 p250RhoGAP
 [27]
• miR-132 is required for dendrite maturation in newborn neurons of the
adult hippocampus
qRT-PCR
 [13]
Neurologic disease
 • miR-132 expression is significantly downregulated in the prefrontal cortex
of schizophrenia subjects (n = 35; n = 16) compared to normal health
controls (n = 34; n = 15), in two independent cohorts
miRNA microarray and qRT-PCR
 DNMT3A, GATA2, DPYSL3
 [18]
• miR-132 is one of four miRNAs identified as important regulators of τ exon
10 splicing and is downregulated in sporadic progressive supranuclear palsy
dementia cases (n = 8) compared to nondimentia controls (n = 8)
qRT-PCR
 PTBP2
 [30]
• miR-132 identified as a regulator of seizure-induced neuronal death.
Depletion of hippocampal miR-132 levels using LNA-modified anti–miR-132
oligonucleotides (antagomirs) protected mice against seizure damage, in a
mouse model of epileptic tolerance
TaqMan Low Density Array
(Applied Biosystem, Foster City, CA)
[46]
• miR-132 is one of nine miRNAs downregulated in two transgenic mouse
models of Huntington disease
miRNA microarray and qRT-PCR
 [17]
Carcinogenesis
 • miR-132 is significantly upregulated in PDAC (n = 11), compared to
adjacent benign (n = 6) and normal (n = 4) tissue
qRT-PCR
 Rb1
 [26]
• miR-132 is overexpressed in lung tumor tissue (n = 123) and pancreatic
tumor tissue (n = 39) compared to normal control tissue (n = 123 and
12, respectively)
miRNA microarray (customized)
 [11]
• miR-132 was part of a five-miRNA panel distinguishing responders and
nonresponders to ifosfamide therapy (n = 27 high-grade osteosarcoma cases),
with miR-132 reduced in responders
TaqMan Low Density Array
 [47]
HUVEC indicates human umbilical vein endothelial cell; VEGF, vascular endothelial growth factor; bFGF, basic fibroblast growth factor; LNA, locked nucleic acid; MEK-1, MAPK/ERK kinase 1; LPS,
lipopolysaccharide; AChE, acetylcholinesterase; NK, natural killer; STAT4, signal transducer and activator of transcription 4; IL-12, interleukin-12; HB-EGF, heparin-binding EGF-like growth factor;
IL-8, interleukin-8; MCP-1, monocyte chemoattractant protein; NF-κB, nuclear factor–κ–light-chain enhancer of activated B cells; SIRT1, sirtuin 1; BDNF, brain-derived neurotrophic factor; NR2B,
glutamate receptor, ionotrophic, N-methyl D-aspartate 2B; NR2A, glutamate receptor, ionotropic, N-methyl D-aspartate 2A, GluR1, glutamate receptor, ionotropic, AMPA 1; GnRH, gonadotropin-
releasing hormone; DNMT3A, DNA (cytosine-5-)-methyltransferase 3 α; GATA2, GATA-binding protein 2; DPYSL3, dihydropyrimidinase-like 3; PTBP2, polypyrimidine tract–binding protein 2;
PDAC, pancreatic ductal adenocarcinoma; Rb1, retinoblastoma 1.
With the exception of references [11], [15], and [18], microarrays were Agilent technology (Santa Clara, CA).
*Indirect targets.
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miR-132–targeted therapy with temozolomide-based therapy may
improve the outcome of these patients.
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Table W1. Relationship between miR-132 and Known Prognostic Markers by Linear
Regression Analysis.
Variable
 P Value
Age decade at diagnosis
 .695

ECOG score
 .503

MGMT promoter methylation status
 .817

Extent of tumor resection
 .258


