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Abstract
Multiple myeloma (MM) is preceded by monoclonal gammopathy of undetermined significance (MGUS). Up to
date, it is difficult to predict an individual’s time to disease progression and the treatment response. To examine
whether the nuclear telomeric architecture will unravel some of these questions, we carried out. Three-dimensional
(3D) telomere analysis on samples from patients diagnosed with MGUS and MM, as well as from patients who went
into relapse. Telomere signal intensity, number of telomere aggregates, nuclear volume, and the overall nuclear telo-
mere distribution (a/c ratio) were analyzed. The telomeric profiles allowed for the differentiation of the disease stages.
The telomeric profiles of myeloma cells obtained from blood and bonemarrow aspirates were identical. Based on this
study, we discuss the use of 3D telomere profiling as a potential future tool for risk stratification and personalized
treatment decisions.
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Introduction
Monoclonal gammopathies are a heterogeneous group of plasma cell
disorders characterized by the proliferation of a single B-cell clone,
encompassing malignancies such as multiple myeloma (MM) and
monoclonal gammopathy of undetermined significance (MGUS),
smoldering MM, solitary plasmacytoma, Waldenström macroglobuli-
nemia, and osteosclerotic myeloma [1,2]. MM accounts for 13% of
all hematological cancers [3,4] and for nearly 2% of deaths from cancer
[5]. The incidence rate of MM in the United States is 5.9 of 100,000
[6], whereas in other developed countries, it is 4 of 100,000 [7].
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For unknown reasons, myeloma is more common among men than
women, and the prevalence in African Americans is two-fold higher
than in Caucasian Americans [8–10]. MGUS is the precursor state of
MM [11,12]; the rate of transformation fromMGUS toMM is 1% per
annum [13]. The cause of progression to MM has remained elusive,
although reports have suggested that secondary genetic changes such as
N-ras and K-ras mutations [14], altered cytokine profiles, and increased
bone marrow (BM) neovascularization based on median microvascular
density [15] may play a role.

Genetic changes frequently occur in MM, which include gross
chromosomal rearrangements such as translocations, deletions, dupli-
cations, and amplifications of parts of a chromosome or entire chromo-
somes [16–18]. Furthermore, whole genome sequencing of 38 MM
tumor genomes revealed changes in histone methylation patterns and
mutations in genes involved in the nuclear factor kappa light chain
enhancer of activated B cells (NF-κB) pathway [19]. Recently, the
Multiple Myeloma Research Foundation launched the CoMMpassSM

study to identify molecular motifs and variations associated with
MM [20].

The International Staging System [21] and the Durie Salmon
Staging System [18] have been used in staging myeloma; the Inter-
national Staging System and Durie Salmon Staging System are based
on serum markers such as β2-microglobulin, albumin, hemoglobin,
calcium, monoclonal proteins, and creatinine, coupled with conven-
tional radiography, computerized tomography, magnetic resonance
imaging, and fludeoxyglucose (18F) positron emission tomography/
computerized tomography [22]. However, the reliability of these
systems is currently under scrutiny [23]. The International Myeloma
Working Group has issued guidelines for the clinical risk stratification
of patients, which consist of factors such as the type and size of the
M protein [24], number of BM plasma cells (BMPCs), constitutional
symptoms, anemia, hyperviscosity, lymphadenopathy, and hepato-
splenomegaly [25]. On the other hand, the European System relies
on the quantification of plasma cells based on their cluster of differen-
tiation (CD)markers [26–32] using flow cytometry [31–34]. However,
both guidelines are geared toward detecting existing symptoms and
thus do not address the unmet need for a reliable method for risk
evaluation of patients.

Telomeres, the highly repetitive (TTAGGG)n nucleotide sequences
situated at the ends of chromosomes, have been strongly associated
with tumorigenesis [35–40]. Changes in telomere structure result in
the formation of aggregates [41], and studies assessing the three-
dimensional (3D) nuclear architecture have facilitated monitoring the
progression of glioblastoma [42], chronic lymphocytic leukemia [43–46],
acute myeloid leukemia (AML) [47,48], and Hodgkin lymphoma [49].
Our current study aimed to apply this 3D telomeric structure–based
imaging tool for plasma cells from patients with MGUS, MM, and
relapsed MM (MMrel) to potentially serve as a complementary
approach in the design of personalized monitoring regimens and in
the assessment of individual risk for MM, MGUS, and MMrel.
Materials and Methods

Study Population
The study population consisted of a total of 86 patients, which

were subdivided into three groups, namely, MM (N = 44), MGUS
(N = 27), and MMrel (N = 15). Patient characteristics are presented
as Supplementary materials (Table W1). Informed consent was
obtained from all patients after a presentation and discussion with a
collaborating research nurse from CancerCare Manitoba and Estonia,
respectively. This study was approved by the Research Ethics Review
Board on Human Studies of the University of Manitoba (Ethics
Reference No. H2010:170) and the Ethics Review Committee on
Human Research of the University of Tartu (Protocol No. 194T-11).
Isolation of Lymphocytes and Plasma Cells
Lymphocytes from blood samples and BM aspirates were overlaid

in Ficoll-Paque (GE Healthcare Life Sciences, Baie d’Urfe, Quebec)
and separated by centrifugation at 200g for 30 minutes. The cells
was washed with 10 ml of RPMI (Gibco Life Technologies Inc,
Burlington, Ontario) supplemented with 10% FBS (Gibco Life Tech-
nologies Inc) and collected by centrifugation, and the cell pellet was
resuspended in 100 μl of RPMI with 10% FBS.
CD138 Immunostaining
Cell preparation for immunostaining is described elsewhere [50].

Briefly, 10 μl of the cell suspension was laid onto poly-L-lysine pre-
coated slides and incubated at 37°C for 60 minutes in a humidified
chamber. After incubation, the slides were incubated in 0.3× phosphate-
buffered saline (PBS) for 40 seconds, fixed with 3.7% formaldehyde/
1× PBS for 20 minutes, washed three times with 1× PBS for 5 minutes,
and blocked with 4% BSA in 4× sodium chloride/sodium citrate (SSC)
for 15 minutes.

For immunostaining, the cells were incubated with mouse anti-
CD138 antibodies (fluorescein isothiocyanate–mouse anti-human
CD138 antibody; BD Pharmingen, San Diego, CA), diluted in 1/20 in
blocking buffer, for 60 minutes. After three 5-minute washes with PBS,
the cells were subjected to post-fixation using 3.7% formaldehyde/
1× PBS for 20 minutes. The nuclei were counterstained with 25 μl
of 0.1 μg/ml 4′,6-diamidino-2-phenylindole (DAPI) for 5 minutes,
followed by a brief rinse with distilled water. The slides were dehydrated
through an ethanol series (75%, 95%, and 100%), air-dried, andmounted
using VECTASHIELD (Vector Laboratories, Burlington, Ontario).

Three-dimensional quantitative fluorescence in situ hybridization
was carried out as described elsewhere [38]. The isolated lympho-
cytes and plasma cells were incubated in 5 ml of a 75-mM KCl
solution for 15 minutes and fixed in 3:1 methanol/acetic acid [51].
Approximately 10 μl of the fixed cells was loaded onto each slide, air-
dried, and fixed in 3.7% formaldehyde/PBS for 20 minutes, followed
by three washes with PBS for 5 minutes. The slides were then incu-
bated in 0.5% Triton X-100 in PBS for 10 minutes, then in 20%
glycerol for 1 hour. After permeabilization, the cells were subjected to
a series of four freeze-thaw cycles [50], followed by three washes with
PBS, one 5-minute incubation in 0.1 N HCl, and two washes with
PBS. The slides were again dehydrated through the ethanol series.

For hybridization, approximately 5 μl of cyanine 3 (Cy3)–labeled
peptide nucleic acid probe (DAKO, Glostrup, Denmark) was applied
to the target nuclei. Nuclear DNA was denatured using a HYBrite
Denaturation and Hybridization System (Vysis; Abbott Diagnostics,
Des Plains, IL) using the following conditions: denaturation at 80°C
for 3 minutes, followed by probe annealing at 30°C for 120 minutes.
The slides were subjected to a series of washes including two 15-minute
washes in 70% formamide (Fluka; Sigma-Aldrich, St Louis, MO),
10 mM Tris (pH 7.4), a 5-minute wash in 0.1× SSC at 55°C, and
two washes in 2× SSC/0.05% Tween-20 for 5 minutes. Finally, the
nuclei were counterstained with 25 μl of 0.1 μg/ml DAPI, dehydrated
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through an ethanol series, and mounted in VECTASHIELD (Vector
Laboratories). The slides were stored at −20°C until analysis.
Fluorescence Imaging
Fluorescence microscopy was performed using a Zeiss AxioImager

Z1 microscope (Carl Zeiss, Toronto, Ontario), equipped with an
AxioCam HRm camera and 63×/1.4 oil Plan apochromat objective.
The data acquisition was performed using the AXIOVISION 4.8
software (Carl Zeiss). For 3D imaging, each cell was imaged using
a series of 80 z-stacks at x, y and z steps of 102 and 200 nm, respec-
tively. Approximately 40 interphase nuclei were imaged for analysis.
The exposure time for Cy3 was 343 milliseconds, whereas for DAPI
it was 2 milliseconds. Thirty nuclei per patient sample were decon-
volved using a constrained iterative algorithm [52]. The deconvolved
images were converted into TIFF files and exported for the analysis
using the TeloView software [41], which is embedded in MATLAB
(MathWorks, Torrance, CA).
Figure 1. Telomere signals in CD138+ plasma cells (A–D). (A) Myeloma
arrows). (B) The telomeres, hybridized with Cy3-labeled PNA probes, a
(C) Identification of 3D fixed nuclei in myeloma cells and normal lymp
arrows). (D) Cy3-labeled PNA telomeres in 3D fixed lymphocytes.
Three-dimensional Image Analyses and Statistical Analyses
To determine telomere number, signal intensity, which is propor-

tional to the telomere length [41], and spatial distribution (a/c ratio),
as well as to quantify the occurrence of telomeric aggregates (TAs)
and measure nuclear volume, TeloView was employed [41]. Statisti-
cal parameters considered for characterization lymphocytes were
given as follows: 1) percentage of cells with aggregates, 2) average
number of telomeres per cell (ANT), 3) average number of telomeric
aggregates per cell (ANTA), and 4) average nuclear volume (ANV).
For statistical analysis, the software package SAS 9.3 (SAS Institute
Inc, Cary, NC) was used, performing the nested factorial analysis of
variance. Statistical analysis was employed to compare the percentage
of interphase telomeric signals at defined intensity, using bins at an
interval of 1000. To compare signal intensities among myeloma stages
(i.e., MM, MGUS, and MMrel), nested factorial analysis of variance
was used. To compare nuclear and telomeric features of lymphocytes
and plasmocytes from blood and BM specimens collected from various
myeloma stages, the Breslow-Day test was performed.
Results
The average age of the patient cohort was 67.8 ± 10.9 years; the
majority of the patients belonged to the IgG group (Table 1). The
percentile of BMPCs and the amount of secreted M-protein increased
with disease progression. Additional patient characteristics are pre-
sented in Table W1.

Normal lymphocytes were differentiated from myeloma cells and
plasma cells based on the intensity of green fluorescence signals emitted
by the fluorescein isothiocyanate–labeled CD138 antibody (Figure 1).
The telomeres were visualized as red signals (Figure 1, B and D). The
Table 1. Clinical Characteristics of Patients Included in This Study.
MGUS
 MM
 MMrel
Sample number
 27
 43
 15

Age
 68.1 ± 11.9
 68.7 ± 10.3
 64.9 ± 11.1

BMPC (%)
 6.0 ± 7.5
 45.8 ± 28.7
 56.9 ± 26.7

M-protein (g/l)
 8.3 ± 5.9
 42.2 ± 25.2
 52.8 ± 28.4

IgG (%)
 81.5
 72.2
 73.3

IgA (%)
 0
 23.3
 13.3

IgM (%)
 11.1
 0
 0

n/d
 7.4
 4.7
 13.4
cells fluoresce green, whereas normal cells remained unstained (see
ppear as red signals. The nuclei are counterstained with DAPI (blue).
hocytes based on size and intensity of the counterstain DAPI (see



Figure 2. Telomere intensities change with disease progression.
(A and B). MGUS (blue), MM (red), and MMrel (green) show dis-
tinct profiles with respect to the telomere intensities and number
of telomeres in the low-intensity range. The profiles obtained with
BM aspirates (A) are identical to the profiles obtained with blood
samples (B).
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analysis of the telomere length of the CD138+ lymphocytes and
plasmocytes and its CD138− counterpart revealed distinct differences.
The telomeres of CD138+ cells are shorter, as indicated by lower telo-
mere signal intensities (Figure W1A). No differences in telomere
numbers were observed between CD138− and CD138+ lymphocytes
and plasma cells. However, the CD138+ cells showed an increase in
the number of TAs, a larger nuclear volume, as well as changes in
the overall nuclear telomere organization that is expressed by the a/c
ratio (Table 2) [41].

In our previous studies involving Hodgkin lymphoma, we demon-
strated an association between disease progression and the increase in
the nuclear volume of tumor cells [53,54]. To determine whether this
correlation also occurred in myeloma cells independent of the fixation
methodology, we examined the telomeric features of malignant plasma
cells andnormal lymphocytes based on the size of the nuclei (Figure 1C).
The nuclei of malignant plasma cells were larger than those of normal
lymphocytes. Additionally, the former nuclei showed a lower intensity
for the DAPI counterstain than the normal lymphocytes.

The comparison of normal plasma cells and neoplastic lymphocytes
showed differences between CD138+ and CD138− cells with respect
to the signal numbers within defined intensity bins (Figure W1A).
The malignant plasma cells exhibited a higher number of smaller telo-
meric signals compared to those signals observed in the controls
(Figure W1B). The ANV and a/c ratio were higher in myeloma cells
compared to normal lymphocytes (Table 2, A and B). A graphical
overlay of intensity readings of CD138+ cells and of 3D fixed large
cells as well as the overlay of the intensity profiles of CD138− cells
and 3D fixed small cells showed virtually identical results (Figure W2,
A and B ). We repeated this experiment using myeloma cells from
blood and BM specimens (Figure W3, A–D). In either case, we
obtained the same results when comparing the myeloma cells as
described before.

Comparison of the telomeric and nuclear architecture of B-cells in
MM, MGUS, and MMrel revealed a distinct pattern involving an
increase in the number of low-intensity signals and a decrease in
the number of higher intensity range signals as the disease progressed
(Figure 2A). For statistical analysis, the intensity range was subdivided
into four groups based on signal intensities, <5000 (short telomeres),
5000 to 10,000 (short- to medium-sized telomeres), 10,001 to
19,000 (medium-sized telomeres), and >19,000 (large telomeres),
as well as into two groups (≤19,000 and >19,000). Chi-square anal-
ysis of the intensity ranges of BM-derived plasma cells showed a sig-
nificant difference between MGUS and MM (P < .0001), MM and
MMrel (P < .0001), and MGUS and MMrel (P < .0064) based on the
four-level and two-level intensities. A significant increase in the num-
ber of telomeric signals during MGUS to MM progression was also
observed (P = .045).

The comparison of telomeric profiles of neoplastic lymphocytes
from BM and blood specimens showed identical patterns (Figure 2,
A and B). Differences in signal intensities were observed among the
MGUS, MM, and MMrel groups (P < .0001). The Breslow-Day
analysis did not detect any statistical differences in the telomere
length between BM and blood samples (MGUS: P = .13, MM:
P = .08, MMrel: P = .67).

The analysis of the 3D nuclear architecture of the telomeres in
MGUS, MM, and MMrel nuclei showed two distinct sizes of telo-
meres: very short telomeres, described as t-stumps [55] and often
observed in normal cells, and very large telomeres or TAs (Figure 3)
[39]. During disease progression from MGUS (Figure 3, A and E ) to
MM (Figure 3, B and F ) and MMrel (Figure 3, C and G ), the num-
ber of TAs as well as the number of t-stumps increased, accompanied
by an increase in the nuclear volume. These features were also
observed in the neoplastic lymphocytes from blood (Figure 3, A–C )
as well as in BM (Figure 3, D–F ).

Table 3 shows the changes in the ANT in both BM and blood
samples. We also detected an increase in ANTA in MM compared
to that in MGUS. Furthermore, we observed a statistically significant
Table 2. Comparison of 3D Nuclear Architecture.
(A)
CD138+
 CD138−
 Fold Difference
Mean
 Standard Mean
 Mean
 Standard Mean
ANT
 23.93
 1.33
 23.37
 0.51
 1

ANTA
 2.6
 0.38
 1.93
 0.24
 1.3

ANV (μm3)
 340.86
 27.57
 219.91
 5.03
 1.6

a/c ratio
 1.97
 0.23
 1.49
 0.06
 1.3
(B)
Large
 Small
 Fold Difference
Mean
 Standard Mean
 Mean
 Standard Mean
ANT
 25.27
 1.16
 23.77
 0.56
 1.1

ANTA
 2.6
 0.87
 1.93
 0.27
 1.3

ANV (μm3)
 479.5
 42.48
 253.39
 5.52
 1.9

a/c ratio
 4.55
 0.3
 3.16
 0.11
 1.4
Cells were placed on slides before fixation and subsequently labeled with anti-CD138 antibodies (A)
or fixed with methanol/acetic acid after hypotonic treatment (B). Parameters such as ANT, ANTA,
ANV, and a/c ratio were analyzed for CD138+, CD138− (A), and size (i.e., large and small cells) (B).



Figure 3. Evolution of 3D nuclear architecture in blood (A–C) and BM (D–F). The left side of the panel shows the telomere distribution
(red) within the counterstained nucleus (blue). During evolution, the 3D nuclear architecture is undergoing changes (right-hand panels).
The number of t-stumps and TAs and the nuclear volume are increasing (see scale).
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increase in the ANV in both blood (P = .0463) and BM (P = .0449)
from MGUS with MM samples, although this was not observed
between MM and MMrel.
Comparison of MGUS with MM and MGUS with MMrel re-

vealed statistically significant changes in the ANTA in blood samples
(P = .039 and .045, respectively). However, we did not observe any
statistically significant differences between MM and MMrel. Although
we detected a tendency toward an increase in ANV, these differences
were not significant among MGUS, MM, and MMrel in blood and
BM samples. Finally, we compared the nuclear and telomeric features
of cells among all groups. We observed statistically significant dif-
ferences between MGUS and MM as well as between MGUS and
MMrel with respect to ANT (.045 and .042, respectively) and
ANTA (.045 and .011, respectively). In terms of the ANV, statistically
significant differences were observed between MGUS and MMrel
(P = .017). The results of this study thus indicate a correlation be-
tween changes in the 3D nuclear architecture and telomeric length
of blood- and BM-derived lymphocytes and plasmocytes and disease
progression, as supported by the measurements of the ANT, ANTA,
and ANV.
Discussion
This study examined the 3D nuclear architecture and telomeric pro-
file of plasma cells from patients with MGUS, MM, and MMrel.
Recently, we have also classified patients with myelodysplastic syn-
drome (MDS) and AML into subgroups using their 3D telomeric
architecture [48]. Other tumors that display alterations in their 3D
telomeric architecture have been studied, including thyroid cancer
[56], endometrial cancer [57], circulating tumor cells [58], chronic
myeloid leukemia [43], plasmacytoma [59], cervical cancer [60],
Burkitt lymphoma [61,62], head and neck cancer [35], Hodgkin
lymphoma [49,53,54,63], and glioblastoma [42].

We identified the myeloma cells based on CD138, a transmem-
brane heparan sulfate proteoglycan, also called syndecan-1, that is
overexpressed as soluble CD138 in myeloma cells [64] as well as
on the cell surface [65]. CD138 expression has also been detected
Table 3. Comparison of Telomeric Features of Myeloma Cells from Blood and BM Specimens.
Blood
 BM
ANT
 ANTA
 ANV (μm3)
 a/c Ratio
 ANT
 ANTA
 ANV (μm3)
 a/c Ratio
MGUS
 29.56
 2.9
 790.47
 12.2
 33.05
 3.43
 1163.5
 13.87

MM
 36.08
 3.86
 930.99
 11.74
 35.15
 3.7
 1178.5
 11.51

MMrel
 34.71
 3.87
 1083
 10.61
 39.14
 4.46
 1402.5
 12.33
We analyzed ANT, ANTA, ANV, and a/c ratio.
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on circulating myeloma cells [66]. In our study, we observed that the
telomere length of syndecan-1–overexpressing cells was shorter than
that of CD138− lymphocytes, as reflected by the detected lower sig-
nal intensities, indicating accelerated telomere attrition in myeloma
cells. Furthermore, we observed an increase in the ANTA, which
is considered a hallmark of cancer cells [39]. We also detected an
increase in the ANV, a characteristic feature of tumor cells [67],
and changes in the spatial organization of the telomeres, which are
reflected in changes of the a/c ratio [35,38,41]. These changes (Table 2)
were also observed when comparing small nuclei of normal cells with
larger nuclei of myeloma cells, confirming that both methods generated
similar results.

This study showed changes in 3D nuclear architecture during dis-
ease progression from MGUS to MM, based on our findings of
increased telomere attrition, resulting in shorter telomeres in MM,
as well as in MMrel, compared to MGUS (Figure 2). Telomere dys-
function and disease progression has been associated with telomere
attrition in various hematological malignancies [68] such as MDS/
AML [47,48,69–71], chronic lymphocytic leukemia (CLL) [44,45,
72–74], accompanied by telomeric deletions, chromosomal aberra-
tions, and resistance to treatment, thus providing a novel method for
differentiating disease stages and potentially serving as a reliable tool for
disease monitoring and treatment response [42,44,45,48,53,72].

We also observed the presence of larger TAs, the occurrence of
very short t-stumps (Figure 5), and an increase in nuclear volume
(Table 3 and Figure 5). TAs initiate breakage-bridge-fusion cycles
[38] and are considered a hallmark of cancer cells [39] and have been
described for solid tumors [35,57,75] and various hematological
malignancies [43,46,48,50,58]. We observed an increase in the
ANTA as the disease progressed from MGUS to MM, as well as
in myeloma cells that survived treatment, thus suggesting an associ-
ation with relapsed myeloma. However, statistical analysis of MM
and MMrel did not reveal significant differences, indicating that
myeloma cells in MMrel are selected survivors that undergo cell
expansion. Aggregate formation has been described for squamous cell
carcinoma, basal cell carcinoma, keratoacanthoma, and MM [75].
These observations of telomere reorganization during disease pro-
gression are similar to that described in earlier studies on Hodgkin
lymphoma [65] and MDS/AML [50]. We also detected very short
t-stumps [55], which have been associated by previous studies as an
indication of the role of telomerase in protecting this distinct class
of extremely short telomeres [53,55]. Previous reports have shown
that t-stumps accumulate in telomerase-containing cells that lack
checkpoint pathways involving p53 and/or pRb, possibly circum-
venting the DNA damage checkpoint response [76,77] and protect-
ing these nuclear substructures [55]. As previously mentioned, we
did not detect any statistical differences between MM and MMrel
based on the ANTA. However, we observed an increase in the number
of t-stumps in MMrel (Figure 5), suggesting that the myeloma cells in
MMrel may have escaped apoptosis. Furthermore, we observed an
increase in the number of myeloma cells in blood and BM samples
(data not shown). The occurrence of a higher number of t-stumps in
relation to tumor aggressiveness [78] also supports this notion. Telo-
merase inhibition could lead to the loss of protection of t-stumps,
resulting in the apoptosis of malignant cells.

The results of this study showed a correlation between an increase in
the ANV and disease progression from MGUS to MM and from MM
to MMrel. Changes in the nuclear volume have been described for
other hematological cancers, such as MDS/AML [48] and Hodgkin
lymphoma [53,54], also coinciding with disease progression. However,
we did not find any statistical significance between changes in nuclear
volume in MM and MMrel, suggesting that myeloma cells do not
undergo an evolutionary process as described for cells in Hodgkin
lymphoma. As anticipated, the nuclear architecture of myeloma cells
derived from BM resembled that of myeloma cells in blood, confirming
earlier observations [79–81].

MM is a highly heterogeneous disease at presentation [1,2], often
impacting the treatment response of homogeneously treated patients.
On the basis of the nature of disease heterogeneity, patients diag-
nosed with MGUS often remain untreated until additional symp-
toms develop, such as an increase in the level of M-protein and
changes in free light chains. Furthermore, BM aspiration and biopsy
are also performed to confirm the initial diagnosis and to assist in
the design of an effective treatment regimen. The identification of
patients who are at high-risk for a relapse after treatment has long
been a dilemma to hematologists and oncologists. Recently, minor
clones that could serve as a reservoir for MMrel have been iden-
tified using whole-genome analysis [82], thus confirming the multi-
subclonal nature of myeloma cells and the high heterogeneity of this
malignancy. Telomere-based analysis of the 3D nuclear architecture
of myeloma cells thus facilitates a patient classification based on their
telomere profile.

The analysis of the 3D nuclear architecture and telomeric profile
of myeloma cells has established a classification scheme for the dis-
ease stages of MGUS, MM, and MMrel. We have also differentiated
MGUS from MM based on the ANT and TAs. In the future, a
blood test may be used for the prognosis of disease progression
and treatment response that may potentially alleviate the need for
BM aspirations for analysis. On the basis of the studies involving cir-
culating tumor cells [58] in conjunction with the automated analysis
of telomeric features [83], it may also be possible to detect minimal
residual disease, which has remained an elusive issue in myeloma
[84]. We have recently initiated a longitudinal study that examines
the correlation between changes in the 3D nuclear architecture and
the risk of progression and relapse.
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Figure W1. Telomere intensities of normal and neoplastic lympho-
cytes isolated from BM aspirates. Squares (▪) represent neoplastic
cells, and triangles (▴) represent normal cells. CD138+cells (Figure1A)
show the same profile as 3D fixed cells (Figure 1B).

Figure W2. Comparison of the telomere profiles of myeloma cells.
The profiles obtained from CD138-labeled cells (▪) and that of 3D
fixed large cells (▴) are identical (A) as well as that of CD138− cells
(▪) and the 3D fixed small cells (▴) as shown in B.



Figure W3. (A–C) Analysis of the telomeric profiles of blood samples
and BM samples after CD138 labeling (▪) and 3D fixation (▴). The
profiles are fromMB0133 (BM), MB0144 (blood), andMB0157 (BM).


