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Perception of time interval on the order of seconds is an essential
component of cognition, but the underlying neural mechanism
remains largely unknown. In rats trained to estimate time intervals,
we found that many neurons in the medial prefrontal cortex (PFC)
exhibited sustained spiking activity with diverse temporal profiles
of firing-rate modulation during the time-estimation period. Inter-
estingly, in tasks involving different intervals, each neuron exhi-
bited firing-rate modulation with the same profile that was
temporally scaled by a factor linearly proportional to the instructed
intervals. The behavioral variability across trials within each task
also correlated with the intertrial variability of the temporal scaling
factor. Local cooling of the medial PFC, which affects neural circuit
dynamics, significantly delayed behavioral responses. Thus, PFC
neuronal activity contributes to time perception, and temporally
scalable firing-rate modulation may reflect a general mechanism
for neural representation of interval timing.

Perception of time on the order of seconds (interval timing) is
crucial for a variety of behaviors (1–4). In interval timing-

related tasks, the animal must keep track of the elapsed time
from a previous event and decide when to anticipate a future
event or to execute motor actions. Whereas timing perception in
shorter timescale (e.g., motor timing) is controlled by automatic
timing system in the cerebellum (5, 6), interval timing is thought
to involve prefrontal and parietal cortices (7), which are associ-
ated with attention and working memory (8). However, how
timing information is represented in the neural activity in these
cortical areas is unclear. To understand how the brain performs
time estimation, it would be particularly useful to examine
changes in the pattern of neuronal activity when the animal
estimates different time intervals. We thus designed a behavioral
task in which the rat was required to estimate two time intervals
in the same behavioral session, and multiple single-unit re-
cording was performed concurrently to examine how the task
timing was represented by activities of medial prefrontal cortex
(mPFC) neurons. Finally, local brain cooling was applied to ex-
plore whether mPFC neural network dynamics play causal role in
the animal’s perception of time intervals on the order of seconds.

Results
Adult rats were trained to perform the time-estimation task (Fig.
1A and Movie S1), with two instructed durations (1.5 and 2.5 s)
in alternating blocks of trials. Each trial was initiated when the
rat poked the nose into the waiting port. After a random delay
(drawn from a uniform distribution within 0.5–1.5 s), a sound
stimulus was presented to indicate the instructed duration of
either 1.5 s (pure tone) or 2.5 s (white noise). During “instructive
trials,” the sound was presented for the instructed duration, and
the rat was rewarded only if it exited from the waiting port within
a ∼1-s window (Materials and Methods) at the sound termination.
The “exit time” is defined as the time between sound onset and
the rat exit from the waiting port. During a “test trial” (randomly
interleaved with instructive trial in each block), the sound stim-
ulus was prolonged for 1 s (Fig. 1A), but the rat was rewarded
only if it exited the waiting port within the same window as that

used in the instructive trials. Thus, in these test trials the rat must
estimate the elapsed time from the sound onset to receive the
reward, because the delayed sound offset no longer served as the
exit signal. In the example session illustrated by Fig. 1 B and C,
we found that the exit times in instructive trials exhibited sym-
metric distributions centering around the instructive duration for
both the 1.5- and 2.5-s blocks (1.5-s block: 1.62 ± 0.27 s; 2.5-s
block: 2.59 ± 0.32 s), whereas the exit times in test trials for both
blocks showed similar distributions and mean values (1.5-s block:
1.69 ± 0.30 s; 2.5-s block: 2.60 ± 0.37 s). The exit times for both
instructive and test trials were slightly longer than the instructive
sound durations (1.5 and 2.5 s). This may be attributed to the
animal’s reaction time and the asymmetric position of the reward
window relative to the instructive sound offset. To summarize all
data from four rats in 77 sessions, we plotted the mean values of
exit times for the distributions of instructive and test trials from
each session (arrows in Fig. 1 B and C). As shown in Fig. 1 D and
E, the mean exit times during test trials were significantly longer
than those of instructive trials for both 1.5-s (1.75 ± 0.26 s, test
trials; 1.65 ± 0.17 s, instructed trials; P < 0.001; paired t test) and
2.5-s task (2.62 ± 0.24 s, test trials; 2.50 ± 0.19 s, instructed trials;
P < 0.001; paired t test). These results indicate that the rats could
reliably perform time-estimation tasks for two different dura-
tions in the same test session.
Several models have been proposed for interval timing, in-

cluding pacemaker-accumulator model (1, 9, 10) and coinci-
dence detection of oscillatory processes (11). To explore the
neural mechanism underlying interval timing behavior, we per-
formed chronic single-unit recording in the mPFC, a structure
known to be critical for working memory (12) and interval-timing
discrimination (13–15) in rats. During the time-estimation task,

Significance

The ability to estimate time interval in the order of seconds is
important for animal behaviors. However, how the brain esti-
mates the passage of time remains mysterious. In the current
study, we trained rats to estimate two different time intervals
and recorded activities of single neurons from the medial
prefrontal cortex (mPFC). We found that some PFC neurons
showed activity changes during time estimation by the rat,
with the same profile that was temporally scaled by a factor
proportional to the estimated time intervals. Local cooling of
mPFC slowed the time estimated by the rat. Thus, PFC neuronal
activity contributes to time estimation, and temporal scaling of
neuronal activity may be a circuit mechanism for estimating
different time intervals.

Author contributions: M.X., Y.D., and M.-m.P. designed research; M.X. and S.-y.Z. per-
formed research; M.X. analyzed data; and M.X., Y.D., and M.-m.P. wrote the paper.

The authors declare no conflict of interest.
1Present address: Department of Molecular and Cell Biology, University of California,
Berkeley, CA 94720.

2To whom correspondence should be addressed. E-mail: mpoo@ion.ac.cn.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1321314111/-/DCSupplemental.

480–485 | PNAS | January 7, 2014 | vol. 111 | no. 1 www.pnas.org/cgi/doi/10.1073/pnas.1321314111

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321314111/-/DCSupplemental/sm01.mov
mailto:mpoo@ion.ac.cn
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321314111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321314111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1321314111


mPFC neurons exhibited a wide variety of firing patterns (Fig. 2)
that were associated with different phases of the task. Fig. 2
shows the firing patterns from three example neurons, with the
activities aligned by the time of waiting port entry, sound onset,
or waiting port exit respectively. The neuron shown in Fig. 2A
exhibited distinct peaks at waiting port entry and exit time,
whereas the neuron in Fig. 2B showed sustained firing following
the initial firing-rate increase at waiting port entry, indicating
mPFC neurons firing could encode multiple aspects of the be-
havior. Beside these neurons showing activities primarily corre-
lated with the movements during the task, we observed neurons
(Fig. 2C) that exhibited sustained firing during the period

between the sound onset and waiting port exit (referred to
hereafter as “time-estimation period”), which might contribute
to the time-estimation behavior of the animal.
To identify neural activities that are related to time-estimation

behavior, we focused our analysis on neurons that exhibited
significant modulation of firing rates during the time-estimation
period of test trials, as defined by significant difference (P < 0.05,
one-way ANOVA) in firing rates over three consecutive non-
overlapping periods (0.7 s each, from 0.2 to 2.3 s from the sound
onset) for all 2.5-s test trials of each session (Materials and
Methods). We found that the majority of mPFC neurons (64%,
247/389) showed firing-rate modulation during the time-estima-
tion period. Among these neurons, 30% (75/247; Materials and
Methods) showed monotonic activity increase, 35% (86/247)
showed monotonic decrease, and 35% (86/247) showed non-
monotonic changes. Fig. 3 A and B depicts the spiking activity of
an example neuron in 25 consecutive test trials. For both the 1.5-s
and 2.5-s time-estimation tasks, the firing rates (aligned by the
sound onset;Materials and Methods) exhibited a sudden decrease
when the rat entered the waiting port and a gradual increase
during the time-estimation period, reaching similar levels when
the rat exited from the waiting port. Interestingly, the rate of
increase was slower for the 2.5-s task (Fig. 3B), and the activity
profile matched closely with that of 1.5-s task when we tempo-
rally compressed the 2.5-s peri-stimulus time histogram (PSTH)
profile by a factor of 0.65 (red dashed line in Fig. 3A), the ratio
between mean exit times for the two tasks. Fig. 3C depicts dif-
ferent activity profiles observed during the time-estimation pe-
riod for three other example neurons, exhibiting monotonic
increase or decrease, or nonmonotonic changes before reaching
the same exit activity level for both timing tasks. Again, the firing
profiles for each neuron during 1.5-s and 2.5-s tasks closely re-
sembled each other and matched well after temporally scaling
the 2.5-s profile by a factor of ∼0.65 (exit time ratio between 1.5-
s and 2.5-s tasks).
To quantify the temporal scaling property across the neuronal

population, we calculated the best temporal scaling factor that
yielded the minimum difference between PSTHs of the two
timing tasks during the time-estimation period (Fig. 3D and
Materials and Methods). As shown in Figs. 2 and 3C, the firing
pattern of many neurons exhibited close correlation with port
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Fig. 1. Two-duration time-estimation task. (A) Schematic diagrams for the
behavioral tasks. To initiate a trial, the rat poked its nose into the waiting port
and held it at the port for a pseudorandom delay of 0.5–1.5 s before the sound
signal was given. In instructive trials, a standard sound (of 1.5- or 2.5-s dura-
tion) was played. Rats were rewarded with a small drop of water delivered in
the reward port only when they exited from the waiting port within the re-
ward window (from 0.15 or 0.25 s before to 1 s after the sound offset for the
1.5- and 2.5-s tasks, respectively) and then poked into the reward port im-
mediately after exit. During test trials, which were randomly interleaved with
instructive trials in each session, a prolonged sound was played and reward
was given only if the rat exited the waiting port within the same reward
window as in the instructed trials. (B) Performance from one experimental
session in 1.5-s instructive trials and test trials. The histogram shows distribu-
tion of exit times. Shadow area indicates the reward window. (C) Performance
of the same rat in the same experimental session as shown in B in 2.5-s blocks.
(D and E) Performance of four rats in the two-interval time-estimation task.
Histograms and scatter plots show the distribution of mean exit time from four
rats in 77 sessions (13–30 sessions per rat) of performing the two-duration
timing task. The bin size in all histograms is 100 ms.
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Fig. 2. Spiking activities of three neurons (A–C) in mPFC during the task.
(A–C, Upper) Raster plots of spiking activity for 15 consecutive trials, with
each row corresponding to one trial (tick mark, single spike) and the time
aligned by the time of waiting port entry (Left), sound onset (Center), or
waiting port exit (Right), respectively. (A–C, Lower) PSTH from the same
session as the raster plot.
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entry and exit. To reduce potential interference by these move-
ment-related activities when calculating the best scaling factor,
we excluded the immediate 100-ms period before waiting port
exit (Fig. 3D). The distribution of best scaling factors for 247
neurons in four rats showed a distinct peak at ∼0.65, (Fig. 3E),
and 111 neurons have their scaling factors fell within ±10% from
the mean exit time ratio 0.67 (range: 0.6–0.74). Thus, 28% (111/
389) of the recorded neurons, or 45% (111/247) of neurons
showing temporally modulated firing during the time-estimation
period, appeared to show temporal scaling of their activity pro-
file in accordance with the task timing during the two-interval
time-estimation task. Finally, to examine whether the temporal
scaling applied only to the time-estimation period or to all
periods between the 1.5- and 2.5-s blocks, we performed the
same temporal-scaling analysis on the activity during the “ran-
dom-delay period” (from waiting port entry to the sound onset;
Materials and Methods). We found that the scaling factors
exhibited no distinct peak (Fig. 3F), indicating that temporal
scaling by the ratio of exit times is specific to the activity during
the time-estimation period. This temporal scalability suggests
that the activity profile during time-estimation period carries
task timing information, consistent with the finding in PFC
neurons of monkeys performing a working memory task (16).
To further test the idea that PFC neuronal activity during the

time-estimate period contributes to the time-estimation behavior
of the rat, we examine whether the firing patterns of individual
neurons are directly related to the intertrial variability of exit
times. We divided all of the 2.5-s test trials within each block into
the early- and late-exit groups by the median exit time. As shown
in Fig. 4 A and B for two example neurons, PFC neural activity
showed faster rate modulation in the early- than late-exit group
(P = 0.025; paired t test; Materials and Methods), and temporal
scaling by the ratio of mean exit times of the two groups resulted

in closely matched activity profiles. For all of the 247 neurons
examined, the distribution of best scaling factors for the early-
and late-exit groups peaked at ∼0.8, which is close to the ratio of
mean exit times for the two groups, and 83% (206/247) of the
scaling factors fell within ±5% from the mean exit time ratio 0.81
(range: 0.77–0.86; Fig. 4C). We further divided the 2.5-s test
trials into eight groups based on the exit times and found that the
distribution of best scaling factors showed linear correlation with
the ratio of the mean exit times of these groups (scaling of the
latter seven groups relative to the first group; Fig. 4D). Thus,
intertrial variability in the dynamics of mPFC firing patterns
during the time-estimation period could contribute directly to
the variability in the rat’s time-estimation behavior.
To directly test the causal role of mPFC neuronal activity in the

rat’s time-estimation behavior, we manipulated the mPFC neu-
ronal activity by local cooling (Fig. 5A and Fig. S1). Compared
with pharmacological manipulations, the local cooling method
allows fast and reversible switching between normal and slowed
neural temporal dynamics (17–19). Calibration of the cooling
device in anesthetized rats showed that the local brain tempera-
ture drop was linearly related to the cooling current (Fig. 5A). At
a cooling current of 600 mA, the temperature dropped by 7 °C
within 10 s at a distance of ∼250 μm from the cooling probe, and it
reversed with a similar time constant when the cooling current was
terminated (Fig. 5A). The rats exhibited no obvious behavioral
change during the period of the moderate local cooling used in
these experiments. We then applied the cooling treatment to the
mPFC of both hemispheres (Fig. 5B) during the rat’s performance
of the 2.5-s time-estimation task, with 100-s cooling interleaved
with 100-s noncooling periods. We found that cooling significantly
prolonged the exit time, as shown by the cumulative percentage
plot of exit times from one example session (Fig. 5B; P = 0.024;
Kolmogorov–Smirnov test) and the summary of 55 sessions from
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six rats (Fig. 5B; P = 0.0029; paired t test). The cooling effect on
exit times was not attributable to general slowing of rat’s move-
ments, because we found no significant change in the time for the
rat to move from the waiting port to the reward port between the
cooling and no-cooling periods (Fig. S2; P = 0.82; paired t test).
Also, this effect was specific to the mPFC, because the same
cooling treatment applied to the adjacent motor cortices had no
effect on exit times (Fig. 5B; P = 0.64; paired t test). These results
support the idea that mPFC neuronal dynamics contributes to the
time-estimation behavior.

Discussion
In the present study, we have examined whether and how neu-
ronal activity in the mPFC represents interval timing in two-
interval time-estimation task. We found that 28% of the recorded
mPFC neurons exhibited temporal scaling of their activity profiles
during the time-estimation period in accordance with the task
timing. Two lines of evidence suggest that these mPFC neurons
play an active role in interval-timing behavior of the rat. First, the
intertrial variability of the time estimation, as reflected by the

waiting port-exit time, correlates strongly with the variability of
the activity profiles of these neurons. Second, altering the neuronal
dynamics in the mPFC by local cooling prolonged the perceived
time, as shown by the delayed waiting port exit, during the time-
estimation task. These results provide a basis for further study of
the neuronal mechanism underlying interval timing.
The highly diverse firing patterns of mPFC neurons we ob-

served during the time-estimation task are consistent with those
found in the PFC of both monkey (20–22) and rat (12, 15, 23–26)
during the animal’s performance of various behavioral tasks.
This presumably reflects the heterogeneity of PFC neurons that
are involved in regulating diverse aspects of each behavior. For
example, we observed neurons with reproducible activity pat-
terns that are well correlated with different phases of the task,
including port entry and exit, sound onset, and reward onset,
which involve regulatory actions of mPFC neurons on sensory
and motor systems. Despite the diverse firing patterns of mPFC
neurons, a substantial portion (28%) of them exhibited temporal
scaling of their firing patterns when performing two different
timing tasks, suggesting that temporally scalable firing-rate
modulation may serve as a mechanism for mPFC neurons to
represent interval timing. Our finding is consistent with the
model that timing information is inherent in the neural network
dynamics (16, 27, 28).
Timing-related signals have been observed in neuronal activity

in a variety of brain regions, including PFC (7, 29–32), lateral
intraparietal area (LIP) (33, 34), presupplementary and supple-
mentary motor areas (35), basal ganglia (32, 36, 37), cerebellum
(3), and thalamus (38). In monkeys performing the time-dis-
crimination task, the LIP neuronal activity ramps up or down at
slow and fast speeds in long and short timing tasks, respectively
(33), consistent with temporal scaling. Unlike the monotonic
ramping activity found in LIP (33, 39) and thalamus (38), the
activity of mPFC neurons we observed here exhibited more
complex (sometimes nonmonotonic; Fig. 3C, the third neuron)
temporal profiles, which could be associated with signals for
movement planning (waiting port exit) or reward expectation.
Although neuronal activity in many brain areas could carry time-
related signals, it has been difficult to determine whether these
timing signals originate from a central area where interval timing
is carried out. Our evidence from local cooling studies supports
the idea that PFC-related neural network may play an active role
in interval timing perception. Local temperature change in the
brain affects the kinetics of various ion channels, leading to
changing dynamics of neural network (18, 19). In the birdsong
system, local brain cooling was used to demonstrate the causal
role of a brain region in controlling the song timing (17). Anal-
ogous to the native singing behavior, we found that local brain
cooling could also affect a cognitively controlled learned be-
havior of timing perception. In this study, we showed that tem-
poral scaling of mPFC neural activity correlates well with the
rat’s time-estimation behavior during the two-interval time-esti-
mation task. Similar temporal scaling of PFC neural activity has
been reported during the delay period for the working memory
task in monkeys (16). In the latter task, active time estimation by
the monkey may not be required, because the monkey could
simply wait for the appearance of the second cue. However,
similar scaling of PFC neural activity observed in both tasks in-
dicated that temporal scaling of neuronal firing may be a general
neural mechanism for coding different time intervals.
An important question is how the scaling-invariant activity pro-

file could be achieved by neural circuits. Monotonic ramp up of the
firing rate can be achieved by integration of stochastic inputs with
a constant mean (28, 40) or firing-rate adaptation of inhibitory
neurons (28), and the ramping speed can be controlled by the
number of active inputs or the degree of adaptation of the inhibitory
neurons, which can be learned through Hebbian synaptic mod-
ifications. In a recently proposed oscillator-based model of
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movement generation (11), a complex profile of neuronal firing in an
“integrator” could result from the sum of multiple harmonics of an
oscillator. The temporal scaling of the profile is controlled by the
fundamental frequency of the oscillator, which is set simply by the
amplitude of an external input. A future challenge is to determine
whether such a model is applicable to the temporal scaling of mPFC
activity reported here and what are the underlying neural circuits.

Materials and Methods
Animal. Adult (>8 wk) male Sprague–Dawley rats or Long–Evans rats were
used in all experiments. All experimental procedures were approved by In-
stitute of Neuroscience, Chinese Academy of Sciences Animal Care and Use
Committee.

Two-Interval Time-Estimation Task. The behavioral chamber contained an
aluminum panel with two ports: the right port (“waiting port”) for time
estimation and the left port (“reward port”) for water delivery (Fig. 1A and
Movie S1). Entry and exit from ports were detected by infrared beam located
inside of each port. Port signals were digitally interfaced to an RX5-2/RZ5
real-time workstation (TDT) through laboratory-built circuits. The water-
delivery valve (SMC VX2120-02-5G1) was controlled by the same work sta-
tion through a laboratory-built isolating board.

The behavioral task required the rat to estimate sound durations and to
respond by exiting from waiting port at the right timing, followed by poking
into reward port to receive water reward. During the initial stage of the
training, an instructive soundwith fixed duration was used to guide the rat to
exit from the waiting port at the fixed time (right after the sound offset).
After rats learned the initial stage of the task, one-third of the instructive
sound was replaced by a prolonged sound (1 s longer) to test whether rats
could use the internal time estimation to guide their behavior, because the
delayed-sound offset no longer served as the exit signal. The task consisted of
two alternating blocks, a 1.5-s block and a 2.5-s block (Fig. 1A). In the 1.5-s
block, the instructive sound was 1.5-s 2-kHz pure tone, and the prolonged
sound was 2.5-s 2-kHz pure tone. In the 2.5-s block, the instructive sound was
2.5-s white noise, and the prolonged sound was 3.5-s white noise.

Therats self-initiatedeachexperimental trial bypoking their snouts into the
waitingport andkeeping their snoutswithin theport (Fig. 1A). After a variable
delay, drawn from a uniform random distribution of 0.5–1.5 s, a sound, either
an instructive sound or a prolonged sound, was delivered (Fig. 1A) in pseu-
dorandom order within each session. The task required rats keeping their
snouts within the waiting port for at least 90% of required holding time (1.5 s
or 2.5 s) according to the sound presented (white noise or 2 KHz pure tone).
Rats were rewarded only when they exited the waiting port and poked into
the reward port, as required by the timing of reward window (Fig. 1A). The
reward window consisted of two successive periods: the first period was from
90%of the required holding time to the end of the holding time plus 1 s (1.35–
2.5 s for the 1.5-s task; 2.25–3.5 s for the 2.5-s task), during which rats were
required to exit from the waiting port; the second period was a 1.5-s window

starting from the exit time, during which rats were required to poke into the
reward port. If rats exited from the waiting port earlier than the minimum
holding time, the training system would not respond to any poking action
from the rats within 16 s, starting from the reward-port entry time (time-out
period). A new trial could be triggered after 6 s (intertrial interval) from the
reward-port entry time, except for the time-out trials.

Behavior-Training Procedure. Water-restricted rats were introduced to the
training chamber, and a small drop of water was automatically given at the
reward port after a 2.5-s white noise was played every 2 min. Sound play and
water delivery could also be triggered if rats poked their snouts into the waiting
port. After rats could reliably obtainwater at the reward port by poking into the
waiting port, a minimum waiting-port holding time was introduced and grad-
ually increased from ∼0.5 s to the required holding time according to individual
rat’s performance. When rats learned to hold their snouts in the waiting port
during sound play, the random-delay period and the reward window were in-
troduced to the training. The rewardwindowwasgradually decreased from∼10
s to the final length according to individual rat’s performance. Most of the rats
could learn this initial stage of the training in 2 wk. Once rats learned the first
stage, the prolonged test sound was introduced, and 1 more week was usually
needed for them to reach stable performances. Ratswere then trained in the 1.5-
s task for 1 wk before they were exposed for the final task, performing both the
2.5-s task and the 1.5-s task during the same session.

Single-Unit Recording.Well-trained rats were implanted with laboratory-made
potentiometer-based microdrives carrying 32-channel microwire array in both
hemispheres of the mPFC (centered 3.2 mm anterior to bregma and 0.5 mm
lateral to midline; Fig. S3). Electrodes array consisted of thirty-two 25-μm-di-
ameter FeNiCr wires (Stablohm 675; California Fine Wire) (41). Wires were cut
with sharp scissors and electroplated with platinum (H2PtCl6; Aldrich) to an
impedance of ∼300 kΩ with a laboratory-built MSP430 MCU-controlled mul-
tichannel plating device. The electrode assembly was advanced by 37 or 75 μm
every day to search for active cells. Neuronal activity was recorded using a TDT
System-3 neurophysiology workstation (with an RA16 preamplifier + RX5
workstation, also used to record behavior data) controlled by OpenEx software
(TDT). Single units were isolated manually using principle component analysis-
based clustering methods. All data analysis was performed in Matlab (Math-
works) and Neuroexplorer (Nex Technologies).

Local Brain Cooling. For cooling experiments, rats were trained in 2.5-s timing
task, and laboratory-built Peltier effect-based cooling devices were implan-
ted to bothmPFCs (3.2 mm anterior to bregma, 0.5mm lateral tomidline, and
3.0 mm from brain surface; n = 6 rats) or both motor cortices (3.2 mm an-
terior to bregma, 2.0 mm lateral to midline, and 1.0 mm from brain surface;
n = 4 rats). The cooling device consisted of five main parts (42) (Fig. S1A):
a thermoelectric Peltier device (Custom Thermoelectric; no. 01801-9G30-
12CN) for generating the cooling; a polyimide-tubing insulated, gold-plated,
sharpened silver wire (375 μm) to conduct cooling to the targeting areas; a
cooper heat sink (modified fromMOS-C10; Enzotech) to facilitate convection

2 3

C
um

ul
at

iv
e 

%

p=0.64

2 3

A

C

 Exit time (s)

B

2.3

2.6

 mPFCM
ea

n 
ex

it 
tim

e 
(s

)

p=0.0029

2.3

2.6

 motor cortex

No cooling           Cooling

0.2 0.4 0.6

30

35

40

 T
em

pe
ra

tu
re

 (°
C

)
 Cooling current (A)

No cooling Cooling

0 30
30

35

40

Time (s)

100-s cooling

100 130

0

50

100

0

50

100

C
um

ul
at

iv
e 

%

M
ea

n 
ex

it 
tim

e 
(s

)

～～

*

*

Peltier cooler

Peltier cooler

p=0.024

p=1.0

Period for analysis

Fig. 5. Cooling of mPFC slows the time-estimation behavior. (A) Measurement of local brain cooling. (A, Upper) Temperature changes at ∼250 μm from
cooling probe using different cooling currents. (Blue and red squares, average data during the cooling and noncooling periods; star, cooling current used for
behavioral experiments.) (A, Lower) Temperature changes following the onset and offset of the cooling current. (B, Left) Schematic diagram of the cooling
device and position of cooling probes. (B, Center) Cumulative percentage plot of exit times with and without cooling for example behavioral session. (B,
Right) Histograms summarizing results of mean exit times in 55 sessions from six rats. (C) The same cooling treatment at the motor cortices resulted in no
effect on exit times. Data are from four rats in 40 sessions.

484 | www.pnas.org/cgi/doi/10.1073/pnas.1321314111 Xu et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321314111/-/DCSupplemental/sm01.mov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321314111/-/DCSupplemental/pnas.201321314SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321314111/-/DCSupplemental/pnas.201321314SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1321314111


from warm side of Peltier device; a thermocouple (Omega Engineering, 5SC-
TT-K-40-36) to monitor working status of the whole device; and a connector
for all wires (4 × 36 gauge wires) carrying supply current and thermocouple
output signal. The heat sink and cooling probe were soldered onto the
Peltier device using Bismuth-tin solder (Custom Thermoelectric) and sealed
with silicone elastomer (KwikCast; WPI). The cooling device was powered by
a modified, constant-current light-emitting diode driver (Luxdrive 3021-D-E-
1000) to generate bidirectional currents. The amplitude and polarity of the
current were controlled by a TDT RZ5 real-time workstation. Amplitude of
the current used in the experiment was 600 mA for the cooling period and
−200 mA for the no-cooling period to compensate the temperature drop by
convection, which was determined by calibrating the cooling device in the
anesthetized animal (Fig. 5A). The cooling protocol was 100-s cooling peri-
ods, separated by 100-s no-cooling periods. Approximately 7 °C of cooling
was induced at ∼250 μm away from the cooling probe (Fig. 5A).

Data Analysis. To measure behavior performance, we generated PSTH for exit
times, which were the durations from the sound onset to the time of the rat’s
exit from the waiting port. The bin size for behavior PSTH was 100 ms. All port
entry and exit times were extracted off-line using Matlab from the recorded
port signal. An exit-time histogram was fitted using Gaussian function,
ðy = y0+Ae−ðx − x0Þ2=2σ2 Þ, in Matlab to determine the mean exit time (x0) and
exit-time variation (jσj). To extract time estimation-related behavior, we ex-
cluded trials in which rats exited too early or too late. The range of exit time
used in all analysis was 1.0–2.5 s for the 1.5-s block and 1.8–3.5 s for the 2.5-s
block, which included the majority of the trials (90.9% in the 1.5-s block and
91.8% in the 2.5-s block).

PSTH for spikingactivity inan individual trialwasconstructedusing10-msbins.
PSTHs of individual trials were firstly aligned by sound-onset time and then lin-
early scaled to the mean exit time to generate average PSTH for each group to
remove thevariability introducedbyvariation inexit time.To test themodulation
during time-estimation period, we chose three consecutive nonoverlapping
periods (0.7 s each, from 0.2 to 2.3 s from the sound onset) for all 2.5-s test trials

and tested the firing rate difference using one-way ANOVA. Neurons with P <
0.05 in the statistic test were considered to be significantly modulated during
time-estimation period. The mean firing rates of the three nonoverlapping
periods (0.7 s each, from 0.2 to 2.3 s from the sound onset) were used to de-
termine the modulation profile (monatomic increase, monatomic decrease, or
nonmonatomic changes) during the time-estimation period. To determine the
best scaling factor (the scaling factor given the minimum difference after
scaling) between the 1.5-s block and the 2.5-s block, we linearly compressed the
PSTHof the 2.5-s block using different scaling factors (∼0.3–3; the low boundary
was determined by sample length) and calculated the mean-squared error
(MSE) to the PSTH of the 1.5-s block using the following equation (Fig. 3D):

MSEðfÞ= 1
n

Xn

i =1

h
PSTH1:5ðtiÞ− PSTH2:5ðf p tiÞ

i2
,

and the f that gave the minimum MSE was taken as the best scaling
factor. To examine whether the temporal scaling applied only to the
time-estimation period or to all periods between the 1.5- and 2.5-s
blocks, neural activity from the random-delay period was divided into two
groups according to whether they were belonged to the 1.5-s block or the 2.5-
s block, and the best scaling factors were calculated between the two groups.
To test temporal scaling within the same block, trials from the 2.5-s block were
divided into “early-exit” and “late-exit” groups, based on whether the exit
time was shorter or longer than the median exit time, respectively, and best
scaling factors were calculated between the two groups (Fig. 4C). All statistical
tests were performed in OriginLab.
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