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Morphogenesis during embryo development requires the coordi-
nation of mechanical forces to generate the macroscopic shapes
of organs. We propose a minimal theoretical model, based on cell
adhesion and actomyosin contractility, which describes the various
shapes of epithelial cells and the bending and buckling of epithelial
sheets, as well as the relative stability of cellular tubes and spheres.
We show that, to understand these processes, a full 3D description
of the cells is needed, but that simple scaling laws can still be
derived. The morphologies observed in vivo can be understood as
stable points of mechanical equations and the transitions between
them are either continuous or discontinuous. We then focus on
epithelial sheet bending, a ubiquitous morphogenetic process. We
calculate the curvature of an epithelium as a function of actin belt
tension as well as of cell–cell and and cell–substrate tension. The
model allows for a comparison of the relative stabilities of spher-
ical or cylindrical cellular structures (acini or tubes). Finally, we
propose a unique type of buckling instability of epithelia, driven
by a flattening of individual cell shapes, and discuss experimental
tests to verify our predictions.
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Understanding the development and stability of well-defined
morphologies in mature epithelial tissues is an important

challenge. During embryogenesis, epithelial sheets undergo exten-
sive and precise morphological changes, which generate the 3D
structure of organs (1–3). Metaplasia, which is the conversion from
one cell morphology to another one, is associated with several
cancers (4). It is widely acknowledged that adhesion and cytoskeleton
contractile forces, mediated by the Rho family GTPases, play an
important role in the determination of cell shape (3, 5), de-
velopment (2, 6), and cancer initiation (7). Although much is
known about the underlying genetic regulation of these events (2,
7, 8) and although new experimental tools have allowed their
quantitative measurements (9, 10), a global understanding of the
physical mechanisms shaping a tissue remains elusive (3).
Theoretical efforts on epithelial morphology have largely fo-

cused on 2D models of the top (apical) surface of cell sheets [with
some exceptions considering 2D models of cell heights with tensile
forces (11, 12)]. They have been used, for instance, to deduce
the geometric arrangement of cell–cell apical junctions (5, 13–15)
or the out-of-plane buckling of apical surfaces (16). Neverthe-
less, morphogenesis and cellular shape changes are intrinsically
3D processes, for which both lateral and basal tensions also play a
role (2, 17, 18), so 2D approaches cannot tackle many important
morphogenetic events.
In this article, we present a minimal model that can explain,

with few and measurable parameters associated with adhesion
and contractile forces (Fig. 1), several aspects of epithelial cell
shape and tissue morphology. We first discuss epithelial cell aspect
ratio in three dimensions on a flat substrate, considering three types
of cells: tall and thin, (columnar), flat and spread out (squamous),
or an intermediate cuboidal shape (2). We then calculate the
spontaneous curvature adopted by a cell sheet as a function of
cell–substrate and cell–cell tensions and contractile forces from
the apical actin belt. This sheds light on the stability of cellular

structures, such as spheres or tubes, and on the epithelial sheet
bending involved in a wide variety of developmental processes
(3, 9, 10), including gastrulation and neural tube, ventral furrow,
and lens placode formation. Finally, we show how varying cell
adhesion or actomyosin constriction above a certain threshold in
a confined environment can cause an epithelial sheet to buckle,
as observed during the development of the Drosophila wing disk
(19). For each of these phenomena, we give scaling laws that
could serve as simple guides for future experiments.

Morphologies of Planar Epithelial Cells
We model epithelial cells as hexagonal prisms of base length r and
height h. We consider only cohesive sheets and, at first, we do not
implement any constraint on the total area of the sheet. Considering
all cells as identical, we write the force balance equation on a
single cell, which we consider planar in this section. We deliberately
forget about the detailed topography of the cell–cell junctions,
which was described in two dimensions in ref. 14 to focus on generic
scaling arguments. Although the tissue is an out-of-equilibrium
system, it is convenient to write the mechanical equilibrium at
steady state as the minimization of a work function, or effective
energy , where the nonequilibrium aspect is hidden in the ten-
sions (Fig. S1). We define a cell as columnar when h

r � 1, cuboidal
when h

r ≈ 1 and squamous when h
r � 1.

Epithelial cells display an apico-basal polarity (1): The adhesion
with the substrate defines the basal surface, whereas a contractile
actomyosin belt often forms on the upper, apical surface. We
thus consider the following contributions to the effective energy:
a cell–substrate energy, proportional to the basal area, ; a
cell–cell lateral energy, proportional to the lateral area, ; and
an energy associated to the tension of the apical actomyosin belt
Λa, proportional to the apical perimeter, .
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The lateral tension γl is the sum of several contributions of
opposite signs (20): a positive contribution from contractile
forces of the actomyosin lateral cortex, which tends to minimize
the lateral surface, and a negative contribution from the ad-
hesion with the neighboring cells, which tends to maximize the
lateral surface. The tensions could also have contributions from
external stresses. Thus, the tensions γl and γb are either positive
or negative.
For practical reasons, we define and use αl = − γl, the effective

lateral adhesion, in the rest of the article. Moreover, although
tension often dominates in the actin cable (3), we study the case
of either positive or negative Λa for completeness. We assume
that the cells have a preferred volume V0 and we expand the
effective energy around V0. The first contribution is BðV −V0Þ2,
where V is the cell volume and B a compression modulus.
Therefore, our effective energy reads

If the compression modulus is large ðB→∞Þ, V is constant and
equal to V0, as observed during several morphological changes
(8, 10) (the case of finite B is treated in SI Text and does not
change qualitatively the results). This yields a geometrical rela-
tionship between r and h: h= 2V0ffiffi

3
p

r2
.

In the case αl > 0, γb < 0, the two configurations that minimize
the effective energy from Eq. 1 are then either infinitely thin and
spread cells ðr→∞; h→ 0Þ or infinitely tall cells ðr→ 0; h→∞Þ.
Therefore, an additional stabilizing term is necessary, as ob-
served in ref. 20. Because it has been shown that the cytoskeleton
is an important determinant of cell shape (21), we stress that
a cell is a dense solution of cytoplasmic components, which
cannot be indefinitely squeezed (20). Notably, intermediate fil-
aments are known to function as a stress-bearing structure (22).
We show in the next section through simple orders of magnitude
that it could be a sufficient stabilizing mechanism. Moreover, the
cell nucleus is a rigid object and is deformed when cells are
confined (23). The confinement of a solution of nonadsorbing
Gaussian polymers to a thickness h requires an energy A

h2 (24),
where A is a coefficient dependent on the properties of the poly-
mer. When cells become very tall ðr→ 0Þ, the same confinement
energy should be included: 2 A

r2. We discuss other hypotheses in the
next section and in SI Text.
To eliminate the prefactors coming from the hexagonal geome-

try, we choose 4
3
1=6
V0

1=3
as the unit length and 3

4
1=3 A

V 2=3
0

as the unit

energy (details in SI Text). We obtain a simple equation, with

only three rescaled parameters, which we rename 21=3
31=6

γbV
4=3
0
A → γb,

31=645=6αl
AV 2=3

0

→ αl, and 25=331=3ΛaV0
A →Λa:

The minimum of this energy function defines the cell base
length at mechanical equilibrium.

Assumption of the Model. Our main assumption is the form of the
confinement energy of the cytoplasmic components written as

, which is the confinement energy of Gaussian polymers.
Other assumptions on the nature of the cytoplasmic components,
or on a precise rheology of the nucleus, would yield different power
laws of the form . For instance, it has been argued
that semiflexible polymers correspond, in the high-confinement
limit, to n= 7=2 (25). Nevertheless, it should be noted that several
scaling laws we derive (Eqs. 5 and 6), as well as the main features of
the phase diagrams, are model independent and hold for any value
of the exponent n. On the other hand, some scaling laws are model
dependent. We derive them for any n and draw the phase diagrams
for various values of n in SI Text and Fig. S2. An alternative sta-
bilizing mechanism could be an active regulation of the tensions to
achieve some target basal and lateral areas A0

b and A0
lat. Then,

expanding the tensions around these target areas to first order�
γb = γ0b + δ1ðr2 − A0

bÞ and αl = α0l − δ2
�V0

r −A0
lat

��
yields the same

stabilizing terms as our model, as long as the coefficients δ1; δ2 are
positive. In SI Text and Fig. S3, we show that the results of the
main text are not qualitatively modified by assuming an active
regulation of the tensions.

Stable Epithelial Cell Aspect Ratios. In our model, cell–cell lateral
adhesion ðαa > 0Þ and apical belt tension favor tall columnar cells,
whereas cell–cell contractile forces ðαl < 0Þ and cell–substrate
adhesion ðγb < 0Þ favor squamous cells, in agreement with the
experimental observations that squamous cells down-regulate
E-cadherin and Fas2/3 (cell–cell adhesion) (17, 18), whereas
columnar cells up-regulate E-cadherin expression and down-
regulate cell–matrix adhesion (2, 18).
More precisely, from Eq. 2, we give analytical limits for cell

aspect ratios. If cell–substrate adhesion is dominant (γb < 0 and
jγbj � 1), cells are squamous and spread to a base length r≈ffiffiffiffiffiffi

−γb
2

q
� 1. If cell–cell adhesion is dominant (αl > 0 and jαlj � 1),

cells are columnar and the stable base length is r≈ 4
αl
� 1. If cell–

cell contractile forces are dominant (αl < 0 and jαlj � 1), cells
are squamous and the stable base length is r≈

�−αl
4

�1=5 � 1.
Finally, if apical contractile forces are dominant ðΛa � 1Þ, cells
are columnar and the stable base length is r≈ 2ffiffiffiffi

Λa
p � 1.

We now estimate the parameters of the model. The main
unknown is the confinement energy of the cytoplasmic com-
ponents A. In vitro experiments on the confinement of actin
chains (25), as well as rheological measurements on Xenopus
egg cytoplasmic extracts (26), suggest an order of magnitude
of A≈ 10−24 − 10−23J·m2 (SI Text). Although the complete
cytoskeleton in a living cell is much more complex and can
partially reorganize when the cell morphology changes, using
a lower bound value, with typical values of the cell surface en-
ergies γb and αl of 10−4 N=m (27) would predict a base length

of squamous cells r=
ffiffiffiffiffiffi
−γb
2A

q
V0 of order ≈25 μm, with a cellular

height h≈ 2 μm. These estimates are close to the observed
values for a cell of volume V0 ≈ 10−15m3 (28) and suggest that
this confinement contribution could be large enough to stabilize
cell spreading to a realistic height. Moreover, for an apical belt
of transverse radius la, the typical line tension is Λa =Πl2a, where
Π is the characteristic contractile stress of actomyosin cables that
can be estimated from laser-cutting experiments (29). Reported

Basal tension

Cell-cell 
adhesion

Actin cable

h

r

Fig. 1. Sketch of our theoretical model.
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values are la = 1 μm and Π= 103 − 104 Pa, so Λa ≈ 1− 10 nN
(30). Then, in our renormalized units, we deduce jγbj≈ 10, jαlj≈ 10,
and Λa ≈ 1− 10 and calculate the following phase diagrams using
parameters within this regime.

Shape Transitions in Epithelia. When the parameters are varied
continuously, the transition from columnar to squamous cells can
be either smooth or discontinuous, typical of a bistable system.
Fig. 2 A and B shows the two possible profiles of the effective
energy , for increasing Λa: either one minimum r, continuously
decreasing with increasing αl, or two distinct minima corresponding
to squamous and columnar morphologies.
The observed morphologies of epithelial cells are therefore

found as the stable points of a force balance equation and there
are nontrivial transitions between aspect ratios. The appearance
of a new stable point occurs if , a condition that
defines the so-called spinodal lines, separating regions with one
stable aspect ratio from regions with two stable aspect ratios.
We perform a numerical integration of these equations to obtain
the phase diagram of epithelial aspect ratio, plotted in a plane
(αl−Λa) for γb = − 15 (Fig. 2B), and derive scaling laws for var-
ious values of γb near the critical point (Fig. S4).
This model agrees qualitatively with a wide range of experi-

mental data. Notably, many epithelial shape changes feature an
apical constriction, regulated by RhoA (9). We predict that the
tension in the apical belt Λa, as well as the cell–cell lateral ad-
hesion, is a crucial parameter to establish a mature columnar
epithelium. Indeed, either down-regulating the apical myosin
IIb through blebbistatin (31) or lowering the lateral cell–cell in-
teraction through Tmod3 (8) decreases cell height by about 30%.
We also predict that, depending on the parameters, one should

observe either a progressive cuboidal to columnar transition, as in
Drosophila wing morphogenesis (19) (mediated by the Dpp-Rho1-
myosin IIb pathway, which again up-regulates the apical tension),
or a sharp squamous to columnar transition, as in Barrett’s meta-
plasia before stomach cancer (4). A stronger, quantitative test
would be to quantify the aspect ratio of epithelial cells while
varying smoothly myosin activity, for instance using a control
parameter that could be blebbistatin concentration.
Finally, rewriting the effective energy from Eq. 2 as a

function of cellular perimeter and apical surface , we
can compare our 3D effective energy to previous 2D theories

. The first two terms are the

same as in ref. 14, where . In the limit of low lateral
adhesion , the following two terms are negligible and

considering only the 2D apical surface is a valid approximation.
Nevertheless, lateral adhesion must always be taken into account
for very columnar and thin cells .

Epithelial Sheet Bending
We now examine 3D deformations of a cell sheet, without in-
troducing any new parameters. The forces from basal tension
and apical belt tension are not in the same location. If the sub-
strate can deform, cells therefore adopt a “lampshade” shape (Fig.
3A), which leads to a spontaneous curvature of the epithelial
sheet. This curvature can be either positive or negative, depending
on the relative values of apical belt tension and the basal tension
(Fig. 4 and Fig. S5). We discuss in SI Text (Fig. S5) a more precise
analytical criterion for the curvature sign.
If all cells have the same morphology, the tissue bends and its

global shape can be deduced from the individual cell properties.
It is useful to define, in analogy to the theory of surfactants (32),
the spontaneous curvature of asymmetric cells, i.e., the curvature
of the cellular sphere that they would spontaneously form,

where h is the height of a cell as before, and r1 and r2 are,
respectively, the characteristic length of the cell apical and
basal surface.
Considering as before a constant volume V0, the effective

energy of a cell (SI Text) is

We include a bending force from the substrate in SI Text (Fig.
S6). The cell shape asymmetry is driven by the contributions of
γb and Λa to the effective energy.
If γb =Λa = 0, the cell sheet is planar and the analysis of the

previous section holds. When γb or Λa increases, r1 and r2 be-
come increasingly different. There are two limiting cases, as γb or
Λa is increased: a smooth increase of the curvature or an abrupt
transition from a flat to a curved sheet (Fig. 3B). We first set
γb = 0 and examine the impact of the actin belt tension Λa, whose
importance is most often emphasized (1), and consider γb in SI
Text (Figs. S5 and S7).

A B

Fig. 2. Epithelial cell aspect ratio as a bistable phenomenon. (A) Plots of the effective energy of a cell as a function of the cell base length r, when apical belt
tension Λa is increased (Left to Right). If contractile forces dominate αl , only one minimum of the energy, cells go continuously from squamous to cuboidal
to columnar aspect ratios. If lateral adhesion is large enough (αl negative), two minima, cells “jump” from squamous to columnar aspect ratios. (B) Phase
diagram as a function of Λa and αl for γb = − 15, showing regions of continuous and discontinuous transitions.
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Curvature Induced by an Apical Belt Tension. We determine nu-
merically the mechanical equilibrium defined as . We
assume that the lateral adhesion dominates (αl> 0); therefore, the
epithelium is columnar. When the lateral adhesion increases, the
curvature of the epithelium decreases (Fig. 3D), because lateral
adhesion favors symmetrical shapes. We derive scaling laws for two
limiting cases of small and high curvatures: Λa � αl and Λa � αl.
If Λa � αl, we rewrite r2 = r1 − e and expand the effective energy

in powers of e
r1
� 1. We find

In the opposite limit, Λa � αl, we obtain r1 ∝Λ1=9
a , r2 ∝Λ−5=9

a . The
curvature is slightly sublinear: . These theoretical pre-
dictions agree qualitatively with the experiments of ref. 9, showing
that the curvature of an epithelium increases (resp. decreases)
with a higher (resp. lower) recruitment of myosin IIb and P-MLRC
at the apex of the cell.
They could be tested quantitatively by measuring the curvature

of an epithelial monolayer and comparing it to the stress in the
apical belt from laser-cutting experiments. Alternatively, mimicking
an apical constriction on a collagen scaffold on known mechanical
properties (33) could allow for a noninvasive, quantitative mea-
surement of bending forces. Even simpler, for any exponent n in
the confinement energy, the scaling law

r1 ∝ r−1=52 [6]

holds in the limit of high constriction, which could be tested
without any need to measure tensions.
It is useful to define an effective bending rigidity

of the epithelial sheet, which quantifies the resistance of a
cell layer to the apical constriction. A strength of our model
is that we calculate this quantity from a realistic microscopic
model and do not assume it a priori. For Λa � αl, the bending
rigidity is constant (Fig. 3D) and depends very strongly on
the value of the lateral adhesion: αl ðKeff ∝ α5l Þ. For Λa � αl,
because is quasi-linear with Λa, the bending rigidity is also
roughly constant, but has a much lower value, mostly inde-
pendent of αl.
Moreover, for large values of the lateral adhesion αl, the ep-

ithelium shows a discontinuous transition: The bending rigidity
stays very high until a critical value of Λa.
Finally, we give a phase diagram of 3D epithelial sheet organi-

zation. There are three spinodal “tongues” and thus three critical
points. For γb = 0 (Fig. 4), there is a range of stability of quasi-flat
sheets, around Λa = 0 (squamous cells if αl � 1, columnar cells
if αl � 1). When Λa increases, the curvature of the cell sheet
increases either continuously ðαl � 1Þ or discontinuously ðαl � 1Þ.
Curvature Induced by an Apical Surface Tension. In some morpho-
genetic events, invagination is driven by the constriction of the
entire apical cortex, instead of a circumferential apical belt (1).
We set the belt tension Λa = 0 and call γa the apical surface ten-
sion, which adds a contribution γar

2
2 in Eq. 4. The results are

qualitatively similar to those of the previous section, although
the scaling laws are different. In the regime of low apical tensions
ðγa � αlÞ, the curvature is . In the regime of high apical

tensions ðγa � αlÞ, r1 ∝ γ1=14a , r2 ∝ γ−5=14a , and . Interestingly,
these two scaling laws in γa are quite different and could be dis-
tinguishable in experiments. The scaling law r1 ∝ r−1=52 also holds.

Cellular Tubes vs. Cellular Spheres
So far, we have calculated the spontaneous curvature of individual
cells, assuming that the cell sheet would curve isotropically, with

A B

C

E

D

Fig. 3. Spontaneous curvature of an apically constricted tissue. (A) Sketch of
our model. The cell is modeled as part of a sheet of constant height h be-
tween apical and basal sides. (B) Numerical integration of r1 and r2 as
a function of apical belt tension Λa. (C) Sketch of a biological application:
lens placode formation. The apical belt tension is increased locally, causing
the tissue to invaginate with radius of curvature R. (D) Curvature and
bending rigidity of the cell sheet as a function of apical belt tension Λa for
various values of αl = −2 (yellow), αl = 3 (green), αl = 4:5 (purple), and αl = 5:5
(black). Note the change in convexity as αl changes sign. (E) Bending rigidity
as a function of cell–cell adhesion, for various values of Λa = 1 (orange),
Λa =10 (green), Λa = 50 (blue), and Λa =100 (black).

20 10 10 20

15

10

5

5

10
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Fig. 4. Phase diagram of the 3D architecture of epithelial tissue, as a func-
tion of apical belt tension Λa and lateral adhesion αl , for γb = − 1. The apical
side is drawn in red and the basal side in blue. The apical side lines the in-
terior of the sphere if Λa > 0, and the exterior is Λa > 0. We concentrate on
the region Λa > 0: The curvature increases for increasing Λa, either contin-
uously or discontinuously (hatched regions). The epithelium is more co-
lumnar for high values of αl .

[5]

30 | www.pnas.org/cgi/doi/10.1073/pnas.1312076111 Hannezo et al.

www.pnas.org/cgi/doi/10.1073/pnas.1312076111


a spherical geometry. Nevertheless, other geometries are seen
in vivo and could be more stable. We now compare the stability
of spheres and tubes for various parameters. A cell in a tube is
curved in one direction, and we define r1 as the dimension of the
apical side in the curved direction, r2 as the dimension of the
basal side in the curved direction, and r as the dimension in
the noncurved direction (Fig. 5 A and B).
If the apical constriction is anisotropic, as in neural tube for-

mation, a sheet bends only in one direction, creating a tube.
The anisotropy is then built into the microscopic deformation.
Nevertheless, we show here that tubes could be favored even if
the apical constriction is isotropic, through a spontaneous sym-
metry breaking at the tissue level. This is because, for a given
cell volume, a tubular morphology maximizes cell–cell adhe-
sion, because a rectangular prism has a larger surface area than
a regular prism. Therefore, high values of αl tend to favor
tubular geometries.
Using the same model as before, a tubular cell of volume V0

has an effective energy

For an epithelium constricting through an apical belt, the
spherical configuration is always the most stable, except at extreme
values of Λa, in a very narrow parameter range. On the other
hand, for an epithelium constricting through an actin cortex with
apical tension γa, the range of parameters where tubes are more
stable drastically widens. We compare the effective energies of
the two configurations at steady state (Fig. 5C) and calculate
a phase diagram as a function of αl and γa.
In the case of apical belt tension and in the limit Λa � αl, the

scaling law of the spherical effective energy at mechanical equi-
librium is , whereas for the cylindrical effective energy,

, a larger exponent. This means that for large enough Λa,
spheres are always more stable, which restricts drastically the sta-
bility range of tubes.
In contrast, for apical surface tension and in the regime

γa � αl, the energies of the two configurations have the same
scaling, (Fig. S8A), so tubular configurations have
a much larger stability range. Moreover, considering a non-
negligible cell–cell adhesion αl allows us to calculate the next
term in the expansion of the energies: and

. When the apical tension γa increases, the cell–
cell contribution stabilizes more and more the cylindrical mor-
phology compared with the spherical. Therefore, when αl is
large, cylindrical morphologies are more stable for large values
of γa, as observed in the phase diagram.

Additionally, to fully explore the space of possible shapes, we
consider the stability of cellular ellipsoids, made of cells that
have two distinct curvatures and (Fig. S8B),
which we calculate at mechanical equilibrium. The results
confirm the previous stability diagram, the main difference
being that the transition between a sphere and a tube is
smooth; i.e., the stable shape is a more and more elongated
ellipsoid far from the transition. For low values of γa, the ratio
of the two curvatures is 1, before increasing sharply at the
transition (Fig. S8C).

Buckling Induced by Cell Shape Changes
Finally, we consider the confinement of an epithelium to an area
different from its equilibrium value. If this occurs, cells can ac-
commodate the decreased area by increasing their height. How-
ever, the area accessible to cells can also increase to its value
dictated by mechanical equilibrium through an out-of-plane de-
formation of the entire sheet. This occurs if the energetic cost of
bending the sheet is larger than the energetic cost of compression
and is analogous to the Eulerian buckling of an elastic sheet under
compression. For example, during Drosophila wing development,
the columnar epithelium forms several folds. Moreover, local
mutations affecting the actin belt cause the epithelium to collapse
to a lower height and a bigger area and thus to form additional
folds (19).
Therefore, buckling instabilities can arise not only from stresses

due to cell division (34), but also from cellular shape changes,
caused by adhesion or apical contractility changes. To our knowl-
edge, this last possibility has not been explored theoretically. We
therefore compare the stability of confined and buckled epithelia
and consider a one-dimensional layer of columnar cells, in the
limit αl � Λa (see SI Text for the other limit). The equilibrium
base length is then r0 = 4

αl
. Confining a cell to a new base length

r< r0 costs an effective energy , where Δr=
r0 − r � r0. In a buckled sheet, parameterized by the definition
lðzÞ= u  cosðqzÞ (Fig. 6), cells are forced to adopt a lampshade
shape that has an energetic cost, but the amplitude and wave-
length u and q are such as to accommodate cells to their

equilibrium base length r0 = r
�
1+ u2q2

2

�
. The energetic cost of

the buckled configuration for a cell (SI Text) is .
Therefore, the confinement energy depends quadratically on the
confinement Δr, whereas the effective buckling energy is linear in
Δr. This means that small confinements are always accommo-
dated by a uniform squeezing of the sheet, until a critical
threshold where the sheet buckles. Not surprisingly, large
wavelengths ðq→ 0Þ are favored and reduce the buckling energy,
because less bending is required of each individual cell. The

tubes

spheres
C

r r

A

B

Cellular tube

Cellular sphere

Fig. 5. (A and B) Comparison of the mechanical stability for cellular tubes,
made of cells curved in one direction (A), and cellular spheres, curved in two
directions (B). (C) Stability diagram as a function of lateral adhesion αl and
apical tension γa.

buckling

u

r0

r

Fig. 6. Cell confinement and buckling. When a tissue is confined by ex-
ternal forces to an area lower than the area dictated by its mechanical
equilibrium, it can either be homogeneously compressed or buckle to re-
lieve the stress.

[7]
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preferred wavelength is then the length of the sheet L, with a
critical confinement threshold

Δrc ∝
α3l
L2: [8]

The threshold increases with αl, in agreement with our previous
observation that cell–cell adhesion increases the bending rigidity
of a sheet. Conversely, we consider the complementary case where
the projected area of the sheet stays fixed and a mutation causes
cell–cell adhesion to decrease to α′l = αl −Δαl. Again, the sheet
buckles if the cell–cell adhesion decreases more than a threshold
value Δαlc ∝

α5l
L2.

Discussion
In this article, we introduce a minimal model for epithelial cell
morphology in three dimensions. Our model allows for the cal-
culation of the equilibrium base length and height of epithelial
cells as a function of three parameters: apical belt tension and
cell–cell and cell–substrate tensions. These three parameters alone
do not lead to stable equilibrium as soon as adhesion dominates
contractile forces, and an additional term must be added to ac-
count for the fact that a cell cannot spread indefinitely. Several
physical mechanisms could in principle be invoked, but the orders
of magnitude we calculated suggest that the confinement energy
of cytoplasmic components could be large enough to reproduce
realistic aspect ratios.
It should be noted that the typical height of a squamous cell

is similar to the typical radius of a columnar cell (on the order
of a few microns) and that this value is comparable to the per-
sistence length of intermediate filaments such as keratin (1 μm)
(35), the length scale at which we expect confinement forces to
be large. Therefore, the model that we propose could function
as a passive size-sensing mechanism in epithelia. We insist, how-
ever, that most results presented here would not be qualitatively

different if a wide range of other stabilizing mechanisms were
used, for instance a regulation of the active tensions that would
function as an active size-sensing mechanism.
This theory predicts nontrivial phase transitions: On planar

substrates, the aspect ratio of cells varies either continuously or
discontinuously with the parameters. We give analytical criteria
to discriminate between the two regimes and discuss the impli-
cations during morphogenesis. We then derive a full phase dia-
gram of epithelial morphology in three dimensions, and a central
result of this article is a scaling law for the curvature of an epi-
thelium as a function of apical belt tension and cell–cell lateral
adhesion. It is thus controlled by few parameters, which are part
of a larger regulatory network. They are, in general, not varied
independently in vivo: Both tensions and the confinement energy
of the cytoskeleton could be modified as a function of cellular
morphology itself. In the case of a discontinuous morphological
transition, this implies protein expression levels would in turn
be discontinuous.
An interesting consequence of this phase diagram is that a

region exists where both columnar and squamous epithelia are
stable. If cells are confined to a constant number in a constant
area (Fig. S9), we thus expect a phase separation, with a region
of columnar cells and a region of squamous cells, even for iden-
tical cell and substrate properties. This echoes the morphological
transition of the follicle cell epithelium into two distinct pop-
ulations during Drosophila oogenesis (28).
Our theory can also be generalized to include external stresses

acting on the sheet. Additional aspects of the cell biology, such as
cell division or apoptosis, or active behaviors such as migration,
oscillations, and fluid pumping could be incorporated as well in a
straightforward manner. Moreover, numerical simulations would
be necessary to investigate the role of noise and disorder in the
morphology of epithelial sheets.
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