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The Cdc42- and Rac-interactive binding motif (CRIB) of coronin binds
to Rho GTPases with a preference for GDP-loaded Rac. Mutation of
the Cdc42- and Rac-interactive binding motif abrogates Rac binding.
This results in increased 1evels of activated Rac in coronin-deficient
Dictyostelium cells (corA−), which impacts myosin II assembly. corA−

cells show increased accumulation of myosin II in the cortex of
growth-phase cells. Myosin II assembly is regulated by myosin
heavy chain kinase–mediated phosphorylation of its tail. Kinase ac-
tivity depends on the activation state of the p21-activated kinase a.
The myosin II defect of corA− mutant is alleviated by dominant-
negative p21-activated kinase a. It is rescued by wild-type coronin,
whereas coronin carrying a mutated Cdc42- and Rac-interactive
binding motif failed to rescue the myosin defect in corA− mutant
cells. Ectopically expressed myosin heavy chain kinases affinity pu-
rified from corA− cells show reduced kinase activity. We propose
that coronin through its affinity for GDP–Rac regulates the availabil-
ity of GTP–Rac for activation of downstream effectors.
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Coronins are a highly conserved family of proteins that are
important regulators of actin-dependent processes. The

founding member of this family, coronin from Dictyostelium dis-
coideum, localizes to actin-rich crown-like structures at the dorsal
site of the cells and is present in leading edges and pseudopodia
(1). In vivo analysis revealed a dynamic behavior and showed
coronin accumulation also at sites where F-actin disassembles.
During phagocytosis, coronin associated with the phagosome after
the assembly of actin filaments supporting the proposal that
coronin promotes the disassembly of actin filaments. For mam-
malian coronins, an interaction with the Arp2/3 complex has been
shown that inhibited the actin-nucleating activity of this complex
(2, 3). In yeast a dual mode of the impact on Arp2/3 has been
reported. At low concentrations coronin enhanced filament
binding by the Arp2/3 complex, whereas at high concentrations
binding of the Arp2/3 complex to actin filaments was inhibited (4).
ForDictyostelium coronin, an interaction with Arp2/3 has not been
reported, however in analogy the mechanism to promote the
disassembly of actin filaments might be similar (5, 6).
Analysis of Dictyostelium mutants lacking coronin revealed its

roles in cell motility, phagocytosis, and cytokinesis. Cell motility
was reduced to less than half compared with the parent strain,
the phagocytosis rate was only ∼30% that of wild type, and
∼50% of the cells were multinucleated (7, 8).
The structural characteristic of coronins is a tryptophan-aspartic

acid (WD) repeat domain containing seven repeats that form
a seven-bladed β-propeller (9). In addition to this domain,
coronins have N- and C-terminal extensions. At the C terminus,
a unique region is followed by a coiled coil that mediates olig-
omerization. A further feature is a recently discovered Cdc42- and
Rac-interactive binding (CRIB) motif located at the surface of the
β-propeller between blades 2 and 3. It was initially identified in
Xenopus coronin. When expressed in Swiss 3T3 fibroblasts, the
location of Xcoronin was affected by active Rac. It relocalized to

the cell periphery when coexpressed with RacV12 and was found
in lamellipodia that were induced by active Rac. Rac-induced
lamellipodia formation was inhibited by a truncated coronin
(residues 64–299). An analysis of this region led to the identifi-
cation of a sequence related to the CRIB motif (10), which in turn
was proposed to interact with and recruit Rac (11). The CRIB
motif was also identified in several mammalian coronins like
human Coronin1A, 1B, 1C, and in the Dictyostelium coronins
(12). D. discoideum harbors two coronins, coronin encoded by the
corA gene and coronin7 encoded by the corB gene. Coronin7 has
two WD repeat domains separated by a proline–serine–threonine-
rich domain (13).
D. discoideum has several members of the Rho family of small

GTPases that mostly belong to the Rac subfamily (14, 15). Al-
though it has no clear homolog of Cdc42, RacB has been pro-
posed as a functional equivalent (16). Rho GTPases are key
regulators of the actomyosin cytoskeleton in the cell and regulate
cellular processes like phagocytosis, cytokinesis, and chemotaxis.
Among their effectors are Wiskott–Aldrich syndrome protein
(WASP), an activator of the ubiquitous actin nucleation factor
Arp2/3 complex, the IQ motif containing GTPase-activating
proteins (IQGAPs), and the p21-activated kinases (PAKs) (17).
PAKs contain an N-terminal regulatory domain that harbors
a CRIB domain and a C-terminal Ser/Thr kinase domain. Dic-
tyostelium PAKa localizes to the cell cortex and accumulates
specifically in the posterior part during chemotaxis where myo-
sin II filaments assemble. PAKa is activated in response to
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cAMP presumably by binding of Rac GTPases to its CRIB do-
main whereupon it translocates to the cytoskeleton and nega-
tively regulates myosin heavy chain kinases (MHCKs). This then
leads to myosin II assembly in the posterior cortex (18, 19).
Here we study the CRIB domain in D. discoideum coronin,

analyze the potential to interact with Rac proteins in vitro, and
probe the significance in vivo. We propose that coronin through
its CRIB motif can regulate the availability of Rac for activation.
This has an impact on Rac’s downstream activities like the
activation of PAKa and inhibition of MHCK activity.

Results
The CRIB Motif of Coronin Binds to Rac Proteins from D. discoideum.
The minimal CRIB motif encompasses ∼15 amino acids (10). The
binding motif is divided into two halves that are separated by a re-
gion of variable length. It contains eight core amino acids
(ISXPXXXXFXHXXHVG) and tolerates one to two substitutions
(20). This motif has been identified in coronins from all species (Fig.
S1). In D. discoidem coronin it is located at position 117–133. The
homology to CRIB motifs from other proteins is high (Fig. 1A).
To probe its significance for Rac binding, we expressed parts

of coronin with and without the CRIB motif as GST fusion
proteins in Escherichia coli (Fig. 1B and Fig. S2A). The proteins
were bound to Glutathione Sepharose beads and used to pre-
cipitate GFP-tagged Rac proteins from wild-type strain AX2. In
these experiments, the CRIB motif containing coronin fusion
proteins could precipitate GFP–Rac1a from cell lysates (Fig. 1C).
The interaction appeared to be direct, as bacterially expressed
Rac1a fused to GST and also GST–RacC precipitated NT CRIB,
a polypeptide encompassing residues 1–168 of coronin (Fig. S2 B

and C). As the CRIB motif primarily interacts with Rac proteins in
complex with GTP, we examined whether the nucleotide state is
important for binding and used GDP and GTPγS-loaded Rac1a
and RacC GST fusions and quantified the precipitated CRIB
polypeptide. We found that NT CRIB interacted with both forms
nearly equally well and did not observe a preference for the nu-
cleotide state of the Rac protein (Fig. S2 B and C). When we
expressed the CRIB motif as GFP fusion (GFP–cor CRIB) in
AX2 cells, it was distributed throughout the cytosol and relocated
to cellular extensions (Fig. S2D). This behavior resembled the one
of the isolated CRIB motifs expressed as GFP fusions such as the
one of PAK1 that localized to leading edges of migrating cells and
was used as a probe to monitor the distribution of active Rac (21,
22). For comparison, GFP–cor WT was also present in the cy-
tosol and strongly accumulated in new extensions (Fig. S2D).

Endogenous Coronin Interacts Primarily with GDP Bound Rac. To
investigate the interaction of full-length coronin with Rac pro-
teins, we carried out coimmunoprecipitation experiments using
wild-type cells expressing GFP–Rac1a. In our coimmunopreci-
pitation experiments, we found that GFP–Rac1a could pre-
cipitate endogenous coronin, suggesting complex formation in
vivo (Fig. 1D). We further investigated the nucleotide specificity
of the interaction using pull-down assays. Here, we used GST
fusions of Rac1b and RacB preloaded with GDP or GTPγS to
pull down endogenous coronin from AX2 cell lysates and probed
the presence of coronin with mAb 176-3-6 (1). We detected
coronin in the precipitates of GST–Rac1b and GST–RacB. For
both Rac proteins the interaction with coronin was more effi-
cient in the case of the GDP loaded form (Fig. 2A). In a control
experiment we analyzed the interaction of Rac1a with Dictyos-
telium IQGAP-related protein 1 (DGAP1), an IQGAP-related
protein that was previously shown to interact preferentially with
the activated GTP-bound form of Rac1a (22). Consistent with
previous data, DGAP1 was precipitated by GDP and GTP-
charged Rac1a GST fusions with higher enrichment in the pellet
of GTP-loaded Rac1a (Fig. 2B). We also probed the interaction
of GST-fused RacA, RacC, and RacE loaded with GDP or
GTPγS with coronin and found that primarily GDP-loaded RacC
could significantly precipitate coronin in this experiment, whereas
the other Rac proteins were less efficient (Fig. S3).

Impact of Mutations in the CRIB Motif on Rac Binding and in Vivo
Functions of Coronin. To gain further insight into the structure and
position of the CRIB motif in coronin, we modeled the structure
of D. discoideum coronin using coronin1A [Protein Data Bank
(PDB) ID code 2AQ5] structural coordinates as a template. The
CRIB motif is located between blades 2 and 3 of the beta pro-
peller domain. Based on the location of the CRIB motif, at least
the first half of the motif is clearly surface accessible, whereas the
second one is more embedded in the protein (Fig. 3 A, a and A,
b). To assess the significance of the CRIB motif in a protein,
deletions of the whole motif are commonly generated, whereas
point mutations are less frequently used (23, 24). Here, we
changed the conserved residues ISXP and HXXXVG in the N-
and C-terminal half of the CRIB domain to alanines by site-
directed mutagenesis in a plasmid encoding GFP–cor WT, thereby
generating GFP–mutant 1 (GFP-MUT1) and GFP–mutant 2
(GFP-MUT2), respectively (Fig. 3B). GFP–cor WT, GFP–
MUT1, and GFP–MUT2 proteins were expressed in AX2 and
the corA− strain for analysis of the Rac binding activity and the
significance of the CRIB motif for coronin function. The ex-
pression levels of the GFP fusion proteins were determined by
Western blotting with anticoronin antibody 176-3-6. We found
that they were comparable to that of endogenous coronin in
AX2 cells (Fig. S4A). Next, the Rac binding activity of the
mutant proteins was probed by immunoprecipitation experi-
ments using GFP-specific antibodies. The wild-type protein showed
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Fig. 1. The CRIB motif in coronins. (A) Sequence alignment of the CRIB
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(B) Schematic diagram showing the different GST fusion polypeptides of
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a preference for GDP-bound Rac1b; in GFP–MUT1 Rac bind-
ing was completely abolished, whereas GFP–MUT2 still bound
Rac1b (Fig. 3C).
To investigate if mutation in the CRIB motif alters the locali-

zation of coronin and its oligomerization potential, we performed
immunofluorescence and coimmunoprecipitation experiments.
Both the wild-type and CRIB mutant GFP fusion proteins
showed a similar distribution in growth phase cells being present
in the cytosol and enriched at the cell cortex where actin accu-
mulated (Fig. 3D). The cytoskeleton association of the GFP
fusion proteins was further confirmed when we fractionated cell
lysates into detergent-soluble and -insoluble fractions, where
coronin was found in both fractions (Fig. 3E). In an experiment
designed to probe the oligomerization potential of the GFP-
tagged proteins, GFP–cor WT and GFP–MUT2 coprecipitated
endogenous coronin from AX2 cells (Fig. S4B). Together, these
data suggest that the basic properties of the coronin protein such

as localization and oligomerization potential are unaffected by
the CRIB mutation.
Loss of coronin from D. discoideum cells results in a cytoki-

nesis and phagocytosis defect (7, 8). We assayed these properties
in corA− cells expressing GFP–MUT1 and GFP–MUT2. Both
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(WB: coronin). The membrane was stripped and reprobed with antiactin
mAb act1 (WB: actin).
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mutant proteins could rescue the phagocytosis and multi-
nucleation defect of the corA− strain. In a typical phagocytosis
experiment, 30% of AX2 cells had ingested yeast after 15 min; in
corA− this was reduced to 8%; and in corA− expressing GFP–
MUT1 ∼23% and for GFP–MUT2 17% of the cells had ingested
yeast (Fig. S4C). Similarly, only a few cells of the rescue strains
were multinucleated. The majority of the cells (∼90%) were
mono- and binucleated as opposed to the corA− strain, where
more than 50% of the cells had three and more nuclei (Fig. S4D).
The observation that the wild-type phenotype was not completely
rescued is presumably due to the fact that the levels of expression
varied from cell to cell.

Coronin Regulates Myosin II Assembly. We next focused on the
chemotactic behavior of the coronin mutant. Recently, we
reported that in addition to the strong motility and chemotaxis
defect, the corA− cells extended pseudopods in all directions
during migration and were not polarized like the wild type (13).
Here we focused on myosin II assembly and distribution. In
aggregation-competent wild-type cells, the cytoskeleton-associ-
ated myosin II nearly doubles in amount and the protein trans-
locates to the posterior cortex of the cells. This is achieved by
a series of regulatory events that end in phosphorylation and
dephosphorylation of myosin heavy chain. We stained vegetative
and aggregation-competent corA− cells for myosin II and ob-
served strong myosin II accumulation in the cell cortex in both
stages. By contrast, in AX2 wild-type cells, myosin II staining in
the cortex was low in vegetative cells and increased in aggrega-
tion-competent cells (Fig. 4A). A quantitative assessment showed
a twofold increase of myosin II in the cytoskeletons in aggre-
gation-competent compared with growth phase cells. Notably,
in growing corA− cells, the levels of cytoskeletal myosin II were
significantly higher and paralleled those of aggregation-com-
petent AX2 cells. This level did not increase further at the
aggregation stage (Fig. 4B). Upon expression of GFP–MUT1 in
corA−, the myosin II levels in the cytoskeleton of vegetative
cells remained high, whereas upon expression of GFP–cor WT
and GFP–MUT2, it returned to the wild-type level. This was
observed by myosin II immunofluorescence analysis and by
quantitative determination of the cytoskeletal myosin II con-
tent during the growth phase (Fig. 5 A and B).

PAKa Kinase as Downstream Effector of Coronin. We have shown
above that coronin can bind to Rac GTPases primarily in their
GDP-bound form and that a mutation in the CRIB motif abol-
ishes this activity. As coronin is quite an abundant protein, its
loss could lead to an enhanced level of GTP-loaded Rac. We
probed this directly in vegetative corA− cells by carrying out
a pull-down assay with the GST-tagged p21 binding domain of
PAK (GST–PBD—i.e., the CRIB domain of PAK) from rat that
interacts with activated Racs in cell lysates (21). Precipitated Rac
was revealed by probing with polyclonal Rac antibodies. We
found that the levels of activated Rac were 1.6-fold higher in the
pull-downs from unstimulated corA− cells compared with control
AX2 cells. The precipitated amounts were compared with the
amounts of total Rac protein in the cell lysate (Fig. 6A).
PAK kinases are one of the major effectors for Rac GTPase in

the cell. In Dictyostelium, there are three PAK kinase homologs
present, two of which, PAKa and PAKc, have been linked to
myosin II regulation (18, 19). Additionally, expression of a con-
stitutively active PAKa version containing only the kinase domain
caused elevated cytoskeletal myosin II levels, whereas a truncated
dominant-negative PAKa protein (PAKa–c) composed of the
CRIB and kinase domain led to reduced phagocytosis and de-
creased migration velocity (18, 19).
We hypothesized that the myosin II phenotype in the corA−

mutant cells might be caused by an altered MHCK activity due to
an overactive PAKa. Therefore, we expressed PAKa–c as GFP

fusion protein (GFP–PAKa–c) in corA− cells and analyzed its
effect with respect to myosin II regulation and cytokinesis.
GFP–PAKa–c reduced the myosin II assembly levels in the
cytoskeletal preparations of growing corA− cells to the one of
the wild-type AX2 (Fig. 6B). Moreover, it also partially rescued
the cytokinesis defect. Whereas ∼50% of corA− cells contained
three or more nuclei, this number was reduced to ∼30% in
GFP–PAKa–c–expressing cells (Fig. 6C). We also tested
whether coronin interacted with PAKa in vivo by coimmuno-
precipitation experiments and found that GFP full-length
PAKa could precipitate endogenous coronin (Fig. 6D). To map
the coronin-binding region for PAKa, we used the GST fusion
peptides of coronin in a pull-down assay with wild-type AX2
cells expressing GFP–PAKa and observed that GST–NT CRIB
efficiently precipitated the GFP–PAKa protein (Fig. 6E). PAKa
and coronin also partially colocalized, as revealed by staining of
AX2 expressing GFP–PAKa with coronin antibodies (Fig. 6F).

Reduced Kinase Activity of MHCKs in the Coronin Mutant. In Dic-
tyostelium, analysis of a PAKa mutant pointed toward an in-
volvement of this protein in the regulation of myosin II assembly
presumably by inhibition of MHCK (25, 26). Dictyostelium enc-
odes four MHCK homologs (MHCK A–D). MHCK A has been
shown to enhance myosin II filament disassembly through
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phosphorylation of threonine residues in the tail region of my-
osin II. MHCK B and MHCK C might act in a similar fashion to
disassemble myosin II, as the expression of these kinases in wild-
type background reduced the myosin II levels in the cortex (27).
Here, we speculated that the MHCK activity is reduced in the

corA− mutant, which then leads to increased myosin II assembly
levels in the cortex. So we first asked if the expression of par-
ticular MHCKs could compensate for the loss of MHCK activity
and rescue the myosin II phenotype in the corA− cells. To this
end, we expressed GFP–MHCK A, GFP–MHCK B, and GFP–
MHCK C in AX2 and corA− cells (Fig. 7A). A Western blot of
the cell lysates with anti-GFP antibody showed similar expression
levels of the GFP–MHCK fusion proteins in AX2 and corA− cells.
We next investigated the localization of the GFP–MHCK fusion
proteins in growth phase cells. In AX2, both GFP–MHCK A and
GFP–MHCK C were enriched in the cortex, whereas GFP–
MHCK B showed a cytosolic localization as previously reported
(27). A similar cellular distribution of GFP–MHCKs was observed
in the corA− strain (Fig. S5A). Myosin II assembly levels were then
quantified in the corA− cells expressing GFP–MHCKs (Fig. 7B).

Expression of all of the three GFP–MHCKs reduced the levels of
myosin II assembly in growth phase cells, suggesting the in-
volvement of one or more kinases in the regulation of myosin II
levels in the corA− mutant.
As DictyosteliumMHCKs are also involved in the regulation of

cytokinesis (27), we determined the number of nuclei in corA−

cells expressing GFP–MHCKs. Expression of GFP–MHCK B
and GFP–MHCK C completely rescued the multinuclearity de-
fect of corA− (14% in corA−, 0.5% in GFP–MHCK B/corA−, and
GFP–MHCK C/corA−), whereas expression of GFP–MHCK A in
the corA− strain showed a less efficient rescue (2.5%) (Fig. 7C).
As MHCK B and C rescued the myosin II defect and multi-

nuclearity, we further performed kinase assays to investigate if
the increased myosin II assembly levels in corA− are directly due
to reduced activity of these kinases. We immunoprecipitated
GFP–MHCK A, GFP–MHCK B, and GFP–MHCK C from
vegetative AX2 and corA− cells using GFP antibodies bound to
agarose beads. The precipitated GFP–MHCKs were further
incubated with histone H2B as a substrate, and the basal kinase
activity was determined after a 10 min incubation time. Both
GFP–MHCK A and GFP–MHCK B showed similar basal kinase
activity when immunoprecipitated from AX2 and corA− cells. In
contrast, GFP–MHCK C immunoprecipitated from corA− showed
a reduced basal kinase activity (Fig. 7D).
To find out which one of the MHCKs is regulated by PAKa, we

expressed GFP–PAKa–c in MHCK knockout cells (mhck A−,
mhck C−, mhck D−) and investigated the levels of myosin II as-
sembly. We found increased myosin II assembly levels in growth
phase cells of mhck A− and mhck C− as reported before (27).
Upon ectopic expression of GFP–PAKa–c, both mhck C− and
mhck D− mutant cells showed a higher sensitivity to the expression
of GFP–PAKa–c with increased myosin II assembly, whereas the
mhck A− mutant cells showed no difference (Fig. S5B). This
suggests that MHCK A and MHCK C are possibly targets of
PAKa in myosin heavy chain regulation acting downstream to
coronin (Discussion).

Discussion
A link between Rac GTPases and coronins has been suggested
by earlier work. We reported that in Swiss 3T3 cells the locali-
zation of human Coronin 1C (Coronin3, CRN2) was strongly
influenced by expression of constitutively active or inactive Rac1.
This was thought to result from changes in the actin cytoskeleton
caused by the different states of Rac proteins (28). Furthermore,
a truncated Coronin 1C containing only the core region, which is
composed of the WD repeats and lacking nearly all regions
implied in F-actin colocalization, failed to localize to membranes
and affected the shape of the cells. The cells exhibited an im-
paired spreading and adhesion to solid supports, whereas cell–
cell adhesion was unaffected, leading to a rounded or spindle-like
cell shape and suppressed neurite formation in neuronal cell
lines (29). Similarly, truncated Xenopus coronin led to impaired
Rac-mediated spreading and lamellipodia formation. On this
basis, Mishima and Nishida (11) had suggested that the coronin
core might directly interact with a Rac GTPase and might block
signal transmission to downstream effectors.
We investigate here the putative CRIB motif in coronin and

show in our in vitro studies that it binds to various Rac proteins
from D. discoideum, revealing a higher affinity for the GDP-
loaded form compared with the GTP-loaded Rac. Furthermore,
our studies show that coronin presumably acts as a regulator of
PAK by sequestering GDP–Rac, preventing it from becoming
activated and activating its downstream target PAK. This report
demonstrates a role for CRIB motifs in coronin functions.
The CRIB motif has been identified in a subset of Cdc42 and

Rac effectors. It is comprised of a short sequence of ∼15–16
residues, which makes contact with the switch I and switch II
regions of the GTPase. In general, six positions in the CRIB
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motif are well conserved, among them two histidines located in
the C-terminal half. These residues and an adjacent alpha-helix
appear to mediate sensitivity to the nucleotide switch (20). The
CRIB motif binds preferentially to the GTP-loaded GTPase and
exhibits reduced binding activity when the GDP form is used. In
coronin, the CRIB motif, although being well conserved, is not
followed by an alpha-helix as the CRIB motifs of WASP, acti-
vated Cdc42 kinases (ACK), or PAK65 (20); instead, it is em-
bedded into beta sheets. This and the location in the molecule
might explain the observed preference for GDP-bound Rac.
There have also been reports that both forms are accepted by

a particular CRIB. For example, the CRIB domain in a plant

Rop-GTPases activating protein (RopGAP) interacts with GTP-
and GDP-bound Rop1. The authors argued that this domain
binds to the transitional state of the GTPase and supported this
by creating a transitional state from GDP-bound Rop1 using
aluminum tetrafluoride, which interacted with its target (24).
The degree of conservation among the CRIB motifs is also more
variable than previously thought. In a recent study, two CRIB
motifs have been discovered in the phospholipase D2, which
overlaps with the Pleckstrin homology (PH) domain. Although
they are highly divergent, both of them appear to be active and
bind Rac2. The preference for active Rac2 is somewhat higher
compared with GDP-bound Rac2 (30). Another example is
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plenty of SH3s protein 2 (POSH2), a really interesting new gene
(RING) finger E3 ligase, which binds Rac1 through a partial
CRIB domain in which only the highly conserved residues ISXP in
the N-terminal half are present. Mutation of all three residues or
of individual residues into other amino acids reduced the
Rac1 binding but did not abolish it. POSH2 is involved in c-Jun
N-terminal kinases (JNK) activation presumably by serving as
a scaffold for a multiprotein complex that transduces signals
from GTP-loaded Rac1 to JNK. This activity was only moder-
ately reduced by a mutant POSH2 with a mutation in the half
CRIB domain (31).
In our analysis of the coronin CRIB domain, the surface-

exposed N-terminal half appears to be more relevant for the Rac
interaction as its mutation leads to a loss of binding activity. The
mutated coronin proteins also revealed the importance of the
domain for a particular function of coronin, namely its involvement
in the regulation of the myosin II cytoskeleton.
The role of CRIB motifs has been well studied in the PAK serine/

threonine kinases and in the WASP family proteins. Activation of
PAK signals to the cytoskeleton, where the CRIB motif links the

membrane receptor signaling to the actin cytoskeleton, which finally
regulates cell polarity. When WASP, a regulator of the actin cyto-
skeleton, is released from its autoinhibited form by, for example,
binding of GTP–Cdc42, it interacts with the Arp2/3 complex to
initiate the polymerization of actin filaments (32).
Because we identified a myosin II phenotype in corA− cells, we

focused here on PAKa as an effector of Rac. In mammalian
cells, a downstream effector of PAK is the myosin II light chain
kinase whose activity is down-regulated after phosphorylation by
PAK1. This results in reduced myosin II activity (33). Like
mammalian cells, myosin II assembly in D. discoideum is also
regulated by phosphorylation of its heavy chain (34). MHCKs
phosphorylate the protein in the tail region, which leads to dis-
assembly of the myosin II filaments and release of myosin II
from the cell cortex. The activity of the MHCKs is subject to
regulation by various mechanisms. In particular, Chung and
Firtel (18) suggested that PAKa affects myosin II assembly in
response to cAMP signaling, whereby PAKa does not phos-
phorylate myosin II directly but regulates it in a negative fashion
through regulation of MHCK. In PAKa-null cells the level of
cytoskeletal myosin II was reduced to ∼65% of the wild-type
level, and constitutively active PAKa led to enhanced cytoskel-
etal myosin II already in growth phase cells. PAKs are activated
by GTP-bound Rac proteins, and for PAKa, binding to several
Racs including Rac1a and Rac1b has been shown. For this in-
teraction, the CRIB domain was responsible (16, 18, 19).
In our work we found up-regulated cortical myosin II assembly

levels already in corA− growth phase cells, which exhibited a strong
cortical staining for myosin II that did not increase further during
development. Enhanced myosin II content in the cortex suggested
that MHCK is not active and cannot phosphorylate myosin II
heavy chain and release it from the cortex. MHCK inactivation
might be achieved by an overactive PAKa. PAKa, like myosin II,
resides in the cortex during aggregation. Its activity is regulated by
active Rac GTPase, and we propose that in the corA− the balance
between GDP-bound and GTP-bound Rac is altered due to the
loss of coronin. In fact, the Rac–GTP levels are increased as
demonstrated by pull-downs with the PBD of rat PAK1, which
binds only activated Rac (21). This leads to an overactive PAKa in
the cytoskeleton, which inhibits MHCK, resulting in overassembly
of myosin II in the cortex (Fig. 8). This hypothesis was further
tested by expressing in corA− cells a dominant-negative version of
PAKa, PAKa–c, consisting of the CRIB domain and the kinase
domain. In contrast to full-length PAKa, PAKa–c is located in the
cytosol (19). This results in normal myosin II assembly levels in the
mutant during growth phase. As PAKa is not known to form
(homo-)oligomers, it is unlikely that the PAKa protein in the
cortex is influenced by PAKa–c in its activity. PAKa–c rather
rescues the phenotype because it sequesters active Rac to a large
extent in the cytoplasm, restoring the wild-type phenotype of
PAKa activation in the cortex and proper regulation of the
MHCK. Alternatively it could directly sequester PAKa substrates.
In addition to this, coronin might also inhibit the activity of PAKa
through its direct interaction.
Our model is further supported by the finding that expression

of all of the three D. discoideum MHCK homologs rescued the
myosin II assembly levels and cytokinesis defect in coronin mu-
tant cells. Furthermore, we observed a reduced basal kinase
activity of MHCK C immunoprecipitated from the corA− mu-
tant. In addition, we found that expression of dominant-negative
PAKa–c in mhck C− and mhck D− mutants resulted in increased
myosin II assembly levels. This result is in contrast to our sig-
naling model, in which inhibition of PAKa activity might relieve
the constraint on MHCKs, leading to increased kinase activity of
MHCK and myosin II disassembly. We therefore speculate that
the increased myosin II assembly levels observed in mhckC− and
mhckD− mutants is presumably due to the sequesteration of
MHCK A by dominant-negative PAKa. Together we propose that
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PAKa might regulate both the stability and assembly of myosin II
filaments. PAKa inhibits the activities of MHCKs (MHCK B,
MHCK C, and MHCK D) and stabilizes the myosin II filaments.
On the other hand, it enhances myosin II assembly through an
additional signaling mechanism directly dependent on MHCK A
(Fig. S6). It should be noted that both of these signaling cascades
regulated by PAKa might be dependent on coronin.
Taken together, coronin can exert its functions by two ways. It

can act like a Rho protein GDP dissociation inhibitor (RhoGDI)
that binds GDP-bound Rho GTPases and prevents them from be-
coming available for activation of their downstream targets like
PAK (35), or it can interact with PAKs directly to regulate
their activity.

Materials and Methods
Detailed protocols of cloning, protein purification, kinase assays, immuno-
precipitation, pull-down assays, and cytoskeletal fractionation are available
in SI Materials and Methods.

Dictyostelium Strains. D. discoideum strain AX2 was used as a wild-type
strain. Generation of corA knockout cells has been described previously (1).
All strains were grown and maintained as described (13).

Mutant Analysis. Immunofluorescence was performed as described (13, 36).
Briefly, cells were collected from Petri dishes and fixed by ice-cold methanol
(5 min, –20 °C). Actin was recognized by mAb act-1 (37). For myosin II
staining, aggregation-competent cells were fixed using ice-cold methanol
and stained for myosin II using mAb 56-396-2 (38). Fixed cells were imaged
using confocal laser scanning microscopy with a 100× objective (TCS SP5
Leica). Image processing was done with Leica LAS AF Lite Software. For
surface plot rendering (Fig. 6A), scanning parameters for AX2 were used to
image corA− cells, and the image stacks were processed with ImageJ plug-in
for pseudo-3D representation, in which the z axis represents intensity.
Phagocytosis assay for corA− and rescue cells were performed as described
(13). Briefly, cells were collected from Petri dishes, an equivalent amount of
TRITC labeled yeast was added to the cells, the cells were fixed after a 15 min
incubation time, and the number of ingested yeast counted.
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