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Biological dispersal shapes species’ distribution and affects their co-
existence. The spread of organisms governs the dynamics of invasive
species, the spread of pathogens, and the shifts in species ranges due
to climate or environmental change. Despite its relevance for funda-
mental ecological processes, however, replicated experimentation on
biological dispersal is lacking, and current assessments point at in-
herent limitations to predictability, even in the simplest ecological
settings. In contrast, we show, by replicated experimentation on
the spread of the ciliate Tetrahymena sp. in linear landscapes, that
information on local unconstrained movement and reproduction
allows us to predict reliably the existence and speed of traveling
waves of invasion at the macroscopic scale. Furthermore, a theoretical
approach introducing demographic stochasticity in the Fisher—-Kolmo-
gorov framework of reaction—-diffusion processes captures the ob-
served fluctuations in range expansions. Therefore, predictability of
the key features of biological dispersal overcomes the inherent bi-
ological stochasticity. Our results establish a causal link from the
short-term individual level to the long-term, broad-scale population
patterns and may be generalized, possibly providing a general pre-
dictive framework for biological invasions in natural environments.
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hat is the source of variance in the spread rates of bi-
ological invasions? The search for processes that affect
biological dispersal and sources of variability observed in eco-
logical range expansions is fundamental to the study of invasive
species dynamics (1-10), shifts in species ranges due to climate
or environmental change (11-13), and, in general, the spatial
distribution of species (3, 14-16). Dispersal is the key agent that
brings favorable genotypes or highly competitive species into new
ranges much faster than any other ecological or evolutionary
process (1, 17). Understanding the potential and realized dis-
persal is thus key to ecology in general (18). When organisms’
spread occurs on the timescale of multiple generations, it is the
byproduct of processes that take place at finer spatial and tem-
poral scales that are the local movement and reproduction of
individuals (5, 10). The main difficulty in causally understanding
dispersal is thus to upscale processes that happen at the short-
term individual level to long-term and broad-scale population
patterns (5, 18-20). Furthermore, the large fluctuations observed
in range expansions have been claimed to reflect an intrinsic lack
of predictability of the phenomenon (21). Whether the variability
observed in nature or in experimental ensembles might be ac-
counted for by systematic differences between landscapes or by
demographic stochasticity affecting basic vital rates of the
organisms involved is an open research question (10, 18, 21, 22).
Modeling of biological dispersal established the theoretical
framework of reaction-diffusion processes (1-3, 23-25), which
now finds common application in dispersal ecology (5, 14, 22, 26—
30) and in other fields (17, 23, 25, 31-36). Reaction—diffusion
models have also been applied to model human colonization
processes (31), such as the Neolithic transition in Europe (25, 37,
38). The classical prediction of reaction—diffusion models (1, 2,
24, 25) is the propagation of an invading wavefront traveling
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undeformed at a constant speed (Fig. 1E). Such models have been
widely adopted by ecologists to describe the spread of organisms in
a variety of comparative studies (5, 10, 26) and to control the dy-
namics of invasive species (3, 4, 6). The extensive use of these
models and the good fit to observational data favored their com-
mon endorsement as a paradigm for biological dispersal (6).
However, current assessments (21) point at inherent limitations to
the predictability of the phenomenon, due to its intrinsic stochas-
ticity. Therefore, single realizations of a dispersal event (as those
addressed in comparative studies) might deviate significantly from
the mean of the process, making replicated experimentation nec-
essary to allow hypothesis testing, identification of causal relation-
ships, and to potentially falsify the models’ assumptions (39).
Here, we provide replicated and controlled experimental sup-
port to the theory of reaction—diffusion processes for modeling
biological dispersal (23-25) in a generalized context that repro-
duces the observed fluctuations. Firstly, we experimentally sub-
stantiate the Fisher—Kolmogorov prediction (1, 2) on the existence
and the mean speed of traveling wavefronts by measuring the
individual components of the process. Secondly, we manipulate
the inclusion of demographic stochasticity in the model to re-
produce the observed variability in range expansions. We move
from the Fisher—-Kolmogorov equation (Materials and Methods) to
describe the spread of organisms in a linear landscape (1, 2, 24,
25). The equation couples a logistic term describing the re-
production of individuals with growth rate r [T!] and carrying
capacity K [L~!] and a diffusion term accounting for local move-
ment, epitomized by the diffusion coefficient D [L2T~!]. These
species’ traits define the characteristic scales of the dispersal
process. In this framework, a population initially located at one
end of a linear landscape is predicted to form a wavefront of
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Fig. 1. Schematic representation of the experiment. (A) Linear landscape. (B) Individuals of the ciliate Tetrahymena sp. move and reproduce within the
landscape. (C) Examples of reconstructed trajectories of individuals (Movie S1). (D) Individuals are introduced at one end of a linear landscape and are
observed to reproduce and disperse within the landscape (not to scale). (E) lllustrative representation of density profiles along the landscape at subsequent
times. A wavefront is argued to propagate undeformed at a constant speed v according to the Fisher-Kolmogorov equation.

colonization invading empty space at a constant speed v =2vrD
(1, 2, 24, 25), which we measured in our dispersal experiment (Fig.
1D and SI Text).

Results

In the experiments, we used the freshwater ciliate Tetrahymena
sp. (Materials and Methods) because of its short generation time
(16) and its history as a model system in ecology (16, 40, 41). The

experimental setup consisted of linear landscapes, filled with
a nutrient medium, kept in constant environmental conditions
and of suitable size to meet the assumptions about the relevant
dispersal timescales (Materials and Methods). Replicated dis-
persal events were conducted by introducing an ensemble of
individuals at one end of the landscape and measuring density
profiles throughout the system at different times, through image
analysis (Materials and Methods). Density profiles are shown in
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Fig. 2. Density profiles in the dispersal experiment and in the stochastic model. (A-F) Density profiles of six replicated experimentally measured dispersal events, at
different times. Legends link each color to the corresponding measuring time. Black dots are the estimates of the front position at each time point. Organisms were
introduced at the origin and subsequently colonized the whole landscape in 4 d (~20 generations). (G and H) Two dispersal events simulated according to the
generalized model equation, with initial conditions as at the second experimental time point. Data are binned in 5-cm intervals, typical length scale of the process.
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Fig. 3. Range expansion in the dispersal experiment and in the stochastic
model. (A) Front position of the expanding population in six replicated dis-
persal events; colors identify replicas as in Fig. 2. The dark and light gray
shadings are, respectively, the 95% and 99% confidence intervals computed
by numerically integrating the generalized model equation, with initial
conditions as at the second experimental time point, in 1,020 iterations. The
black curve is the mean front position in the stochastic integrations. (B) The
increase in range variability between replicates in the dispersal experiment
(blue diamonds) is well described by the stochastic model (red line). (C) Mean
front speed for different choices of the reference density value at which
we estimated the front position in the experiment; error bars are smaller
than symbols.

Fig. 2, in six replicated dispersal events (Fig. 2 A-F). Organisms
introduced at one end of the landscape rapidly formed an ad-
vancing front that propagated at a remarkably constant speed
(Fig. 3 and Table S1). The front position at each time was cal-
culated as the first occurrence, starting from the end of the
landscape, of a fixed value of the density (Fig. 2). As for traveling
waves predicted by the Fisher—-Kolmogorov equation, the mean
front speed in our experiment is notably constant for different
choices of the reference density value (Fig. 3C).

The species’ traits r, K, and D were measured in independent
experiments (Table 1). In the local-growth experiment, a low-
density population of Tetrahymena sp. was introduced evenly
across the landscape, and its density was measured locally at
different times. Recorded density measurements were fitted to
the logistic growth model, which gave the estimates for r and K

Table 1.

Demographic traits

(Table 1 and Table S2). In the local unimpeded movement ex-
periment, we computed the mean-square displacement (SI Text
and Fig. S1) of individuals’ trajectories (42-44) to estimate the
diffusion coefficient D in density-independent conditions (Table
1 and Materials and Methods). The growth and movement mea-
surements were performed in the same linear landscape settings
as in the dispersal experiment and therefore are assumed to
accurately describe the dynamics at the front of the traveling
wave in the dispersal events.

The comparison of the predicted front speed v =2v/7D to the
wavefront speed measured in the dispersal experiment, v,,
yields a compelling agreement. The observed speed in the
dispersal experiment was v,=52.0+1.8 cm/d (mean + SE)
(Table S1), which we compare with the predicted one
v=>51.9+1.1 cm/d (mean = SE). The two velocities are com-
patible within one SE. A t test between the replicated observed
speeds and bootstrap estimates of v=2+/rD gives a P value of
p=0.96 (t=0.05, df =9). Thus, the null hypothesis that the mean
difference is 0 is not rejected at the 5% level, and there is no in-
dication that the two means are different. As the measurements of
r and D were performed in independent experiments, at scales that
were orders of magnitude smaller than in the dispersal events, the
agreement between the two estimates of the front velocity is
deemed remarkable.

Although the Fisher—Kolmogorov equation correctly predicts
the mean speed of the experimentally observed invading wave-
front, its deterministic formulation prevents it from reproducing
the variability that is inherent to biological dispersal (21). In
particular, it cannot reproduce the fluctuations in range expan-
sion between different replicates of our dispersal experiment
(Fig. 34). We propose a generalization of the Fisher—-Kolmogorov
equation (Materials and Methods) accounting for demographic
stochasticity that is able to capture the observed variability. The
strength of demographic stochasticity is embedded in an addi-
tional species’ trait o [T-'/?]. In this stochastic framework, the de-
mographic parameters r, K, and ¢ were estimated from the local
growth experiment with a maximume-likelihood approach (Table 1
and Materials and Methods) whereas the estimate of the diffusion
coefficient D was left unchanged (S Text). We then used these
local independent estimates to numerically integrate the general-
ized model equation (45, 46), with initial conditions as in the dis-
persal experiment, and found that the measured front positions are
in accordance with simulations (Fig. 34 and Fig. S2). In particular,
most experimental data are within the 95% confidence interval for
the simulated front position, and the observed range variability is
well-captured by our stochastic model (Fig. 3B). Accordingly,
the estimate for the front speed and its variability in the ex-
periment are in good agreement with simulations (SI Text).
Demographic stochasticity can therefore explain the observed
variability in range expansions.

Discussion

To summarize, we suggest that measuring and suitably interpreting
local processes allows us to accurately predict the main features of

Experimentally measured species’ traits (mean + SE)

Deterministic model

Stochastic model

Movement traits

r=4.9+05 d'
K=901+130 ind cm™’

r=6.1+08 d'
K=903+135 ind cm™’

D=0.17+0.01 mm?2 s
t=39+04 s

6=25+5 d

Demographic traits were estimated both in the framework of the deterministic logistic equation and in the
framework of the stochastic logistic Eq. 3. Demographic stochasticity strongly affects the dynamics at low
densities; thus, a different value for the growth rate r is obtained in the stochastic model, compared with the

deterministic one. ind, individual.
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global invasions. The deterministic Fisher—-Kolmogorov equation is
shown to correctly predict the mean speed of invasion but cannot
capture the observed variability. Instead, characterizing the in-
herent stochasticity of the biological processes involved allows us to
predict both the mean and the variability of range expansions, which
is of interest for practical purposes, such as the delineation of worst-
case scenarios for the spread of invasive species. Our phenome-
nological approach allows us to make predictions on the spread of
organisms without the need to introduce all details on the move-
ment behavior, biology, or any other information. Such details are
synthesized in three parameters describing the density-independent
yet stochastic behavior of individuals riding the invasion wave. The
parsimony of the model allows generalization to organisms with
different biology (e.g., growth rates and diffusion coefficients are
available for several species in the literature) (6) and supports the
view that our protocol may possibly provide a general predictive
framework for biological invasions in natural environments.

In conclusion, we have shown that, at least in the simple eco-
logical settings investigated here, predictability remains, notwith-
standing biological fluctuations, owing to the stochastic treatment
devised. We confirm that deterministic models can be applied to
describe ecological processes and show that additional informa-
tion on the stochasticity acting at the mesoscopic scale allows us
to estimate fluctuations at the macroscopic scale. We believe that
our results might have implications for the dynamics of phenomena
other than species’ invasions, such as morphogenesis (23, 47), tu-
mor growth (23, 25, 36), and the spreading of epidemics (23, 30, 34,
35), which have been traditionally modeled with reaction—diffusion
equations.

Materials and Methods

Study Species. The species used in this study is Tetrahymena sp. (Fig. 1B), a
freshwater ciliate, purchased from Carolina Biological Supply. Individuals of
Tetrahymena sp. have typical linear size (equivalent diameter) of 14 um (41).
Freshwater bacteria of the species Serratia fonticola, Breviacillus brevis, and
Bacillus subtilis were used as a food resource for ciliates, which were kept in
a medium made of sterilized spring water and protozoan pellets (Carolina
Biological Supply) at a density of 0.45 gL™'. The experimental units were
kept under constant fluorescent light for the whole duration of the study, at
a constant temperature of 22 °C. Overall, experimental protocols are well-
established (16, 41, 48-50), and the contribution of laboratory experiments
on protists to the understanding of population and metapopulation dy-
namics proved noteworthy (48).

Experimental Setup. Experiments were performed in linear landscapes (Fig.
1A) filled with a nutrient medium and bacteria of the three species above
mentioned. The linear landscapes were 2 m long, 5 mm wide, and 3 mm
deep, respectively, and 10° 350, and 200 times the size of the study or-
ganism (41). Landscapes consisted of channels drilled on a Plexiglas sheet. A
second sheet was used as lid, and a gasket was introduced to avoid water
spillage (Fig. 1A). At one end of the landscapes, an opening was placed for
the introduction of ciliates. The Plexiglas sheets were sterilized with a 70%
(vol/vol) alcohol solution, and gaskets were autoclaved at 120 °C before
filling the landscape with medium. As Plexiglas is transparent, the experi-
mental units could be placed under the objective of a stereomicroscope, to
record pictures (for counting of individuals) or videos (to track ciliates).
Individuals were observed to distribute mainly at the bottom of the land-
scape, whose length was three orders of magnitude larger than its width (w)
and depth and two orders of magnitude larger than the typical length scale
of the process (,/D/r ~5 cm). The population was thus assumed to be
confidently well-mixed within the cross section after a time ~w?/D, which
in our case is of the order of a minute after introduction of the ciliates in
the landscape.

Experimental Protocol. We performed three independent and complementing
experiments, specifically: (/) a dispersal experiment was carried out to study
the possible existence and the propagation of traveling invasion wavefronts
in replicated dispersal events; (i/) a growth experiment was run to obtain
estimates of the demographic species’ traits, which are r and K in the de-
terministic framework of Eq. 1 and r, K, and ¢ in the stochastic framework of
Eq. 2; (iii) a local movement experiment was performed to study the local
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unimpeded movement of Tetrahymena sp. over a short timescale (in a time
window t < r~'), to estimate the diffusion coefficient D for our study species,
independently from the dispersal and growth experiments.

Dispersal experiment. We performed six replicated dispersal events in the
linear landscapes. After filling the landscapes with medium and bacteria, a
small ensemble of Tetrahymena sp. was introduced at the origin. Subse-
quently, the density of Tetrahymena sp. was measured at 1-cm intervals, five
times in the first 48 h and twice in the last 48 h. The whole experiment lasted
for about 20 generations of the study species.

Local growth experiment. We performed five replicated growth measurements
in the linear landscapes, to measure the demographic species’ traits, in the
same environmental conditions as in the dispersal experiment, but in-
dependently from it. A low-density culture of Tetrahymena sp. was in-
troduced in the whole landscape, and its density was measured by taking
pictures and counting individuals, covering a region of 7 ¢cm along the
landscape. Density measurements were performed at several time points for
each of the five replicates, in a time window of 3 d.

Local movement experiment. We performed four additional, replicated dis-
persal events in the linear landscapes, initialized in the same way as in the
dispersal experiment, to measure the diffusion coefficient of Tetrahymena
sp. The diffusion coefficient D is the proportionality constant that links the
mean square displacement of organisms’ trajectories to time (42, 44) (S/
Text). Macroscopically, it relates the local flux to the density of individuals,
under the assumption of steady state (44). To estimate the diffusion co-
efficient, we recorded several videos of individuals moving at the front of
the traveling wave (at low density), reconstructed their trajectories (42, 43),
and computed their mean square displacement (x?(t))={([x(t) —x(O)]Z).

Video recording. \We recorded videos of Tetrahymena sp. at the front of the
traveling wave in four replicated dispersal events, at various times over 4 d.
The area covered in each video was of 24 mm in the direction of the land-
scape and 5 mm orthogonal to it. Each video lasted for 12 min.

Trajectories reconstruction. For each recorded video, we extracted individuals’
spatial coordinates in each frame and used the MOSAIC plugin for the soft-
ware Imagel to reconstruct trajectories (43). The goodness of the tracking was
checked on several trajectories by direct comparison with the videos. Examples
of reconstructed trajectories can be seen in Fig. 1C or in Movie S1.

Diffusion coefficient estimate. For each video, the square displacement of
each trajectory in the direction parallel to the landscape was computed at all
time points and then averaged across trajectories. Precisely, for each tra-
jectory i we computed the quantity x?(t) = [X;(t) - X;(0)]?, where X;(t) is the
1-dimensional coordinate of organism j at time t in the direction parallel to
the landscape and X;(0) is its initial position. The mean square displacement
in a video was then computed as the mean of x?(t) across all trajectories,
that is, (x?(t))=4 >_; x?(t) (where N is the total number of trajectories). A
typical measurement of {(x?(t)) is shown in Fig. S1. As shown in the figure,
there exists an initial correlated phase, which we discuss in S/ Text. To
estimate the diffusion coefficient from the mean square displacement,
we fitted the measured (x?(t)) to the function (x?(t))=2Dt—2Dz[1 - e~/
(SI Text) with the two parameters D (diffusion coefficient) and t (corre-
lation time). The total number of recorded videos was 28, that is, 7 for
each replica.

Mathematical Models. Deterministic framework. The Fisher-Kolmogorov equation
(1, 2). reads:
P_pPr., [1-7] )]
a Ca Pl Tkl
where p=p(x,t) is the density of organisms, r the species’ growth rate, D the
diffusion coefficient, and K the carrying capacity. Eq. 1 is known to foster the
development of undeformed traveling waves of the density profile.
Mathematically, the existence of traveling wave solutions implies that
p(x,t)=p(x —vt), where v is the speed of the advancing wave. Fisher (1)
proved that traveling wave solutions can only exist with speed v >2/rD, and
Kolmogorov (2) demonstrated that, with suitable initial conditions, the
speed of the wavefront is the lower bound.

The microscopic movement underlying the Fisher-Kolmogorov Eq. 1 is
brownian motion (25, 51). Investigation of the movement behavior of Tet-
rahymena sp., instead, shows that individuals’ trajectories are consistent
with a persistent random walk with an autocorrelation time t=3.9+0.4 s.
The corresponding macroscopic equation for the persistent random walk
should thus be the reaction-telegraph equation (25) (S/ Text). Nonetheless,
as the autocorrelation time for our study species is much smaller than the
growth rate r (zr ~107%), Eq. 1 provides an excellent approximation to the
reaction—telegraph equation. See S/ Text for a detailed discussion.
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Stochastic framework. The stochastic model equation reads:

dp_FPp P
ot=Daatro[1=k] +ovon el

where n=5(x,t) is a Gaussian, zero-mean white noise (i.e., with correlations
x,tn(x',t)y=58(x —x")5(t —t’), where & is the Dirac’s delta distribution) and
o> 0 is constant. We adopt the It6’s stochastic calculus (51), as appropriate in
this case. Note, in fact, that the choice of the Stratonovich framework would
make no sense here, as the noise term would have a constant nonzero mean
(22, 51), which would allow an extinct population to possibly escape the
zero-density absorbing state. The square-root multiplicative noise term in
Eg. 2 is commonly interpreted as describing demographic stochasticity in
a population (46) and needs extra care in simulations (45, 52). In particular,
standard stochastic integration schemes fail to preserve the positivity of p.
We adopted a recently developed split-step method (45) to numerically in-
tegrate Eq. 2. This method allows us to perform the integration with rela-
tively large spatial and temporal steps maintaining numerical accuracy.
Data from the growth experiment were fitted to the equation:

dp p1 o
E_rp[1_f]+W‘/ﬁn' [3]

where p=p(t) is the local density, n=n(t) is a Gaussian, zero-mean white
noise (i.e., with correlations (5(t)n(t'))=6(t —t')), 6> 0 is constant, and / is the
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