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Despite discoveries of relatively complete hands from two early
hominin species (Ardipithecus ramidus and Australopithecus sed-
iba) and partial hands from another (Australopithecus afarensis),
fundamental questions remain about the evolution of human-like
hand anatomy and function. These questions are driven by the
paucity of hand fossils in the hominin fossil record between 800,000
and 1.8 My old, a time interval well documented for the emergence
and subsequent proliferation of Acheulian technology (shaped bi-
facial stone tools). Modern and Middle to Late Pleistocene humans
share a suite of derived features in the thumb, wrist, and radial
carpometacarpal joints that is noticeably absent in early hominins.
Here we show that one of the most distinctive features of this
suite in the Middle Pleistocene to recent human hand, the third
metacarpal styloid process, was present ∼1.42 Mya in an East Af-
rican hominin from Kaitio, West Turkana, Kenya. This fossil thus
provides the earliest unambiguous evidence for the evolution of
a key shared derived characteristic of modern human and Nean-
dertal hand morphology and suggests that the distinctive complex
of radial carpometacarpal joint features in the human hand arose
early in the evolution of the genus Homo and probably in Homo
erectus sensu lato.

The fossil record suggests that early hominins were using and
making stone tools long before the hand acquired the dis-

tinctive derived anatomy that is shared between modern humans
and Neandertals (1–3). The earliest-known stone tools are 2.58
My old from Gona, Ethiopia (4), and contested stone tool cut-
marks are present on 3.39 My-old bones from Dikika, Ethiopia
(5); yet a complex of shared derived features that characterize
the hands of modern humans and Neandertals is absent in Plio-
Pleistocene hominins and not observed in the fossil record until
around 800,000 y ago or later (1, 6–9).
Modern humans and Neandertals, and the 500,000-y-old

hominins from Sima de los Huesos (Sierra de Atapuerca, Spain),
attributed to Homo heidelbergensis (7, 8, 10), share a complex of
derived morphological features of the hand that is reasonably
linked to increased reliance on hand use for complex manipu-
latory tasks in comparison with earlier hominins and to extant
and fossil great apes (1, 9). Most noticeable are the short fingers
(relative to thumb length) and a robust thumb metacarpal (1).
Australopithecus afarensis, Australopithecus africanus, and Aus-
tralopithecus sediba also have short fingers (9, 11–14) (see ref. 15
for alternative view regarding A. afarensis), but with a conspicu-
ously gracile pollical metacarpal (13–16). Robust thumb meta-
carpals are associated with relatively large and less-curved first
carpometacarpal joint surfaces, facilitating the accommodation
of large axial loads generated during strong precision and pre-
cision-pinch grasps (9, 17–20). This pattern continues through
the radial carpal region with an enlarged scaphoid-trapezium
joint that extends onto the scaphoid tubercle and a palmarly
expanded trapezoid accompanied by a large and more palmarly
placed trapezoid-capitate joint (2, 20). During forceful precision
and power grips, the trapezium-trapezoid and trapezoid-capitate
joints are maintained in maximum contact by the more prox-

imodistally oriented second metacarpal joints with the trapezium
and capitate (20). The overall configuration of this derived joint
complex is reasonably flexible in distributing compressive stresses
while minimizing shear regardless of whether the thumb is com-
pressed into the trapezium in an abducted, adducted, flexed, ex-
tended, or neutral posture (20).
The styloid process of the third metacarpal (Fig. 1A) is an-

other distinctive feature of the modern human/Neandertal hand
that is absent in all apes and other nonhuman primates, as well as
Pliocene and Early Pleistocene hominins (11, 14, 16, 21–27). The
dorsal extension of bone seen in a single specimen of Au. africanus
(Stw 64) (28) is minimal and morphologically distinct from the
styloid process of modern humans/Neandertals. It develops
from a separate ossification center located on the dorsoradial
corner of the third metacarpal base (22). In more than 90% of
modern humans (29), all Neandertals (30), and H. heidelbergensis
(7, 8), the fusion of this ossification center to the third meta-
carpal results in a projecting process of bone that articulates with
a reciprocally beveled surface on the dorsodistoradial capitate
proximally, with the second metacarpal radially, and sometimes
with a small portion of the trapezoid (22). Alternatively, this
cluster of cartilaginous precursor cells may occasionally fuse to
the capitate (3.5% of cases) or trapezoid (0.5%) or present as
a separate ossicle (2%) (29). However, in such cases, the resulting
bony morphology indicates the presence of the styloid process
(developmentally, at least).
The styloid process appears to be slightly smaller and the

capitate-second metacarpal joint slightly less oblique than aver-
age in the Middle Pleistocene Atapuerca and the Neandertal
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samples compared with modern humans, but even so, the mor-
phologies in these groups show substantial overlap with the
modern human condition (7, 20, 30, 31). Moreover, the associ-
ation between the developmental shift leading to a styloid pro-
cess and the complex of derived radial wrist morphology
documented in modern humans and Neandertals (1) suggests
a reasonable functionally adaptive link with increased reliance
on hand use for complex manipulatory tasks (9, 22). The third
metacarpal styloid process probably also plays a role in stabiliz-
ing the intercarpal joints as well.
Thus, the third metacarpal styloid process along with these

other features likely evolved together in response to selection for
using the hand with strong grips involving the thumb in opposi-
tion to the other digits. When, where, in what order, and in what
behavioral context these distinctive hand features evolved are
key questions in the study of human evolution. Although a lack
of a styloid process in an isolated hominin fossil is not evidence
of a lack of an otherwise modern human/Neandertal-like wrist
overall, the documentation of a third metacarpal styloid process
in an early hominin would signify a major evolutionary modifi-
cation to the hand relative to other known early hominins.

Results
In 2011, a team from the West Turkana Paleontology Project of
the National Museums of Kenya recovered a well-preserved
hominin right third metacarpal (KNM-WT 51260) from the site
of Kaitio, located in northern Kenya west of Lake Turkana (Fig.
1B). Collected from a sequence of fine sandstones and siltstones
in a small northern branch of Kaitio, KNM-WT 51260 lies at the
level of the Lokapetamoi Tuff (Fig. S1 and Table S1) and dates
to between 1.43 and 1.41 Ma or ∼1.42 Mya (SI Discussion). KNM-
WT 51260 is nearly complete, and its surface is only mildly
weathered (Fig. 1B and Table S2). There are small amounts of
abrasion along the margins of the articular surfaces, but they do

not obscure the contours of the bone. In all ways, this bone
resembles that of a modern human in overall proportions and
morphology.
The bone is long, falling within the upper range of modern

human European and African American males (Fig. 2A). Most
likely, KNM-WT 51260 belonged to a relatively tall individual, as
metacarpal length correlates reasonably with arm length and
thus with stature (32, 33). Applying stature regression equations
developed for modern human males (32, 33) yields stature esti-
mates of more than 167 cm. The presence of large individuals at
this time period in the East African fossil record is not un-
precedented, as comparably large individuals are known from
Koobi Fora, Kenya, and Olduvai Gorge, Tanzania.
Most notable about KNM-WT 51260 is its prominent styloid

process (Fig. 1B). The length of the KNM-WT 51260 styloid is
close to the mean value of modern humans and among the
longest of all known Late Pleistocene human specimens (Fig.
2B). The KNM-WT 51260 styloid process is unequivocally sim-
ilar to that of modern humans and Neandertals and not in-
termediate between that of earlier hominins and later Homo.
Relative to its length, the KNM-WT 51260 styloid is short
compared with modern humans, as are those of Late Pleistocene
humans (Fig. 2C, Fig. S2, and Table S3) (30). However, KNM-
WT 51260 falls within the observed ranges for modern humans
and Neandertals, both of which overlap considerably (Fig. 2C,
Fig. S2, and Table S3), suggesting minimal functional differences
among them (30, 34).

Discussion
Functionally, the human styloid process likely prevents hyper-
extension and subluxation of the third metacarpal base when
large forces are directed from the palm toward the third meta-
carpal head (22). It also prevents the second metacarpal base
from articulating with the capitate dorsally (22) and is associated

Fig. 1. (A) 3D scan images, from left to right, in radial (Upper) and dorsal view (Lower) of third metacarpals of a common chimpanzee, Australopithecus
afarensis (A.L. 438-1d), Australopithecus sediba (MH 2), a Neandertal (Shanidar 4), and a modern human (USNM 380447). All are shown as from the right hand
and scaled to approximately the same articular length. Note the distinctive styloid process (black arrows) is present only in the modern human and Neandertal
specimens. (B) Photograph of KNM-WT 51260 in radial, ulnar, dorsal, and volar views (Left) and proximal and distal views (Right). Note the presence of
a distinctly human-like styloid process.
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with derived features of the second metacarpal base and trape-
zoid (1, 9, 20). Thus, the styloid process most likely stabilizes the
third carpometacarpal joint against mechanical loads generated
when making and using tools (22, 28). It may also help stabilize
the capitate (and possibly the second metacarpal base) from
slipping dorsally while the second metacarpal base simultaneously
stabilizes the palmar capitate-trapezoid-trapezium joints as the
wrist experiences radioulnar compression during strong contrac-
tion of the thumb musculature (3, 20).
The earliest evidence of Acheulian tool technology (i.e., sha-

ped bifacial stone tools) occurs at ∼1.75 Mya at the nearby site of
Kokiselei 4, West Turkana (35), and at Konso, Ethiopia (36).
After this time, Acheulian sites become increasingly common in
East Africa and elsewhere (37). The production of Acheulian
tools themselves likely required considerable manual dexterity,
and the emergence and subsequent proliferation of this tech-
nology may signal overall more complex manual manipulatory
behaviors and/or cognitive function compared with those of
other early hominins (35). No stone tools are directly associated
with KNM-WT 51260, and a single morphological feature or
even a set of features may not be tightly linked with a particular
tool technology. However, the unambiguous presence of a third
metacarpal styloid process in KNM-WT 51260 places a known
derived reorganization of the wrist within a behavioral context of
increased reliance on manual manipulation. For instance, the
increasing regularity and abundance of Acheulian relative to
Oldowan tools (37) likely signals that manual manipulation of
not only stone tools, but a variety of objects, was an increasingly
regular and important behavior for some hominins.
The taxonomy of KNM-WT 51260 must remain tentative, as

species diagnoses of postcranial elements are typically based on
direct associations with craniodental and/or mandibular remains
(38, 39). However, given that the third metacarpal styloid pro-
cess, a shared derived feature of modern humans, Neandertals,
and H. heidelbergensis, is yet to be observed in the Pliocene or
Early Pleistocene (6–9, 11, 14, 16, 21–27), KNM-WT 51260 most
likely represents a species within the modern human-Neandertal
clade and can be reasonably assigned to the genus Homo. At
∼1.42 Mya in Kenya, the only species of Homo identified to date
is Homo erectus sensu lato (39, 40), and KNM-WT 51260 prob-
ably represents this taxon. The only other hominin known from
East Africa at this time is Australopithecus (Paranthropus) boisei
(39). No comparable hand remains have been described for this
taxon, but given that no other early hominin species shows

evidence of a styloid process or substantial reorganization of
the radial portion of the wrist, it is unlikely that it would have
been present in A. (P.) boisei.
KNM-WT 51260 provides the earliest unambiguous evidence

for the evolution of a key shared derived characteristic of modern
human and Neandertal hand morphology and suggests that the
distinctive complex of radial carpometacarpal joint features in the
human hand arose early in the evolution of the genus Homo and
probably in H. erectus sensu lato. It also provides evidence that
a major structural rearrangement of the hand occurred before
the increased sophistication of Acheulian tools seen after 1.2 Mya
(36). If indeed the production of early Acheulian tools signals an
increased importance of and reliance on technology and ma-
nipulatory behaviors compared with those of earlier and other
contemporary hominins, it is possible that some hominin pop-
ulations of this geological age were in the process of evolving
more modern human/Neandertal-like hand features. Therefore,
this new third metacarpal provides an important basis with which
to compare other fossils as they are discovered from comparable
time periods to assess morphological diversity within the hominin
hand and wrist in the early and middle Pleistocene.

Materials and Methods
The KNM-WT 51260 metacarpal was compared with a sample of modern
human third metacarpals of known sex from the Terry Collection at the
Smithsonian Institution’s National Museum of Natural History (n = 38
females, n = 41 males) (Table S4), as well as a dataset from modern humans
of unknown sex provided by E. Trinkaus (Washington University, St. Louis)
(n = 70; Table S3). Data from 10 Neandertal and 18 Late Pleistocene
Homo sapiens specimens also were provided by E. Trinkaus and W. A.
Niewoehner (California State University, San Bernadino, CA) (Table S3). All
specimens were measured with standard digital calipers to the nearest 0.1
mm (Tables S2 and S3). Allometry of bone and styloid lengths was evalu-
ated using reduced major axis and standard least squares regression on
natural logarithm-adjusted data. Groups were compared using ANOVA
with the least-squares residuals with Bonferroni-adjusted post hoc con-
trasts (Fig. S2).
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Fig. 2. Third metacarpal dimensions in modern human males (n = 41) and females (n = 38), Late Pleistocene H. sapiens (n = 18), Neandertals (n = 10), and
KNM-WT 51260. (A) Articular length measured between center of proximal and distal joint surfaces. (B) Styloid process length measured as proximal pro-
jection from center of proximal articular surface. (C) Styloid process length expressed as a ratio of articular length. Neandertal and Upper Paleolithic
H. sapiens have relatively shorter styloid processes than modern humans, although their ranges overlap. KNM-WT 51260 falls within the ranges of both
modern and fossil specimens (Fig. S2, Table S3 and Table S4).
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