
Therapeutic targeting of constitutive PARP activation
compromises stem cell phenotype and survival of
glioblastoma-initiating cells
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Glioblastoma-initiating cells (GICs) are self-renewing tumorigenic sub-populations, contributing to therapeutic resistance via
decreased sensitivity to ionizing radiation (IR). GIC survival following IR is attributed to an augmented response to genotoxic
stress. We now report that GICs are primed to handle additional stress due to basal activation of single-strand break repair
(SSBR), the main DNA damage response pathway activated by reactive oxygen species (ROS), compared with non-GICs. ROS
levels were higher in GICs and likely contributed to the oxidative base damage and single-strand DNA breaks found elevated in
GICs. To tolerate constitutive DNA damage, GICs exhibited a reliance on the key SSBR mediator, poly-ADP-ribose polymerase
(PARP), with decreased viability seen upon small molecule inhibition to PARP. PARP inhibition (PARPi) sensitized GICs to
radiation and inhibited growth, self-renewal, and DNA damage repair. In vivo treatment with PARPi and radiotherapy attenuated
radiation-induced enrichment of GICs and inhibited the central cancer stem cell phenotype of tumor initiation. These results
indicate that elevated PARP activation within GICs permits exploitation of this dependence, potently augmenting therapeutic
efficacy of IR against GICs. In addition, our results support further development of clinical trials with PARPi and radiation in
glioblastoma.
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Glioblastomas (World Health Organization grade IV gliomas)
rank among the most lethal of human cancers. Median
survival remains 12–15 months despite recent advances in
the standard-of-care, which includes maximal surgical resec-
tion followed by concurrent radiotherapy and chemotherapy
with the DNA-alkylating agent temozolomide.1 Radiation is
the most effective non-surgical therapy for glioblastoma but
recurrence is essentially universal. Failure of sustained tumor
control by radiation reflects numerous causes, including the
recent implication of intratumoral heterogeneity. In parallel
to other cancers, we and others have identified highly
tumorigenic sub-populations within gliomas, designated as
tumor-initiating cells (TICs) based on the preferential ability of
these cells to propagate secondary tumors that phenocopy
the original tumor.2 Although the cancer stem cell hypothesis
remains controversial because of the evolving understanding
of cellular plasticity and use of markers, many studies have
demonstrated that glioblastomas contain cellular hierarchies
with the self-renewing glioblastoma-initiating cells (GICs) at

the apex.2–7 GICs are therapeutically important because they
are relatively resistant to radiation and conventional
chemotherapy,2,8 promote tumor angiogenesis,9 and invade
into normal tissues.10 Direct evidence of GIC resistance in
human patients was demonstrated by expansion of GICs
following external-beam radiation therapy and Gamma Knife
treatment.11 Thus, effective killing of GICs may improve tumor
progression/growth control through multiple mechanisms.12

Effective targeting of GIC resistance requires elucidation of
the molecular mechanisms underlying the ability of these cells
to survive and repopulate tumors after radiation.13 In our early
studies, we found that GICs have higher basal activation
of components of the DNA damage response (DDR) as well
as more pronounced DDR activation following irradiation that
contribute to greater survival over non-GICs.2 Targeting key
kinases activated by DNA damage and involved in checkpoint
activation, Chk1 and Chk2, with a small molecule inhibitor
radiosensitizes GICs.2 Further studies have provided
additional molecular mechanisms of GIC radioresistance,
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including SirT1,14 Notch,15 STAT3,16 VEGF/VEGFR2,17

BMI1,18 L1CAM,19 and peroxiredoxin-1.20 Altogether, these
studies highlight a radioresistance phenotype for GICs, a
potential direct contribution to tumor recurrence, and
the prospect of targeting these cells through inhibition of
molecular targets including the DDR.

One of the crucial determinants of genome integrity and
cellular response to DNA damage is the level of intracellular
reactive oxygen species (ROS), which is tightly regulated
through the coordinated activities of cellular pro-oxidants/
antioxidants and results in the induction of DNA single-strand
breaks (SSBs). The role of single-strand break repair (SSBR)
in GICs remains unexplored. This mode of DNA repair is
utilized by cells in response to ROS generated by cellular
metabolism or exogenous sources such as ionizing radiation
(IR). Central to the detection and resolution of these lesions is
poly-ADP-ribose polymerase 1 (PARP1). PARP1 catalyzes
the transfer of ADP-ribose polymers to downstream sub-
strates including numerous DNA repair enzymes, facilitating
DNA repair. In vitro, inhibitors to PARP1 (often targeting both
PARP1 and PARP2, and herein termed PARP inhibitors)
radiosensitize cancer cells, including glioma cell lines, to drug
and radiation treatment.21–27 In vivo, PARP inhibitors
enhance radiation therapy in syngeneic and xenograft models
for colon, lung, head and neck, and cervical cancers.21,28–32

Olaparib (AZD2281), which targets PARP1 and PARP2, is
currently in several phase I and phase II trials for solid tumors
as a single agent or in combination with chemotherapy and/or
radiotherapy.33 A phase I study is ongoing for olaparib plus
temozolomide in patients with relapsed GBM (http://www.
clinicaltrials.gov). Here, we sought to further our under-
standing of SSBR within GICs and evaluate the therapeutic
potential of targeting SSBR through PARP inhibition (PARPi).

Results

Increased ROS and base damage in GICs correlates
with increased activity of the SSBR mediator, PARP1.
Although we have previously shown high and variable levels
of oxidative DNA lesions in biopsies of human glioblasto-
mas,34 there have been no such studies in GICs versus
non-GIC. We first evaluated the baseline ROS levels in
low-passage GICs derived from human glioblastoma speci-
mens previously validated to fulfill functional criteria of GICs:
self-renewal, sustained proliferation, stem cell marker
expression, capacity for lineage commitment, and tumor
propagation.2,35–37 Using flow cytometry on acutely disso-
ciated xenografts, GICs demonstrated higher ROS levels
when compared with matched non-GICs (Figure 1a,
Supplementary Figure 1a). Evaluation of ROS immediately
following tumor dissociation was essential as query of
publically available array data from increasingly passaged
xenograft specimens38 found genes previously reported to
be differentially expressed in breast cancer TICs39 to have
altered expression upon continual passage (Supplementary
Figure 2). Total adenosine triphosphate (ATP) levels, a
representation of metabolic activity, were significantly higher
in GICs than that in non-GICs, supporting differential
metabolic states as a contributing factor to the increased
ROS levels in GICs (Supplementary Figure 3a). The main

impact of ROS production is the generation of base lesions
and DNA SSBs. The GIC population had higher oxidative
base damage, as measured by levels of 8-oxo-20-deoxygua-
nosine base modifications, in all tumor models evaluated
(Figure 1b, Supplementary Figure 1b). We next evaluated
the homeostatic levels of single-strand DNA (ssDNA) in
matched GICs and non-GICs as assessed by BrDU
incorporation under non-denaturing conditions and detected
enhanced ssDNA in GIC populations (Supplementary
Figure 3b).34,40,41 We also used the alkaline comet assay
to measure DNA strand breaks. GICs had significantly longer
tails and higher comet tail DNA content as compared with
the non-GICs, indicating the extent of fragmented DNA
at baseline was greater in the GICs (Supplementary
Figure 3c–e). These observations led us to speculate that
the increase in ROS levels and consequential oxidative
stress to DNA might confer a GIC dependence on the SSBR
pathway, the major cellular mediator of ROS, and possibly
drive expression and/or activation of the SSBR initiating
enzyme, PARP1. We evaluated the protein level of PARP1
and overall PARP activity, the latter assessed by poly-ADP-
ribosylation (PARsylation), in matched GICs and non-GICs.
GICs demonstrated markedly elevated PARsylation, the
majority of which is commonly regarded to reflect PARP1
activity, across all xenografted specimens tested (Figure 1c,
Supplementary Figure 4a). PARP protein levels showed a
moderate or no increase in GICs (Figure 1c, Supplementary
Figure 4a). We also compared the levels of PARP
and PARsylation in GICs and non-GICs with normal
neural progenitor cells and normal human astrocytes with
GICs demonstrating the highest level of PARsylation
(Supplementary Figure 4b). The purity of our GIC and non-
GIC populations was confirmed by immunobloting for glial
fibrillary acidic protein (GFAP), an astrocyte marker and
measure of more differentiated cells, and the stem cell
markers Sox2 and Olig2 (Supplementary Figure 4c). Taken
together, these data demonstrate constitutive DNA damage
within the GIC sub-population, triggering enhanced activation
of the key SSBR player, PARP1.

PARPi preferentially targets GICs. PARPi has emerged as
a promising targeted cancer therapy, yet efficacy against
TICs, in general, and GICs, in particular, has not been
explored. Evaluation of efficacy against the full hierarchy for
those cancers defined by the cancer stem cell hypothesis is
essential, as cancer stem cells may better model tumor
biology than traditional cell lines. Our data suggest that GICs
depend on PARP1 function, which could be therapeutically
exploited. To explore this hypothesis, matched GICs and
non-GICs from three independent xenografted primary
patient specimens were treated with the PARP inhibitor,
olaparib, and cell viability was measured over a 5-day time
course. There were fewer viable cells in the GIC population
following PARPi compared with non-GICs in all specimens
tested (Figure 2). The efficacy of PARPi, especially in
combination therapy, is more pronounced in rapidly dividing
cells. To exclude the impact of differential proliferation
rates on the sensitivity of the two populations to PARPi, we
performed pulse labeling with the thymidine analog EdU as a
measure of DNA synthesis and active proliferation. Results
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demonstrated that GICs and non-GICs were cycling with
similar kinetics (Supplementary Figure 5a). In addition, both
populations had similar cell cycle distribution as validated by
flow cytometry for DNA content using propidium idodide
(Supplementary Figure 5b). GICs and non-GICs were
more sensitive to PARPi than cycling, non-neoplastic BJ
fibroblasts with GICs demonstrating a significant impact on
viability at all time points tested (Supplementary Figure 5c).
To further confirm sensitivity of GICs to PARPi, we evaluated
the sphere formation capability, a surrogate marker for self-
renewal and survival, of GICs in the presence of olaparib.
PARPi resulted in a significant decrease in tumorsphere
formation in all specimens tested (Figure 3a, Supplementary
Figure 6a and b). Colony formation was also utilized to
evaluate clonogenic survival for both the GIC and non-GIC
populations. Only GICs demonstrated a significant decrease
in colony formation (Figure 3b and c). Similar to all small
molecule inhibitors, these pharmacologic agents can have
off-target effects. However, PARP1 activity as monitored by
total cellular PARsylation levels correlated with olaparib
treatment in GICs and non-GICs at concentrations ranging
around the half maximal effective concentration (EC50) for
both cell types (GIC EC50¼ 1.20 mM; non-GIC EC50¼ 4.95
mM; Supplementary Figure 7a and b). These data reveal
preferential sensitivity of GICs to PARPi and a dependence
on PARP1 function.

PARP1 contributes to survival of GICs following
irradiation. Radioresistance is a major contributor to the
lethality of GBM. We therefore focused our studies on
evaluating the effect of radiotherapy in combination with
PARPi on the radioresistant GIC population.2 GICs were
pretreated with increasing concentrations of olaparib, with or
without a single exposure to IR, and cell viability was
monitored over a 10-day time course. Cells treated with
radiation alone showed significant expansion by 7 days after
treatment for all specimens, reinforcing a functional resis-
tance of GICs to radiotherapy (Figure 4, right panels).
Viability of GICs was completely blocked with combined
PARPi and radiation (Figure 4, right panels). Olaparib
monotherapy had a modest impact on GIC viability in the
10-day time course with significance consistently seen at the
higher concentration for all specimens (Figure 4, left panels).
We validated the efficacy of olaparib monotherapy toward
GICs in combination with IR by trypan blue staining
(Supplementary Figure 8). Non-GICs were also evaluated
for a combinatorial effect of PARPi and radiotherapy on cell
growth. Consistent with previous reports, radiotherapy alone
significantly had an impact on the growth kinetics of the non-
GICs more than GICs. PARPi only had an additional impact
on cell viability for one specimen and only at the highest
concentration evaluated versus the consistent impact on
viability seen for the GICs (Supplementary Figure 9a). These
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Figure 1 GICs show increased ROS levels and SSBR compared with non-GICs. (a) Reactive oxygen species (ROS) were measured in matched GICs (green lines) and
non-GICs (black lines) from 4121, 3691, and 4302 xenografted patient specimens by flow cytometry analysis using the general oxidative stress indicator, CM-H2DCFDA.
(b) Baseline levels of 8-oxoguanine residue (marker of oxidative damage to DNA) were assessed using OxyDNA Assay Kit in two matched GICs (green lines) and non-GICs
(black lines) from acutely dissociated xenografted patient specimens (4121 and 3691). (c) PARP levels and PARP-associated activity (PARsylation PAR) were evaluated by
immunoblot analysis of matched GICs (þ ) and non-GICs (� ) from 4121, T564, 3691, and 4302 xenografted patient specimens
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results highlight an essential role for PARP1 in the GIC
response to IR whereby inhibition attenuates the radio-
resistant phenotype.

PARPi leads to increased apoptosis and delayed repair
of DNA damage. Decreased viability of GICs following
olaparib treatment prompted us to further elucidate the
mechanism of cell death. GICs were treated with increasing
concentrations of olaparib with or without IR, and apoptosis
was measured through Caspase-3/7 activity at day 3 after
treatment. In all cultures, olaparib potently increased
radiation-induced apoptosis (Figure 5a). In concordance with
the lack of an impact on viability, an increase in apoptosis
was not seen in the non-GICs (Supplementary Figure 9b).
We next evaluated repair of DNA damage induced by IR in
GICs. GICs pretreated with olaparib were irradiated or left
untreated and the level of DNA damage was monitored by
the DNA damage marker, gH2AX. GICs resolved damaged
DNA by 24 h after IR as evaluated by the loss in gH2AX
signal, whereas PARPi compromised repair kinetics
and/or contributed to continual formation of DNA breaks,
as unrepaired ROS-induced damage can be converted to
double-strand breaks (Figure 5b). Non-GICs resolved DNA

damage following irradiation with the same kinetics with and
without PARPi with most lesions repaired by 24 h after IR
(Supplementary Figure 9c). These data suggest that
PARP1 is required for GICs to respond to DNA damage
and demonstrate that PARPi results in the initiation of
programmed cell death in these cells.

Targeting PARP compromises the stem cell phenotype
of GICs in vitro and in vivo. GICs are functionally defined
by the ability to form tumorspheres from a single cell in vitro.
The impact of a treatment on tumorsphere-forming potential
of GICs can be evaluated through a limiting dilution assay,
which permits quantified estimation of stem-like cell
frequency. To examine the impact of olaparib in combination
with IR on sphere formation, we plated GICs at single-cell
densities in the presence of increasing concentrations
of olaparib and evaluated tumorsphere formation 10 days
later. Concomitant with its antiproliferative effects, olaparib
decreased self-renewal 5–20-fold at the higher concentration
(Figure 6). Self-renewal was completely inhibited with the
addition of IR (Figure 6). Although cell death likely
contributed to this result, the lower concentration of olaparib
plus IR also demonstrated a decrease in the estimated stem
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cell frequency (Figure 6b). To determine any potential
enhancement of the stem-reduction effect of IR due to
olaparib, we calculated the expected stem cell frequencies
that would occur in the combination condition if the two
treatments followed a Bliss Independence model (Figure 6c).
The observed values of the combination treatment were

between 2.5- and 5-fold lower than would be expected
because of independent effects of treatment with IR and
olaparib alone, suggesting some enhancement of the
radiation-induced loss of stem cell phenotype by PARPi.

As tumor initiation is the single most important TIC
functional assay and GICs show greater radioresistance
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in vivo,42 we interrogated olaparib efficacy in vivo using
multiple approaches. First, we used a flank tumor growth
model to test drug efficacy in the absence of delivery
restrictions and to facilitate tumor isolation for quantification
of GIC frequency after treatment. We utilized a 7-day inhibitor
study with or without IR (Figure 7a). When tumors reached
0.12 cm3, mice were randomized into one of four groups:
vehicle only, vehicle plus IR every other day, daily PARPi, or
daily PARPi before IR every other day. After 7 days, tumor
weight and volume were calculated. Tumors were then
immediately dissociated and evaluated the next day by flow
cytometry for the percentage of CD133-positive cells,
a putative GIC marker. Over the 7-day study, the only
significant impact on tumor volume was seen in the olaparib
plus radiotherapy group (Figure 7b). This correlated with
this treatment group having the greatest fold change in
tumor volume (tumor volumeinitial/tumor volumefinal) and
weight (Figure 7c and d). As IR is reported to trigger GIC
enrichment,2,11,42 we confirmed these studies by

demonstrating that in irradiated, vehicle-treated mice, the
percentage of GICs nearly doubled. In contrast, the addition of
olaparib significantly inhibited GIC enrichment (Figure 7e).

We next evaluated the impact of in vivo PARPi on stem cell
function as monitored by post-treatment sphere formation.
To address this, GICs isolated from the tumors from each
treatment group were plated in a limiting dilution assay.
Surviving GICs isolated from tumors treated with olaparib and
IR had impaired stem cell function as evaluated by a reduced
stem cell frequency (Figure 7f and g). Importantly, although IR
alone had a significant impact on stem cell frequency within
this time course, calculation of the Bliss Independence-
expected stem cell frequency revealed that the inhibition of
the stem cell phenotype seen by treatment with IR and PARPi
is more than threefold greater than would be expected if the
effects were independent (Figure 7h).

Tumor initiation is a required functional characteristic of
GICs. To determine whether combinatorial treatment has an
impact on tumor initiation and survival, we pretreated GICs
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with vehicle or olaparib, with or without IR, and intracranially
implanted viable cells into immunocompromised mice
(Figure 8a). Cells treated with the inhibitor and IR showed
a significant impairment of secondary tumor initiation in
immunodeficient mice, further confirming a compromised
stem cell phenotype (Figure 8b). Altogether, these data
support the efficacy of PARPi against GICs in vivo, offering
preclinical insight into targeting the stem cell-like population
and possibly reducing tumor recurrence.

Discussion

Cure requires total cell kill. Despite the low frequency of GICs
in most cancers, GICs display greater resistance to standard,

cytotoxic therapies suggesting a central role in therapeutic
resistance. We previously demonstrated higher basal
activation of the DDR in GBM and specifically the GIC
population.2,34 We have now expanded these findings to
highlight a requirement for the SSBR protein, PARP1, in GICs.
Higher ROS and DNA damage within GICs likely contributes
to constitutive activation of PARP1 within this population.
Importantly, therapeutic exploitation of this dependence
through small molecule inhibition of PARP collapses
the hierarchy by reducing stem cell survival, expansion, and
tumor initiation.

Our finding that GICs exhibited a higher basal level of ROS
is initially surprising, given previous reports of reduced ROS in
breast cancer TICs and stem-like cells from glioma cell
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Figure 5 PARPi increases apoptosis and delays resolution of DNA damage in GICs. (a) Apoptosis was measured 3 days after treatment using an activated caspase-3/7-
based assay for GICs from 3691, 08–387, and 3359 xenografted patient specimens treated with vehicle (DMSO), 1 mM olaparib (PARPi) or 10mM olaparib, and were
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lines.39,43 These differences in reported ROS levels highlight
potential organ-specific metabolic states and adaptation
mechanisms for TICs as well as variation generated from
examining cell lines versus low-passage patient-derived
cells.38,44 We saw higher ATP levels in the GICs as compared
with non-GICs grown in conditions that maintain similar
proliferation rates, which suggest that GICs might have higher
mitochondria-dependent oxidative phosphorylation directly
contributing to free radical production.43 In addition, a link
between EGFR hyperactivation, a common event in GBM,
and increased ROS that creates a reliance on PARP1 has
been reported.45 However, the direct mechanism leading to
increased ROS in GICs is still an open area of investigation as
is the overall metabolic requirements for GICs.

Nonetheless, our data indicated a higher level of oxidative
base lesions and BrDU foci (ssDNA) in the GICs that were
likely the direct result of ROS-induced damage. We showed
that in correlation with an increase in DNA damage, there was
an increase in PARsylation, which is a signal required
for downstream repair factors in SSBR and additional
DDR pathways. We were able to exploit the homeostatic
requirement for PARP1 in GICs through PARPi followed by
irradiation to eliminate GIC expansion in vivo, which likely
contributed to the decrease in tumor growth. Further, tumor

regression resulting from combinatorial treatment indicates
widespread tumor efficacy owing to a direct effect on non-
GICs and/or the reported antiangiogenic effect of PARPi.46,47

Our data, however, do indicate that PARPi before irradiation
compromises the ability of GICs to respond to DNA damage,
driving the cells to undergo apoptosis.

In addition to cell death, PARPi compromised the stem cell
phenotype, likely further attenuating GIC-mediated tumor
maintenance. Although not directly tested, it is likely that
the tumorigenicity of these cells was abrogated, given their
compromised self-renewal capacity. When testing the tumor-
initiating ability of GICs exposed to olaparib before orthotopic
implantation, we found that the addition of radiation impeded
their tumor-initiating capacity. These results suggest that
PARPi with radiation would impair the ability of GICs to drive
tumor recurrence.

Numerous agents proposed to radiosensitize cancers have
shown promise in preclinical studies but have not produced
substantial benefit in clinical trials. Our studies supporting use
of PARP inhibitors in combination with radiation may offer
potential advantages over prior agents that failed in clinical
trial, as PARP inhibitors have shown acceptable toxicity
in clinical trials.33 Importantly, the ability for some PARP
inhibitors to cross the blood–brain barrier has been
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Figure 6 PARPi combined with radiation compromises self-renewal of GICs in vitro. (a) In vitro limiting dilution assay for GICs sorted from 3691 (left panel) or 08–387 (right
panel) xenografted patient specimens. GICs (1, 5, 10, 50, 100, 150, or 250) were plated per well of a 96-well plate containing vehicle (DMSO, black lines), 1 mM olaparib
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evaluated for the presence or absence of tumorspheres. Arrows highlight the shift in log fraction nonresponding after irradiation (þ IR). (b) Calculation of the estimated stem
cell frequency for each condition. (c) Bliss Independence-predicted stem cell frequency
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validated.29 PARP inhibitors have been most aggressively
developed in BRCA-mutant breast and ovarian cancers
because of the concept of synthetic lethality: BRCA1/2-
mutant cancer cells cannot compensate if both SSBR
(involving PARP) and homologous recombination (involving
BRCA1/2) are disrupted through a combination of

pharmacologic inhibition and cellular mutation.48 However,
other solid tumors have demonstrated sensitivity to PARP
inhibitors in the absence of BRCA1/2 mutations, perhaps
indicating disruption in other key genotoxic stress-related
pathways, including PTEN, or other unexpected muta-
tions.25,48–50
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Overall, the results from our studies highlight constitutive
activation of PARP1 in GICs that can be therapeutically
exploited and ultimately translated to clinical trials. With the
appreciation of a cellular hierarchy within numerous solid
tumors, and the likely contribution of the stem cell population
to disease recurrence, the impact of therapies on these cells
must be evaluated. A particularly promising approach might
be the combination of PARPi with hypofractionated radiation
to prevent cancer cells from activating compensatory survival
pathways that can occur with chronic targeted therapy
treatment.

Materials and Methods
Animals and in vivo studies. All animal studies described were approved
by the Cleveland Clinic Foundation Institutional Animal Care and Use Committee
and conducted in accordance with the NIH Guide for the Care and Use of
Laboratory Animals. For subcutaneous tumor studies, 5� 105 freshly dissociated
GBM cells from a xenograft originally derived from a primary GBM patient
specimen (3691) were injected into the flanks of 20 6–week-old male athymic
Nu/Nu mice (Charles River Laboratories, Wilmington, MA, USA). Tumors were
allowed to reach B0.12 cm3, at which point animals were randomized into four
groups and treated with either vehicle control (DMSO), olaparib alone (15 mg/kg
given daily by intraperitoneal injection as previously described), vehicle followed by
irradiation (3 Gray (Gy)), or olaparib followed by irradiation.50,51 Tumors were
monitored and measured daily using perpendicular diameter measurements for
7 days. Tumor volume was calculated using the ellipsoid formula p/6� larger
diameter� (smaller diameter).2 After the last treatment on day 7, tumors were
removed and weighed and then dissociated (as described below). For intracranial
implantation studies, GICs were treated with vehicle or olaparib (1 mM) for 2 h and
were then left unirradiated or irradiated with 3 Gy. Two days later, 1000 viable
CD133-positive GICs were implanted into the right frontal lobes of athymic Nu/Nu
mice. Mice were monitored daily for neurological impairment at which time they
were killed and brains were removed to evaluate for tumor development.

Isolation and culture of CD133-positive GICs. Human tissues were
acquired from primary human brain tumor patient specimens in accordance with
appropriate approved Institutional Review Board protocols. Tumor grade and
available cytogenetic information for each specimen has been previously
described.35 Tumor specimens were maintained through subcutaneous xenografts
in the flanks of athymic Nu/Nu mice. Tumors were dissociated using a
papain dissociation system (Worthington Biochemical, Lakewood, NJ, USA).
CD133-positive cells were enriched either by FACS or magnetic-activated cell
sorting as per the manufacturer’s recommendations (MACS; Miltenyi Biotec,
Bergisch Gladbach, Germany) and grown as tumorspheres. All cells were cultured
at 37 1C in an atmosphere of 5% CO2. GICs were cultured in Neurobasal media
(Invitrogen, Carlsbad, CA, USA) with B27 (without Vitamin A; Invitrogen), basic
fibroblast growth factor (10 ng/ml; R&D Systems, Minneapolis, MN, USA),
epidermal growth factor (10 ng/ml; R&D Systems), L-glutamine (2 mM; Invitrogen),
and sodium pyruvate (1 mM; Invitrogen). For cell counting before each experiment,
a single-cell suspension was achieved using TrypLE (Invitrogen).

Immunoblotting. RIPA protein extracts from human GBM-xenografted
specimens were separated by 3–8% Novex NuPAGE SDS-PAGE Gel System
(Invitrogen) and transferred to nitrocellulose membranes (Advantech, Dublin,
CA, USA) using the iBlot System (Invitrogen). The membranes were blocked with
5% (wt/vol) dry milk in PBS-Tween-20 (0.5% vol/vol) and probed with primary
antibodies against PARP1 (1 : 200; BD Pharmingen, San Jose, CA, USA),
poly (ADP-Ribose) (PAR; 1 : 2000; BD Pharmingen), GFAP (1 : 10 000; DAKO,
Santa Clara, CA, USA), or a-tubulin (1 : 500; Sigma-Aldrich, St. Louis, MO, USA)
as a loading control. ECL detection system was used according to the
manufacturer’s instructions (GE Healthcare, Little Chalfont, UK).

Irradiation. Cells and subcutaneous tumors were irradiated in a JL Shepherd
Mark I 137Cs irradiator (San Fernando, CA, USA). Mice were anesthetized and all
but the subcutaneous tumor was shielded with lead during delivery, given on days
2, 4, and 6 of the 7-day experiment. In all studies, 3 Gy was delivered 2 h after
vehicle or drug treatment.

Small molecule inhibitors. The PARP inhibitor (olaparib; Selleck
Chemicals, Houston, TX, USA) was resuspended in DMSO. For in vivo studies,
olaparib was diluted in (2-hydroxypropyl)-b-cyclodextrin (Sigma-Aldrich) in
phosphate-buffered saline as previously described.51 DMSO at a final percentage
equivalent to that of the drug suspensions served as the vehicle control for
all studies.

Colony formation assay. Colony formation assays for GICs were
performed as previously described.2 Briefly, GICs were plated in triplicate and
treated with vehicle control (DMSO) or olaparib (10 mM) in supplemented
neurobasal medium (3000 cells per well). Six days later, upon visible colony/
tumorsphere formation, 5% FBS was added per well to allow for the colonies to
adhere, and plates were processed 48 h later. Non-GICs were plated in triplicate
and treated with vehicle control (DMSO) or olaparib (10 mM) in Dulbecco’s
modified Eagle medium, 10% FBS (3000 cells per well). Cell colonies were fixed
with methanol and stained with a 0.5% crystal violet solution. Plates were imaged
using plate-scanning software on an inverted microscope (Leica, Wetzlar,
Germany). An area threshold of 500 pixels (equivalent to a colony of B50 cells) was
set and a total area positive for colony formation was calculated for each plate.

Cell viability and apoptosis assays. To measure the putative differential
sensitivity of GICs versus non-GICs to PARPi, acutely dissociated and CD133-
MACS sorted GBM cells (6000 cells per well of a 96-well plate, plated in triplicate)
were exposed to olaparib (5 or 10mM) in growth factor-free medium (Neurobasal
A medium supplemented with B27 minus vitamin A) and viability was measured at
day 0 and days 1, 3, and 5 post treatment using CellTiter-Glo Luminescent Cell
Viability Assay (Promega, Madison, WI, USA). Results are reported as relative fold
change in ATP with each group internally normalized to the respective vehicle
control. For long-term viability assays, 500 GICs per well were plated in triplicate
into 96-well plates containing appropriate growth media. The next day, vehicle or
drug was added to the wells and 2 h later plates were irradiated or left untreated.
Day-0 readings of ATP levels (CellTiter-Glo Luminescent Cell Viability Assay,
Promega) were taken immediately after irradiation using a luminometer (Perkin-
Elmer, Waltham, MA, USA). ATP levels were also taken on days 1, 3, 5, 7, and
10, and normalized within each treatment group to day-0 readings and reported as
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a relative fold change in total moles ATP over time. GICs and non-GIC were grown
in growth factor-free medium as described above, and apoptosis was evaluated
by measuring the activity of caspase-3 and -7 (Caspase-Glo 3/7, Promega),
normalized to total cell viability within that treatment group as measured by
CellTiter-Glo, on day 3 following the same treatment set-up as the ATP assay.

Immunofluorescence imaging. Detection of gH2AX (1 : 500; Abcam,
Cambridge, UK) was performed as described previously.34,40 GICs and non-GICs
were grown on GelTrex (Gibco, Invitrogen, Carlsbad, CA, USA)-coated cover slips
and treated with DMSO or 10 mM olaparib and left unirradiated or irradiated with
3 Gy and fixed 1, 6, or 24 h after irradiation. Cells were then immunostained for
gH2AX. Secondary detection was accomplished using Alexa Fluor 488 goat anti-
mouse IgG (Invitrogen). Nuclei were counterstained with DAPI. Imaging was
performed using the LSM 510 META/Imager.Z1 (Plan-Apochromat 63� /1.40 oil
DIC M27 objective; Carl Zeiss, Inc., Oberkochen, Germany). Confocal images
were acquired with equal settings and processed with Zen 2008 software (Carl
Zeiss, Inc.).

Flow cytometric analysis and sorting. Flow cytometry was performed
using a FACS Aria II Cell Sorter (BD Biosciences, Franklin Lakes, NJ, USA).
To enrich for CD133-positive GICs, single cells were labeled with an
allophycocyanin-conjugated monoclonal antibody against CD133 (CD133/2;
Miltenyi Biotec). Only live cells were selected for through negative staining for
propidium iodide. Isotype controls were used to establish proper gates.

Flow cytometry analysis of ROS and 8-oxoguanosin. Quantifica-
tion of ROS and 8-oxoguanosin was measured as described previously.34 In
detail, acutely dissociated xenografts were left to recover and MACS sorted within
12 h after dissociation. Two hours after the MACS sort, matched GICs and
non-GICs were dissociated using accutase and stained with CM-H2DCFDA probe
according to the manufacturer’s instructions (Molecular Probes, Invitrogen,
Carlsbad, CA, USA), acquired with FACSVerse (BD Biosciences), and analyzed
using FlowJo software (Tree Star, Inc., Ashland, OR, USA). Calbiochem (Merck
KGaA, Darmstadt, Germany) OxyDNA Kit was used to evaluate the presence of 8-
oxoguanine moiety of 8-oxoguanosine in oxidized DNA in matched GICs and non-
GICs, prepared as described above for ROS measurement. BD Fortessa (BD
Biosciences) and FlowJo software were used for data acquisition and analysis.

Limiting dilution assay and sphere formation. CD133-positive GICs
from acutely dissociated patient xenograft specimens were flow sorted, as
described, into 96-well plates at a final cell number per well of 1 (24 wells per
plate), 5, 10, 50, 100, 150, or 250 (all at 12 wells per plate). For limiting dilution
assays performed on cells isolated from in vivo inhibitor studies, cells were sorted
into wells containing supplemented Neurobasal media (Invitrogen, Carlsbad, CA,
USA), as described above. For all other limiting dilution assays, cells were sorted
into supplemented Neurobasal media containing vehicle control (DMSO) or
olaparib (1 or 10mM). Tumorsphere formation was evaluated 10 days after sorting
and wells were scored positive or negative for the presence of at least one
tumorsphere. The estimated stem cell frequency was calculated using extreme
limiting dilution analysis.52 For percent sphere formation, 200 GICs were plated
per well of a 12-well plate, and sphere formation was calculated using the formula:
sphere formation (%)¼ (number of spheres/number of cells plated)� 100.

Statistical analysis. Statistical significance was calculated with GraphPad
Prism Software utilizing a one-way or two-way ANOVA with a Bonferroni’s
post hoc test, Student’s t-test, or log-rank (Mantel–Cox) test, where appropriate
(GraphPad Software Inc., San Diego, CA, USA). Data are represented as the
mean±S.D. For calculation of predicted stem frequencies following treatment with
olparib and IR, a Bliss independence model was utilized.53,54 Bliss independence
assumes no interaction between treatments; thus, the fractional response caused
by treatment with a combination of olparib and IR would be equal to the product of
the fractional responses of each treatment independently.
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