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Support vector machine (SVM) is one of the popular machine learning techniques used in various text processing tasks including
named entity recognition (NER). The performance of the SVM classifier largely depends on the appropriateness of the kernel
function. In the last few years a number of task-specific kernel functions have been proposed and used in various text processing
tasks, for example, string kernel, graph kernel, tree kernel and so on. So far very few efforts have been devoted to the development
of NER task specific kernel. In the literature we found that the tree kernel has been used in NER task only for entity boundary
detection or reannotation. The conventional tree kernel is unable to execute the complete NER task on its own. In this paper we
have proposed a kernel function, motivated by the tree kernel, which is able to perform the complete NER task. To examine the
effectiveness of the proposed kernel, we have applied the kernel function on the openly available JNLPBA 2004 data. Our kernel
executes the complete NER task and achieves reasonable accuracy.

1. Introduction

Named entity recognition (NER) is a task of identifying the
named entities (NE) from texts. In a text NEs are the pivotal
elements to further contextualise the data. That is why NER
has huge application in various text mining tasks.

In the last decade substantial amount of work has been
done for development of NER systems in various languages
and domains. Various systems have been developed for
identifying NEs in biomedical domain [1–5]. Most of these
systems are based on machine learning algorithms. In these
machine learning based approaches, the problem is viewed as
a classification problem and a classifier is trained using anno-
tated data and a set of features.The efficiency of these systems
mostly depends on effectiveness of the assembled feature set.

Support vector machines (SVM) is one of the most
efficient and popular machine learning approaches which are
being used in NER and other related tasks. It is basically a
binary classifier which finds separating hyperplane with a
large margin. That is why it is also known as a large margin
classifier. Here the data (in NER task-words) is represented in
the form of feature vectors.The similarity between two words
is computed as the dot product between the corresponding

vectors. The features used are mostly binary, which takes
value one when that feature satisfies for the current word
and zero otherwise. In the NER task most commonly used
features are the current and surrounding words, suffix and
prefix information of the words, and so on. A previous word
feature can take any value from the lexicon (all unique words
in the corpus) which designates the previous word. In this
way only to the feature “previous word”, a range of binary
features in feature space is included (total number of unique
words). Similarly binary representation is there for other
features also. This way, the total number of features for the
NER task becomes huge. So the computation of dot product
between the vectors is a tedious task.

Alternatively, the similarity between the words can be
measured by using an appropriate kernel function. A kernel
function helps in establishing an implicit relation between
two words by mapping them into an alternative dimen-
sional feature space. This saves time and effort of explicitly
selecting features into the feature set for improving the
overall efficiency. In the literature we found that various
kernel functions have been proposed and used in various
text processing tasks. Most of these techniques compute the
distance between two sequences by finding the number of
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similar subsequences. In string kernel the distance between
two words is computed by measuring the similarity in
character sequences [6]. The tree kernel finds the distance
between two trees by finding the similarity between their
tree fragments [7]. Several variations of tree kernel are there,
amongwhich subtree kernel, subset tree kernel, and partial tree
kernel are popular [8].

In the literature we observe that the use of task-specific
kernel for NER task is limited. String kernel finds similarity
between two words by computing character similarity and
therefore not much effective in NER task. Tree kernel con-
siders a sentence as an entity and finds a tree representation
(e.g., parse tree) of the sentence in order to find the similarity.
But in NER task the distance between the individual words
has to be computed.Therefore the conventional tree kernel is
not directly applicable in this task. We observe that in a few
NER systems the tree kernel has been applied for boundary
detection or reannotation. There the task is viewed as a two-
phase process; the first phase identifies the class of the words
and the second phase detects the boundary. In those tasks,
for entity identification othermachine learning classifiers like
CRF are used and the tree kernel is used for named entity
boundary detection [9] or reannotation [10].

In this paper we have proposed a novel kernel function
for the NER task which is tangled to do both named entity
identification and named entity boundary detection. This
kernel will execute the complete NER task on its own. The
design of the kernel is motivated by the tree kernel.

Similar to the tree kernel, the proposed kernel also uses a
tree representation to the sentences. But instead of consider-
ing the whole tree we focus on the subtrees where the target
word and its surrounding words are present. Here the target
word is represented by a tree fragment where only the target
and its surrounding words are present. To these fragments we
also include additional marker nodes as parents of the target
words. We name the proposed kernel as the “sliding tree
kernel.”

Theproposed kernel is tested for biomedical named entity
recognition task using the popular JNLPBA 2004 data [11].
Experimental results and related comparisons demonstrate
the efficiency of the sliding tree kernel in the NER task. The
background, details of the kernel, and experiment results are
presented in the subsequent sections of the paper.

2. Early Works on Biomedical NER

NER task is the primary task in biomedical domain. Many
systems using various supervised learning classifiers, like hid-
den Markov model [1, 12], maximum entropy [3, 13], condi-
tional randomField [14], SVM [4, 15], and so forth, have been
proposed. A supervised learning classifier forNER task learns
its classification model using a training data. In biomedical
domain a few annotated NER data are openly available, for
example, JNLPBA 2004 data.

Several systems participated in JNLPBA2004 shared task.
Among these, the highest accuracy was achieved by the
systemdeveloped byZhou and Suwhich produced an𝐹-score
of 72.55 [2]. This system used HMM and SVM with some
deep knowledge resources. Without the domain knowledge

the reported 𝐹-score of the system was 60.3. The addition
of domain POS information increased the 𝐹-score to 64.1.
Deep domain knowledge like name alias resolution, cascaded
NE resolution, abbreviation detection, and external name
dictionaries, when integrated in the system, raised the 𝐹-
score to 72.55. Song et al. used SVM in their development.
They expanded the corpus using a set of virtual examples
which require some domain knowledge on the training data.
They achieved a final 𝐹-score of 66.28 using CRF, SVM,
postprocessing, and virtual samples. The baseline system
achieved an 𝐹-score of 63.85 using SVM [15].

Among all the classifiers it has been found in the literature
that SVM ismore efficient as a classifier.The ease and efficien-
cy in implementation of kernel techniques into the classifier is
themost attractive part of SVM [16]. NER task hasmuch been
explored for many decades. There have also been language
independent NER systems which use SVM as classifier [17].

Seeing the advantage of kernel techniques over extensive
feature based model, lots of kernel techniques have been
developed over the years. String kernel [6], tree kernel [7],
clustering based kernel [18], kernel-based reranking [10],
dependency tree kernel [19], tagging kernel [9], and so on are
very few among all the kernel methods proposed for various
text analysis tasks. Unfortunately all the kernels proposed for
various text processing tasks are not applicable in the NER
task.

Vanschoenwinkel [17] proposed a polynomial overlap ker-
nel for language independent NER. This system showed an
average 𝐹-score of 71.00%. For NER, tree kernel has never
been directly used for named entity word identification.
Nguyen et al. [10] used tree kernel to reannotate the examples
using kernel-based reranking. At first conditional random
field model with polynomial kernel was used to generate list
of top 𝑛 annotation candidates and this list was reranked with
additional features using tree kernel. Collins and Duffy [9]
used tree kernel for named entity boundary detection and left
identification of NE to a separate stage of processing.

Looking into the various literatures, tree kernel has never
been used to do complete NER task. It has always been
partially used for NER subtasks like named entity boundary
detection or reannotation.

3. Methods

3.1. Support Vector Machine. SVM is a supervised learning
classifier. The cost estimation function in SVM gives spe-
cial emphasis on avoiding overfitting by looking for global
optima. This leads to an optimum hyperplane. That is why it
is also known to be a largemargin classifier. By default SVM is
a binary classifier. But it can be utilized for multiclass classifi-
cation by using one-vs-all method.

Of any domain, �⃗�
𝑖
to a classifier, the empirical data is

represented in
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example in dataset. A classifier classifies based on the positive
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and negative examples experienced in the training data, so
that given a set of new feature patterns it can predict the
corresponding label {+1, −1}. SVM chooses a subset of the
training examples that falls closer to the decision boundary
to conclude a hyperplane. This subset is named as support
vectors.

Given a dataset, SVMfinds the decision hyperplane using
a hypothesis function:

𝐻(�⃗�
𝑖
) = �⃗�

𝑛
⋅ �⃗�
𝑖
+ 𝑏 = 0, (2)

where �⃗� ∈ 𝑅𝑛 and 𝑏 ∈ 𝑅. The hypothesis𝐻(�⃗�
𝑖
) here depends

on a cost minimization principle. A cost estimation function
minimizes the cost error between experienced and predicted
labels in the dot product space. But the key to SVM is its cost
function finding an optimum hyperplane by also minimizing
the parameter �⃗� for the hypothesis function

minimize
𝑤,𝑏
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‖𝑤‖
2
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𝑖
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(3)

By minimizing the parameter �⃗� along with the cost error,
it finds a maximum possible distance of the hyperplane to its
support vectors. This leads to the optimum hyperplane [20].

SVM learns by applying structural risk minimization
principle [21]. As a classifier SVM shows low bias and high
variance [16]. One of the highlights of SVM is its ability to
apply kernel methods to implicitlymap data into the required
dot product space.

3.2. Kernel Method. The data points fetched to the classifier
are in the form of feature patterns. These feature patterns
are used to generalize the data points. But defining an
explicit feature set to the problem can be huge and tedious,
whereas a kernel function helps in implicitly generalizing the
data points with a new set of features, that is, in another
dimension.

A kernel functionmaps the given feature space to a higher
dimensional space. To a classifier given a new pattern 𝑥 ∈ 𝑦,
the corresponding 𝑦 ∈ {+1, −1} has to be predicted. This
needs a similarity measure to be mapped between 𝑥 and
𝑦. For this a kernel function is required that returns a real
number by characterizing the similarity between given data
points 𝑥 and 𝑥:

𝑘 : 𝑋 ∗ 𝑋 → 𝑅,

(𝑥, 𝑥

) → 𝑘 (𝑥, 𝑥


) .

(4)

This kind of similarity measure is generally computed using
a dot product:

(𝑥, 𝑥

) =

𝑁

∑
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)
𝑖
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For this similarity function using dot product space to
work, the data has to be normalized to 1 and has to bemapped
to the dot product space. This requires a mapping function

ℎ : 𝑋 → 𝐹, where 𝐹 is a kernel space. So from (4) and (5) a
kernel function can be represented as

𝑘 (𝑥, 𝑥

) = (ℎ (𝑥) ⋅ ℎ (𝑥


)) . (6)

3.3. Tree Kernel. Tree kernels are intended kernel functions
for semantic parse trees. It identifies trees in the form of tree
fragments. This way it can identify trees without explicitly
considering the entire feature space. Tree fragments are noth-
ing but the different substructures of a tree, where each termi-
nal of the grammar is associated with the tree leaves. In
the tree kernel a syntactic parse structure is considered. The
popular tree kernel methods used are subtrees (STs), subSet
trees (SSTs), and partial trees (PTs) kernel.

3.3.1. Subtree. A subtree is considered as a constituent sub
tree from a node in the original tree. It consists of all of its
descendants from the current node in the original tree. Of a
tree the total number of subtrees can be generated are much
lesser than the substructures generated using SST and PT.
Figure 1(a) shows some of STs of sentence “Presence of beta
2-M.”

3.3.2. Subset Tree. SSTs are more generalized than the ST
structures. But it has been constrained that an SST should not
break any grammatical rule. That is why the tree substruc-
tures of SST may or may not contain the tree leaves but it
has to have its entire preterminal nodes in candidate trees.
Figure 1(b) shows eight SSTs (there are more) of the example
sentence.

3.3.3. Partial Tree. A partial tree structure does not have the
constraint of including all non-terminals like SST. It contains
substructures which are partial structures of even SSTs.
Figure 1(c) shows eight partial trees of given sentence. The
partial trees may or may not contain all the preterminals of
constituent subtrees. Of any given sentence the possible PTs
are much more than SSTs.

The associated kernel function measures the similarity
between two trees by counting the number of their com-
mon subparts. The above kernel space is then converted to
equivalent vectors of𝑅𝑛 using themapping function. And the
distance between trees are found by the classifier into the dot
product space using the kernel function. By this a kernel func-
tion identifies wether tree subparts (common to both trees)
belong to the feature space that we intend to generate [7].

In general SST kernel shows better accuracy than ST and
PT kernels. The PT shows lower accuracy than the SST but
shows a better accuracy on dependency structures [8].

3.4. The Proposed Sliding Tree Kernel. Most of the existing
NER systems which are built using feature vectors use word
syntactic and shallow parse information for classification. An
entity name in different contexts can designate different entity
classes. Therefore the information of semantic correlations
also plays a major role in classification of an entity.

A semantic parse structure using parts-of-speech infor-
mation is built on a complete sentence.Therefore a tree kernel
is subjected to find the distance between two trees, that is,
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two sentences. But to performNER task the distance between
words has to be found rather than the sentences. When SST,
ST, and PT are used in the kernel space for NER task, the
kernel space fills with redundant fragments. This is because
consecutive words belonging to the same sentence would
share similar fragments. That is why the existing tree kernels
are not applicable in task likeNE identification.Moreover this
leads to performance degradation and longer execution time
in NER task.

To overcome this problem with existing tree kernels a
sliding tree kernel (SL) is proposed. This kernel considers a
substructure of trees in the formof a slidingwindowof sliding
value “𝑠”. Using the sliding value “𝑠” a tree is fragmented
into the kernel space. These fragments intend to focus a
word with its semantic information rather than a complete
sentence. Generally an odd sliding value of “𝑠” is preferred
which semantically centers the focusedword.Here the sliding
value is required to be chosen initially for a set of experiments.
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In addition, in the proposed kernel we introduce a word
marker in the SL fragments. The marker is placed as the
parent node of the current word. In our experiments we
have named the marker as “CW” (as current word). So the
subset trees which are collected are constrained to have all
the preterminals along with the markers. In Figure 2 we have
shown the sliding tree fragments for an example sentence:
“Presence of beta 2-M was analyzed by immunohistochem-
istry.”The figure shows five SL trees (out of total eight possible
SL fragments: one for each word) forming feature space
taking 𝑠 = 5. In return a kernel space is found which intends
to generalize the words into the tree kernel space.

Now using the sliding window the constituent subset tree
fragments are drawn. These constituent trees are restricted
to semantic information of a word through slide window
rather than of entire tree. Also, specific marker nodes are
introduced in each slide window before few of the selected
terminal nodes as pre-terminals.

The SL decreases the structural redundancy of the constit-
uent trees in the kernel space. Figure 3 shows the constituent
trees of sliding windows with markers. The (a) and (b) in
Figure 2 show the sliding windows for words “Presence”
and “of.” The constituent subset trees generated at the same
nodes of original example tree mentioned in Figure 2 show
dissimilarity with respect to the words belonging to the same
tree. Subtrees (a-1) and (b-1) (in Figure 3) are different even
though they start from the same node “NP” which is the left
child of node “S” in source example tree (shown in Figure 1).
The tree (b-1) also includes word “2-M” as leaf node and its
preterminal which (a-1) does not have. And (b-1) has CW
marker on the word “of ” as preterminal, whereas (a-1) has it
on word “Presence.”

This makes SL a task-specific kernel for tasks like NER.
It easily identifies the word with generated constituent trees
and generalizes for an optimum hyperplane to be found.

Table 1: Performance of overall NER system on linear SVM using
word features.

Feature Precision% Recall% F-score%
Word window 5 54.89% 57.34% 56.09%
Word window 7 53% 54.85% 53.91%

Table 2: Performance of different 𝑠 values of SL kernel on class B-
DNA.

Class SL tree kernel with
changing “𝑠” value Precision% Recall% F-score%

B-DNA 𝑠 = 5 79.61% 42.89% 55.75%
B-DNA 𝑠 = 7 82.44% 42.7% 56.26%
B-DNA 𝑠 = 9 82.17% 41.47% 55.12%

Table 3: The overall NER system performance using proposed
kernel of 𝑠 = 7.

SL tree kernel 𝑠 value Precision% Recall% F-score%
𝑠 = 7 72.63% 51.99% 60.60%

The distances between the trees are calculated by counting
the common substructure of SL trees. As in tree kernel the
above kernel space is mapped in the vector spaces of 𝑅𝑛.
Then the distance between the words is calculated using
the dot product similarity measure. In NER task it shows a
competent ability and efficiency both in word identification
and boundary detection.

4. Experimental Results and Discussion

4.1. Training and Test Data. To carry out the experimen-
tations, data from JNLPBA 2004 shared task data is used.
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Table 4: Our system compared with existing systems.

System ML approach Domain knowledge F-score%
Normal SVM Linear SVM — 56.09%
Our system SVM with SL — 60.60%

Zhou and Su (2004) [2] final HMM, SVM
Resolution of name alias, cascaded
NEs, and Abbreviations; dictionary;

POS
72.55%

Zhou and Su (2004) [2] HMM, SVM (baseline) 64.1%

Song et al. (2004) [15] final SVM, CRF POS information, phrase, and virtual
sample 66.28%

Song et al. (2004) [15] SVM (baseline) 63.85%
Saha et al. (2010) [18] final Composite kernel — 67.89%

The training set contains 20,546 sentences from 2000
abstracts which have about 472,006 tokens, whereas the test
set contains 4,260 sentences from 404 abstracts which have
about 96,780 tokens. This data for the NER systems to be
developed has been preannotated into 5 classes. DNA, RNA,
protein, cell-line, and cell-type are the classes. This corpus is
extracted fromGENIA corpus Version 3.02. For annotation it
follows the BIO format, where each class named entity words
are annotated into “B-named entity” (for beginningNEword)
and “I-named entity” (for rest of NE words). And the words
which fall outside these classes are annotated as “𝑂” [11].

4.2. Evaluation Measure. The evaluation measure has been
done by using an𝐹-score formula, that is,𝐹 = (2∗𝑃∗𝑅)/(𝑃+
𝑅) [11]. This was the standard evaluation measure used in the
JNLPBA 2004 shared task, where 𝑃 denotes precision and 𝑅
denotes recall. 𝑃 is the ratio of the named entity correctly
identified to the total named entity found in test data. 𝑅 is
the ratio of the named entity correctly identified to the actual
named entity present in test data. 𝐹 is the harmonic mean
between precision and recall.

4.3. Performance Using Linear SVM. In linear SVM the linear
vector kernel space is explored. Here the base features like
word window of 𝑘 value features contribute maximum in
performance measures for a NER system. It has been found
in the literatures that among word windows 𝑘 value 𝑘 = 5
obtains the maximum 𝐹-score [13], where as 𝑘 = 7 leads to
overfitting and degrades the performance. In Table 1 we show
performance score using linear SVM on word features.

4.4. Performance of the SL Kernel. SL is a task-specific kernel.
So far SL kernel is the only tree kernel which does the com-
plete NER task. Here in Table 2 is shown the effect of the per-
formance in NER task of identifying B-DNA class words with
change in “𝑠” value in the kernel. The 𝑠 = 7 shows the opti-
mum result among other “𝑠” values. With increase in 𝑠 value
it leads to overfitting and degrades the system performance.

The tree kernel features the semantic feature and correla-
tion to thewords.Thebaseline systemperformsNERby using
only parts-of-speech information as domain knowledge.
Table 3 projects the complete named entity matched along
with the boundary detection performance scores for the

classes altogether. It shows 𝐹-score of 60.60% on the use of
sliding tree kernel with 𝑠 = 7.

4.5. Comparison with Existing NER Systems Using JNLPBA
2004 Data. In Table 4 we have compared our system with
some of the existing systems using JNLPBA 2004 data. Zhou
and Su [2] achieved the best accuracy (𝐹-score of 72.55) using
the data. In that system they have used extensive domain
knowledge like name alias resolution, cascaded NE resolu-
tion, abbreviation detection and so on. Without the domain
knowledge the accuracy of the system is 64.1%. Although our
system is not achieving a higher accuracy but without using
any domain knowledge it shows a competent performance.

5. Conclusion

In this paper we have proposed a NER task-specific kernel
function. The proposed kernel function is basically a modifi-
cation of the existing tree kernel. But it is capable of handling
the complete NER task, which the conventional tree kernel
is incapable of doing. The proposed kernel is achieving a
reasonable accuracy without the use of any domain-specific
knowledge. The performance of the system can be improved
further by using proper domain-specific information. The
task can also be viewed as a two-phase process as done in the
literature and the kernel can be applied in both phases sepa-
rately.These lead the future scopes of work using this kernel.
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