Skip to main content
. 2013 Jul 18;137(1):12–32. doi: 10.1093/brain/awt162

Figure 3.

Figure 3

Traumatic brain injury and the PCC. (A) Functional connectivity from the PCC/precuneus to the rest of the DMN (shown in red/yellow) predicts sustained attention impairment. In addition, damage to the right cingulum bundle (green) is correlated with sustained attention following traumatic brain injury, here measured as reaction time (RT) change over the course of a choice reaction time task. Part of the salience network is also shown for orientation in blue. (B) Reduced structural integrity of the salience network between pre-supplementary motor area/dorsal anterior cingulate cortex (pre-SMA/dACC) and right anterior insula (rAI) leads to functional abnormality within the PCC after traumatic brain injury. Activation within the salience network during successful stopping on the Stop Signal Task is shown in red-yellow in the left panel. The white matter tract connecting these regions is shown in blue. In the middle panel the structural integrity of the rAI–preSMA/dACC tract is plotted against deactivation of the ventral PCC during successful stopping on the Stop Signal Task (Stop correct versus Go trial contrast). Fractional anisotropy (FA) derived from diffusion tensor imaging data is used to quantify structural integrity of the tract. The right panel shows regions where activity during stopping is predicted by the structural integrity of the rAI–preSMA/dACC tract using a whole brain analysis.