Risk Factors With Intravenous Sedation for Patients With Disabilities

Fumihiro Yoshikawa, DDS, PhD,* Yoh Tamaki, DDS, PhD,† Hisa Okumura, DDS, PhD,‡ Zenzo Miwa, DDS, PhD,§ Masaaki Ishikawa, DDS, PhD,|| Kazuhiro Shimoyama, DDS, PhD,¶ Zenkou Nakamura, DDS, DMSc,# Hitomi Kunimori, DDS,* Shigeharu Jinno, DDS, PhD,* Hikaru Kohase, DDS, PhD,* and Haruhisa Fukayama, DDS, PhD*

*Section of Anesthesiology and Clinical Physiology, Tokyo Medical and Dental University, Tokyo, Japan, †Center for Public Health Informatics, National Institute of Public Health, Saitama, Japan, ‡Division of Dental Care, National Medical and Educational Consulting Center, National Welfare Foundation for Disabled Children, Tokyo, Japan, \$Department of Pediatric Dentistry, Tokyo Medical and Dental University, Tokyo, Japan, ||Pediatric Oral Health Care Science, Tokyo Medical and Dental University, Tokyo, Japan, ¶Geriatric Oral Health Care Science, Tokyo Medical and Dental University, Tokyo, Japan, #Tokyo Metropolitan Tobu Medical Center for Persons with Developmental/Multiple Disabilities, Tokyo, Japan

The purpose of this study was to identify the risk factors associated with low peripheral oxygen saturation (SpO₂) and delayed recovery of dental patients with disabilities after intravenous sedation. A total of 1213 patients with disabilities were retrospectively investigated with respect to demographic parameters and sedation conditions. Multivariate logistic analyses were conducted for patients with an SpO₂ <90% and a recovery period of >60 minutes to identify the risk factors for poor sedation conditions. A significant odds ratio related to decreased SpO₂ was observed for age, sex, midazolam and propofol levels, concurrent use of nitrous oxide, cerebral palsy, Down syndrome, and mental retardation. The most problematic patients were those diagnosed with Down syndrome (odds ratio, 3.003-7.978; 95% confidence interval; P < .001). Decision tree analysis showed an increased risk of decreased SpO₂ in males with Down syndrome or after administration of >0.493 mg/kg propofol in combination with midazolam. An increased risk of delayed awakening was seen in patients aged less than 21 years and in males administered > 0.032 mg/kg of midazolam. Intravenous sedation for dental patients with disabilities, particularly those with cerebral palsy, Down syndrome, or mental retardation, increases the risk of decreased SpO₂. In addition, delayed recovery is expected after midazolam administration.

Key Words: Dental sedation; Low peripheral oxygen saturation; Delayed recovery.

Dental practices are currently challenged by the rapidly growing number of patients with intellectual or physical disabilities.^{1,2} Excessive mental strain during dental treatment can cause systemic complications such as vasovagal reflex, neurogenic shock, pain

shock, and hyperventilation. Furthermore, patients with cardiovascular diseases, including cerebrovascular disorders, or decreased vital organ reserve capacity can encounter serious complications. A strategy for relieving mental strain is important for safe dental treatment of such patients, and to this end, intravenous sedation is often used.^{3,4} However, when using intravenous sedative drugs that have strong systemic actions on the central nervous, respiratory, and circulatory systems, systemic management to ensure patient safety is a prerequisite.^{5,6}

ISSN 0003-3006/13

SSDI 0003-3006(13)

Received June 1, 2013; accepted for publication August 28, 2013 Address correspondence to Dr Fumihiro Yoshikawa, Section of Anesthesiology and Clinical Physiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; yoshikawa.anph@tmd.ac.jp.

Anesth Prog 60:153–161 2013

^{© 2013} by the American Dental Society of Anesthesiology

	SpO ₂ (%)										
		90	<	90	То	tal					
Item	No.	%	No.	%	No.	%	P value				
Gender											
Male	564	56.6	141	65.3	705	58.2	.022				
Female	432	43.4	75	34.7	507	41.8					
Anesthetics Midazolam	253	25.4	29	13.4	282	23.2	<.001				
Propofol	355	35.6	29 55	25.5	410	23.2 33.8	<.001				
Midazolam and propofol	389	39.0	132	61.1	521	43.0					
Combined with nitrous oxide											
(—)	607	60.9	143	66.2	750	61.8	.144				
(+)	390	39.1	73	33.8	463	38.2					
Autism	701	70.2	1(0	74 1	0(1	71.0	000				
(_) (+)	701 296	70.3 29.7	160 56	74.1 25.9	861 352	71.0 29.0	.283				
Cerebral palsy	290	29.1	50	23.9	332	29.0					
(-)	802	80.4	174	80.6	976	80.5	.969				
(+)	195	19.6	42	19.4	237	19.5					
Down syndrome											
(-)	947	95.0	173	80.1	1120	92.3	<.001				
	50	5.0	43	19.9	93	7.7					
Epilepsy	763	76.5	173	80.1	936	77.2	.258				
(—) (+)	234	23.5	43	19.9	277	22.8	.230				
Mental retardation	204	20.0	40	19.9	277	22.0					
(-)	368	36.9	60	27.8	428	35.3	.011				
(+)	629	63.1	156	72.2	785	64.7					
Dental phobia						0.0 <i>f</i>					
()	875	87.8	200	92.6	1075	88.6	.043				
(+)	122	12.2	16	7.4	138	11.4					
Abnormal gag reflex (–)	959	96.2	214	99.1	1173	96.7	.031				
(+)	38	3.8	214	0.9	40	3.3	.001				
Asthma	00	010	_	012	10	0.0					
(—)	977	98.0	214	99.1	1191	98.2	.281				
(+)	20	2.0	2	0.9	22	1.8					
Hypertension	064	06 7	015	00 5	1170	07.0	000				
()	964 33	96.7 3.3	215 1	99.5 0.5	1179 34	97.2 2.8	.022				
(+) Alzheimer's	55	5.5	1	0.5	54	2.0					
(_)	955	95.8	208	96.3	1163	95.9	.733				
(+)	42	4.2	8	3.7	50	4.1	.,				
Diabetes											
(—)	947	95.0	205	94.9	1152	95.0	.962				
D ⁽⁺⁾	50	5.0	11	5.1	61	5.0					
Dysautonomia	982	09 5	915	99.5	1107	09.7	224				
(—) (+)	982 15	98.5 1.5	215 1	99.5 0.5	1197 16	98.7 1.3	.224				
Dementia	15	1.5	T	0.0	10	1.0					
(-)	984	98.7	215	99.5	1199	98.8	.294				
(+)	13	1.3	1	0.5	14	1.2					
Total	997		216		1213						

Table 1. Cross-Tabulation of Decreased Peripheral Oxygen Saturation (SpO₂) and Each Item*

 * Seven items had statistically significant correlation with decreased SpO₂ as per the chi-square test.

Conscious sedation is generally preferred to maintain independent breathing and biological defense mechanisms such as coughing and swallowing reflexes. However, dental treatment of patients with disabilities may require behavioral control, especially in the case of mentally challenged individuals with strong treatment refusal reactions. In these cases, deeper levels of intravenous sedation are a safer option.

		95% Confidence Interval			Multivariate	95% Conf		
Item	Crude Odds Ratio	Lower Limit	Upper Limit	P Value	Adjusted Odds Ratio	Lower Limit	Upper Limit	P Value
Age	0.997	0.987	1.008	.621	1.022	1.008	1.037	.002
Gender (female/male)	0.694	0.511	0.944	.020	0.591	0.419	0.834	.003
Treatment time (min)	1.012	1.003	1.021	.009	1.002	0.992	1.013	.654
Midazolam (mg/kg)	1.233	1.088	1.397	.001	591.212	15.831	22079	.001
Propofol (mg/kg)	1.331	1.163	1.524	<.001	1.495	1.279	1.748	<.001
Combined with nitrous oxide	0.795	0.583	1.083	.145	0.637	0.455	0.893	.009
Cerebral palsy	0.993	0.685	1.439	.969	1.577	1.048	2.373	.029
Down syndrome	4.708	3.036	7.300	<.001	4.895	3.003	7.978	<.001
Mental retardation	1.521	1.100	2.104	.011	1.910	1.271	2.869	.002

Table 2. Results of Logistic Regression Analysis for Decreased Peripheral Oxygen Saturation $(SpO_2 < 90\%)^*$

* The crude odds ratios demonstrated 6 factors that showed a statistically significant correlation with decreased SpO₂. After adjusting the odds ratio, 8 factors were found to have statistically significant correlations. Step-up procedure (likelihood ratio).

Depending upon the individual case, increased drug doses can cause deep sedation until the patient becomes completely unconscious, which is a deeper degree of sedation compared with conscious sedation.^{6,7} If this deep sedative state overrides the nervous system, basic defense mechanisms may also be lost. Therefore, careful perioperative management, similar to that for general anesthesia, is necessary.

Therefore, dental treatment of mentally or physically impaired patients using intravenous anesthetics requires careful perioperative management, similar to general anesthesia. Unfortunately, there is little information available on the disabilities and sedation conditions particularly at risk of causing low peripheral oxygenation and delayed recovery.^{8,9}

In this study, we investigated and analyzed the risk factors that may be involved in causing decreased peripheral oxygen saturation (SpO_2) and delayed recovery, including age, sex, treatment duration, type of disability or disease, and type and dose of anesthetic, in dental patients with disabilities.

METHODS

Over the past 7 years, a total of 1335 patients with disabilities received dental treatment under deep intravenous sedation at the dental care division of the National Medical and Educational Consulting Center and at the National Welfare Foundation for Disabled Children. The 122 patients who were administered flumazenil, a benzodiazepine antagonist used for reversal of deep sedation, were excluded from the study. Therefore, this retrospective study included 1213 patients.

The electronic records of each patient were analyzed with respect to demographic data, type of disabilities, and sedation conditions. The types of mental disabilities listed in these records were Alzheimer disease, autism, cerebral palsy, Down syndrome, dysautonomia, dementia, dental phobia, and mental retardation. The types of physical disabilities included epilepsy, asthma, hypertension, diabetes mellitus, and abnormal gag reflex.

The sedation conditions listed in these records were nitrous oxide combination, treatment duration, drugs and their levels used in intravenous sedation, and recovery time required from the end of surgery to regaining consciousness.

Each of the above mentioned items was crosstabulated for patients with intraoperative minimum $SpO_2 < 90\%$ and those with delayed awakening. Consciousness was evaluated depending on its recovery; recovery of vital signs, swallowing function, and the ability to drink and urinate independently; and Romberg test results. Patients who required ≥ 60 minutes to achieve this state after the end of treatment were included as subjects. Following the chi-square test, multivariate logistic regression and decision tree analyses were performed. To determine the factors involved in decreased SpO₂ and those affecting delayed recovery, multivariate logistic regression analysis was performed. Statistical analysis was performed using a stepwise method (step-up procedure: likelihood ratio) for each disease and the following explanatory variables: age, gender, treatment duration (from the start of anesthesia to the end of the treatment), and type and level of drugs. IBM SPSS Statistics 19 (IBM, Tokyo, Japan) was used as the statistical software. All values are expressed as mean \pm SD, and differences with P < .05 were considered statistically significant.

RESULTS

We included 1213 patients (705 male, 508 female) with a mean age of 36 ± 14 years (range, 9–83 years) in our

	Recovery Time to Awake After Treatment (min)									
	<6	50	2	≥60	То	tal				
Item	No.	%	No.	%	No.	%	P Value			
Gender										
Male	640	57.0	65	72.2	705	58.2	.005			
Female	482	43.0	25	27.8	507	41.8				
Anesthetics										
Midazolam	255	22.7	27	30.0	282	23.2	.026			
Propofol	391	34.8	19	21.1	410	33.8				
Midazolam and propofol	477	42.5	44	48.9	521	43.0				
Combined with nitrous oxide										
(_)	697	62.1	53	58.9	750	61.8	.312			
(+)	426	37.9	37	41.1	463	38.2				
Autism										
(—)	800	71.2	61	67.8	861	71.0	.472			
(+)	323	28.8	29	32.2	352	29.0				
Cerebral palsy										
(-)	898	80.0	78	86.7	976	80.5	.131			
(+)	225	20.0	12	13.3	237	19.5				
Down syndrome										
(-)	1,041	92.7	79	87.8	1,120	92.3	.099			
(+)	82	7.3	11	12.2	93	7.7				
Epilepsy										
(-)	866	77.1	70	77.8	936	77.2	.885			
(+)	257	22.9	20	22.2	277	22.8				
Mental retardation										
(-)	399	35.5	29	32.2	428	35.3	.527			
(+)	724	64.5	61	67.8	785	64.7				
Dental phobia										
(-)	992	88.3	83	92.2	1,075	88.6	.305			
(+)	131	11.7	7	7.8	138	11.4				
Abnormal gag reflex				,						
(-)	1,085	96.6	88	97.8	1,173	96.7	.763			
(+)	38	3.4	2	2.2	40	3.3				
Asthma	00	011	_		10	010				
(-)	1,104	98.3	87	96.7	1,191	98.2	.220			
(+)	19	1.7	3	3.3	22	1.8	.220			
Hypertension	17	1.7	0	0.0		1.0				
(-)	1,090	97.1	89	98.9	1,179	97.2	.508			
(+)	33	2.9	1	1.1	34	2.8	.000			
Alzheimer disease	00	2.9	1	1.1	01	2.0				
(-)	1,076	95.8	87	96.7	1,163	95.9	.696			
(-) (+)	47	4.2	3	3.3	50	4.1	.070			
Diabetes	-17	7.2	0	0.0	50	7.1				
(-)	1,068	95.1	84	93.3	1,152	95.0	.460			
(+)	55	4.9	6	6.7	61	5.0	.400			
Dysautonomia	55	4.7	0	0.7	01	5.0				
(–)	1,107	98.6	90	100.0	1,197	98.7	.624			
(—) (+)	1,107	98.0 1.4	90	0.0	1,197	1.3	.024			
(+) Dementia	10	1.4	0	0.0	10	1.3				
	1,109	98.8	90	100.0	1,199	98.8	.617			
(-)	1,109 14	98.8 1.2	90	0.0	1,199	98.8 1.2	.017			
(+) Total		1.2		0.0		1.2				
Total	1,123		90		1,213					

Table 3. Cross-Tabulation of the Recovery Time and Each Item*

* The factors of gender and type of anesthetic had statistically significant correlations with the recovery time as per the chi-square test.

study. Mean time from the start of sedation to the end of treatment was 43.0 ± 19.8 minutes, and the mean time required from the end of treatment to recovery of consciousness was 33.0 ± 18.5 minutes. The drugs used for intravenous sedation were midazolam (23.2%; 0.07 ± 0.36 mg/kg) or propofol (33.8%; 1.69 ± 0.99 mg/kg). When midazolam and propofol were used in combination (43.0%), the mean doses were 0.68 \pm

		95% Confid	ence Interval		Multivariate	95% Con		
Item	Crude Odds Ratio	Lower Limit	Upper Limit	P Value	Adjusted Odds Ratio	Lower Limit	Upper Limit	P Value
Age	0.979	0.961	0.997	.019	0.986	0.967	1.004	.132
Gender (female/male)	0.511	0.317	0.822	.006	0.528	0.325	0.859	.010
Treatment time (min) Midazolam (mg/kg)	$1.001 \\ 1.342$	$0.987 \\ 1.114$	$1.014 \\ 1.616$.897 .002	0.999 244.789	0.985 2.145	1.013 27931	.870 .023

Table 4. Results of Logistic Regression Analysis for Recovery Time (≥60 minutes)*

* The crude and multivariate adjusted odds ratios for age, gender, and amount of midazolam showed a statistically significant correlation with the recovery time. Step-up procedure (likelihood ratio).

0.04 mg/kg and 1.35 \pm 0.85 mg/kg, respectively. Nitrous oxide was also used in 463 patients (38.2%) sedated with each drug used alone or in combination. Table 1 represents the impact of the type of sedation on SpO₂ during dental treatment. Among the 1213 patients, 216 (17.8%) exhibited SpO₂ <90%. Chi-square analysis revealed a significant effect of sedation type on the regulation of SpO₂ (P < .001). Among the mental and physical disabilities listed in the records, Down syndrome, mental retardation, dental phobia, abnormal gag reflex, and hypertension were all associated with lower oxygenation during dental treatment under intravenous sedation (Table 1).

Multivariate logistic regression analyses revealed significant odds ratios for cerebral palsy, Down syndrome, mental retardation, age, sex, and all sedation protocols (Table 2). Again, the most significant findings were observed in patients diagnosed with Down syndrome, with an adjusted odds ratio of 4.895-3.003(95% confidence interval; P < .001). In total, these analyses suggest that patients with mental disabilities are particularly at risk of oxygen deprivation during dental treatment under intravenous sedation in the following ascending order according to disability type: cerebral palsy < mental retardation < Down syndrome.

Ninety of the 1213 patients (7.4%) required a longer recovery period, and patients with a delay of ≥ 60 minutes were cross-tabulated according to the type of drug and disease (Table 3). The chi-square test showed significant differences for sex and the type of sedative.

To determine the factors affecting delayed recovery, multivariate logistic regression analysis was performed. A significant difference was found for sex and midazolam levels (Table 4).

In addition, to verify the possibility of drug interactions among midazolam, propofol, and nitrous oxide, the factor of drug interaction was added as a factor to the results from Tables 2 and 4, and these results are shown in Tables 5 and 6. For the variables included under drug interactions, each mean was converted to 0 and the

Table 5. Results of Logistic Regression Analysis for Decreased Peripheral Oxygen Saturation (90%), Including Interaction Terms of Anesthetics*

		95% Confidence Interval			Multivariate	95% Confidence Interval		
Item	Crude Odds Ratio	Lower Limit	Upper Limit	P Value	Adjusted Odds Ratio	Lower Limit	Upper Limit	P Value
Age	0.997	0.987	1.008	.621	1.022	1.007	1.036	.003
Gender (female/male)	0.694	0.511	0.944	.020	0.588	0.417	0.831	.003
Treatment time (min)	1.012	1.003	1.021	.009	1.003	0.993	1.014	.520
Midazolam (mg/kg)	1.233	1.088	1.397	.001	1362.883	30.596	60709	<.001
Propofol (mg/kg)	1.331	1.163	1.524	<.001	1.505	1.281	1.768	<.001
Combined with nitrous								
oxide	0.795	0.583	1.083	.145	0.721	0.508	1.024	.067
Cerebral palsy	0.993	0.685	1.439	.969	1.642	1.088	2.479	.018
Down syndrome	4.708	3.036	7.300	< .001	4.724	2.884	7.740	<.001
Mental retardation	1.521	1.100	2.104	.011	1.782	1.182	2.689	.006
Midazolam * propofol	0.204	0.010	4.268	.305	0.195	0.012	3.237	.254
Midazolam * nitrous oxide	9.899	0.010	10062	.516	0.131	0.000	222	.592
Propofol * nitrous oxide Midazolam * propofol *	0.740	0.548	1.000	.050	0.749	0.554	1.013	.060
nitrous oxide	188.846	1.085	32867	.046	13.048	0.054	3177	.360

* Step-up procedure (likelihood ratio).

		95% Conf	idence Interval		Multivariate	95% Confidence Interval		_	
Item	Crude Odds Ratio	Lower Limit	Upper Limit	Significant		Lower Limit	Upper Limit	Significant Difference	
Age	0.979	0.961	0.997	0.019	0.986	0.968	1.005	0.162	
Gender (female/male)	0.511	0.317	0.822	0.006	0.536	0.329	0.873	0.012	
Treatment time (min)	1.001	0.987	1.014	0.897	0.999	0.985	1.013	0.856	
Midazolam (mg/kg)	1.342	1.114	1.616	0.002	268.244	2.159	33327	0.023	
Midazolam * propofol	0.091	0.001	8.401	0.300	0.095	0.001	8.215	0.301	
Midazolam * nitrous oxide	111.508	0.005	2332075	0.353	101.170	0.007	1542473	0.348	
Propofol * nitrous oxide	1.116	0.735	1.696	0.605	1.189	0.762	1.854	0.446	
Midazolam * propofol *									
nitrous oxide	0.376	0.000	1463.924	0.817	0.218	0.000	693.539	0.711	

Table 6. Results of Logistic Regression Analysis for Recovery Time (≥60 Minutes), Including Interaction Terms of Anesthetics*

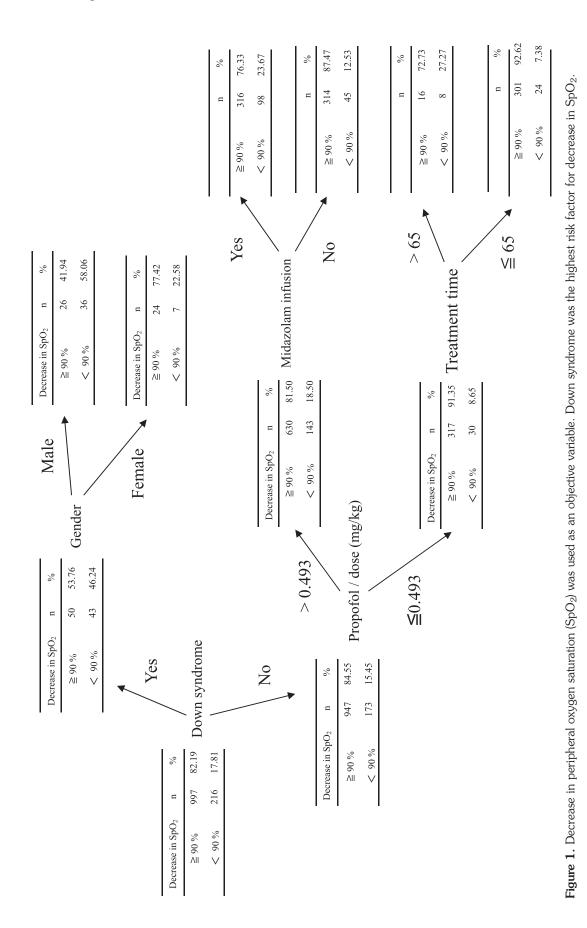
* Step-up procedure (likelihood ratio).

product was used as the interaction value to prevent the occurrence of multicollinearity. Multivariate logistic regression analysis using the drug interaction value demonstrated that neither decreased SpO_2 nor delayed recovery showed a significant odds ratio for the factor of drug interaction (Tables 5 and 6).

Similarly, decision tree analysis showed a significantly higher risk of decreased SpO₂ in males with Down syndrome or males administered >0.493 mg/kg of propofol in combination with midazolam. In addition, even patients administered <0.493 mg/kg of propofol for >65 minutes of treatment had a high risk of decreased SpO₂ (Figure 1). A higher probability of delayed recovery was seen in patients aged <21 years and in males administered >0.032 mg/kg of midazolam (Figure 2).

DISCUSSION

Patients with mental and physical disabilities often exhibit maladaptive behavior and are not cooperative during dental treatment, which justifies the use of intravenous sedation for their safety.³ Compared with general anesthesia, intravenous sedation is easy to perform and is often used in dental treatment.^{10,11} However, close monitoring of vital signs is essential because these drugs have strong systemic actions on the nervous, respiratory, and circulatory systems.^{5,6} The present study identified the safest sedative and patients at the highest risk of experiencing respiratory depression during and delayed recovery after intravenous sedation for dental treatment.


Among the demographic parameters, gender was the most consistent and significant factor affecting respiratory function and recovery period. Female patients were at lower risk of low SpO_2 and delayed recovery time. There are several reports on sex-related differences with respect to the effects of anesthesia, $^{12-15}$ all suggesting

that women have lower sensitivity to anesthetics and recover consciousness more rapidly. Some researchers have argued that female hormones such as progesterone may explain these phenomena.¹⁵ Accordingly, male patients should be more closely monitored during dental treatment under intravenous sedation.

Decreased SpO_2 can be caused by occlusion of the upper respiratory tract following motion suppression, sedative drug overdose, or deep sedation¹⁶; transient glossoptosis caused by choking or cough reflex¹⁷; or the use of instruments such as those used for maintaining mouth opening during oral manipulations.

This study identified 3 mental disabilities associated with a high risk of poor sedation control during dental treatment in the following descending order: Down syndrome > mental retardation > cerebral palsy. Nearly 50% of patients with Down syndrome exhibit upperairway obstruction and have congenital heart disease, both risk factors for pulmonary hypertension (review: King et al. 2011^{18}). It has been suggested that low SpO₂ is caused by factors such as sleep apnea and upperairway obstruction due to the presence of a large tongue.^{19,20} Therefore, these patients are particularly at risk of cardiovascular complications and low SpO₂ during intravenous sedation. In the case of cerebral palsy and mental retardation, the patients can suffer from upper-airway stenosis.^{21,22} Accordingly, the perioperative management of breathing functions is vital during dental treatment under sedation.

Patients who required \geq 60 minutes for recovery were included in logistic regression analysis and decision tree analysis that demonstrated midazolam levels to be a risk factor for prolonged recovery time. Midazolam is used during dental treatment for disabled patients,^{23,24} especially for its amnesic effect and behavior control, although higher doses can easily result in deep sedation. It is also known to provide a longer duration of action compared with propofol, suggesting delayed recovery.

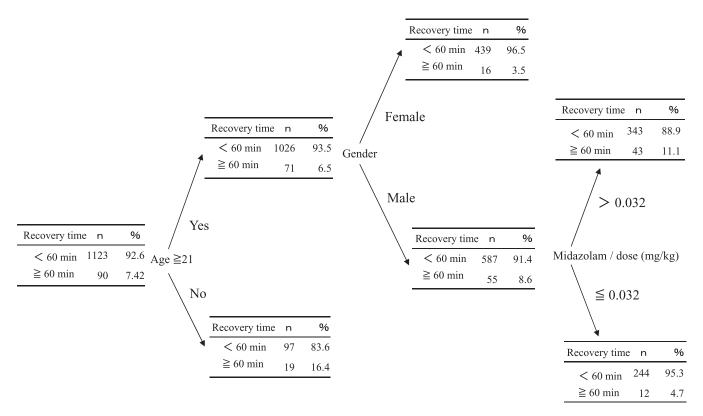


Figure 2. Results of decision analysis for recovery time (≥ 60 minutes). Recovery time (≥ 60 minutes) was used as an objective variable. Age and gender were the highest risk factors for prolongation of recovery time.

During dental treatment of patients with mental retardation who show vigorous treatment-refusal actions, a period of deep sedation is intentionally selected for controlling such behavior. In such a scenario, independent maintenance of airways is physiologically difficult. Although spontaneous respiration is maintained, respiration and circulation are depressed and basic defense mechanisms are partially suppressed, resulting in decreased SpO2.6 To prevent these signs, oxygen and emergency equipment must be kept ready⁶ and consciousness, ventilation, oxygenation, and circulation statuses should be carefully monitored. Along with maintaining the defense mechanisms, airway management has to be carefully performed. Titrated drug administration and precise perioperative systemic management are also very important.

The present study suggests that patients diagnosed with Down syndrome, mental retardation, and cerebral palsy should be more closely monitored during dental treatment under intravenous sedation.

REFERENCES

1. Glassman P. A review of guidelines for sedation, anesthesia, and alternative interventions for people with special needs. *Spec Care Dentist.* 2009;29:9–16.

2. Wang YC, Lin IH, Huang CH, Fan SZ. Dental anesthesia for patients with special needs. *Acta Anaesthesiol Taiwan*. 2012;50:122–125.

3. Ransford NJ, Manley MC, Lewis DA, et al. Intranasal/ intravenous sedation for the dental care of adults with severe disabilities: a multicentre prospective audit. *Br Dent J*. 2010; 208:565–569.

4. Chaushu S, Gozal D, Becker A. Intravenous sedation: an adjunct to enable orthodontic treatment for children with disabilities. *Eur J Orthod*. 2002;24:81–89.

5. Dionne RA, Yagiela JA, Moore PA, et al. Comparing efficacy and safety of four intravenous sedation regimens in dental outpatients. *J Am Dent Assoc.* 2001;132:740–751.

6. American Society of Anesthesiologists Task Force on Sedation and Anesthesia by Non-Anesthesiologists. Practice guidelines for sedation and analgesia by non-anesthesiologists. *Anesthesiology*. 2002;96:1004–1017.

7. Messieha Z, Cruz-Gonzalez W, Hakim MI. Retrospective outcomes evaluation of 100 parenteral moderate and deep sedations conducted in a general practice dental residency. *Anesth Prog.* 2008;55:116–120.

8. Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. *Anesthesiology*. 1997;86:836–847.

9. Lima AR, da Costa LR, da Costa PS. A randomized, controlled, crossover trial of oral midazolam and hydroxyzine

for pediatric dental sedation. *Pesqui Odontol Bras.* 2003;17: 206–211.

10. Boyle CA, Manley MC, Fleming GJ. Oral midazolam for adults with learning disabilities. *Dent Update*. 2000;27:190–192.

11. Beyer R, Seyde WC. Propofol versus midazolam. Long-term sedation in the intensive care unit. *Anaesthesist*. 1992; 41:335–341.

12. Gan TJ, Glass PS, Sigl J, et al. Women emerge from general anesthesia with propofol/alfentanil/nitrous oxide faster than men. *Anesthesiology*. 1999;90:1283–1287.

13. Buchanan FF, Myles PS, Cicuttini F. Patient sex and its influence on general anaesthesia. *Anaesth Intensive Care*. 2009;37:207–2118.

14. Pleym H, Spigset O, Kharasch ED, Dale O. Gender differences in drug effects: implications for anaesthetists. *Acta Anaesthesiol Scand*. 2003;47:241–259.

15. Buchanan FF, Myles PS, Cicuttini F. Effect of patient sex on general anaesthesia and recovery. *Br J Anaesth*. 2011; 106:832–839.

16. Ayuse T, Inazawa T, Kurata S, et al. The mouth opening increases upper-airway collapsibility without changing resistance during midazolam sedation. *J Dent Res.* 2004;83:718–722.

17. Kohjitani A, Egusa M, Shimada M, Miyawaki T. Accumulated oropharyngeal water increases coughing during

dental treatment with intravenous sedation. J Oral Rehabil. 2008;35:203–208.

18. King P, Tulloh R. Management of pulmonary hypertension and Down syndrome. *Int J Clin Pract Suppl.* 2011;174: 8–13.

19. Southall DP, Stebbens VA, Mirza R, Lang MH, Croft CB, Shinebourne EA. Upper airway obstruction with hypoxaemia and sleep disruption in Down syndrome. *Dev Med Child Neurol.* 1987;29:734–742.

20. Donaldson JD, Redmond WM. Surgical management of obstructive sleep apnea in children with Down syndrome. *J Otolaryngol.* 1988;17:398–403.

21. Preciado DA, Sidman JD, Sampson DE, Rimell FL. Mandibular distraction to relieve airway obstruction in children with cerebral palsy. *Arch Otolaryngol Head Neck Surg.* 2004;130:741–745.

22. Kavanagh KT, Beckford NS. Airway obstruction in the mentally handicapped. *South Med J.* 1992;85:779–781.

23. Chowdhury J, Vargas KG. Comparison of chloral hydrate, meperidine, and hydroxyzine to midazolam regimens for oral sedation of pediatric dental patients. *Pediatr Dent*. 2005;27:191–197.

24. Fukuta O, Braham RL, Yanase H, Kurosu K. The sedative effects of intranasal midazolam administration in the dental treatment of patients with mental disabilities. Part 2: optimal concentration of intranasal midazolam. *J Clin Pediatr Dent*. 1994;18:259–265.