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Abstract
Recent studies and our current data demonstrated the deficits in the numbers and/or functions of
the CD4+CD25+Foxp3+ Treg cells in the patients with autoimmune diseases, indicating that
restoration of Treg cells in these patients could be a potential therapeutic approach. Here, we
demonstrated that CD4+CD25+Foxp3+ Treg cells can be purified, activated and expanded from
peripheral blood of patients with immune-mediated diseases, to a similar degree to those from
healthy donors. Within 3 weeks, Treg cells from most patients could be expanded ex vivo 100–
2000 fold and maintained their phenotypic characteristics. Furthermore, ex vivo expanded Treg
cells displayed potent and enhanced in vitro suppressive activities inhibiting T effector cell
proliferation compared to Treg cells freshly purified from the same patients. The expanded Treg
cells with enhanced biological function may provide an opportunity to restore the proper balance
of immunity and tolerance, suggesting the potential of using Treg cell therapy for treatment of
immune-mediated diseases.
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Introduction
Regulatory T (Treg) cells are critical for the development and maintenance of immune
tolerance to self-antigens [1–6]. Naturally occurring CD4+CD25+Foxp3+ Treg cells, in
particular, play an indispensable role in self-tolerance by actively suppressing the activation
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and expansion of auto-reactive T cells [1,2]. Disruption in the development and/or the
function of Treg cells causes severe autoimmunity and inflammatory diseases in both
humans and animals [1,2]. The Foxp3 gene defect was discovered in Scurfy mice, an X-
linked recessive mutant with lethality in males [7]. Mutations of human Foxp3 gene induce
the genetic disease IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-
linked syndrome) with clinical autoimmune presentations [8,9]. In multiple animal models
of immune-mediated diseases, regulatory T cell studies clearly demonstrated that (1) the
depletion of Foxp3+ Treg cells accelerated diseases such as graft versus host disease
(GVHD), experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis
(CIA), inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE, NZB×NZW
mice), and type 1 diabetes (T1D); (2) defects of Treg cell functions were associated with
autoimmune disease onset and progression; and (3) adoptive transfer of polyclonal or
antigen-specific Foxp3+ Treg cells could prevent, treat, or even reverse the diseases in mice
[10–19].

In clinical study, Viglietta et al first demonstrated the significant defect of the functions of
the CD4+CD25+ Treg cells from peripheral blood of patients with multiple sclerosis (MS)
[20]. Subsequently, numerous studies have found the deficits in numbers and/or functions of
human CD4+CD25+ Treg cells from peripheral blood of patients with systemic lupus
erythmatosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D), IBD, GVHD and
asthma [21–31]. Recently, Longhi et al reported that functionally enhanced Treg cells can be
expanded from patients with autoimmune hepatitis [32]. Putnam et al also demonstrated that
expanded human Treg cells from type 1 diabetic patients and normal donors were equally
capable of suppressing T-cell proliferation [33]. We and others have reported that expanded
human Treg cells from healthy donors successfully prevented lethal GVHD in hu-PBL-
NOD/SCID mice [34,35]. However, functional studies of expanded human Treg cells from
other commonly seen autoimmune and inflammatory diseases have yet to be reported. In
this study, we evaluated the feasibility of ex vivo expansion of Treg cells from patients with
autoimmune and inflammatory diseases including SLE, IBD, MS, RA, and asthma. We have
demonstrated that human Treg cells from those patients could be successfully enriched and
expanded ex vivo to 100–2000 fold. In addition, expanded human Treg cells displayed
enhanced in vitro suppressive function in inhibiting effector T cell proliferation compared to
that of freshly purified human Treg cells from the same patients. Our study supported the
potential use of expanded human Treg cells for therapy in autoimmune and inflammatory
diseases such as IBD, SLE, MS, RA and asthma.

Materials and methods
Subjects

All enrolled subjects were 18 years or older, and excluded from study with known
pregnancy, cancer, or HIV, HBV and HCV infections. Ten patients with diagnosis of
Crohn’s disease and 5 patients with ulcerative colitis as determined by the Global
Physician’s Index [36], 9 patients with relapsing remitting MS according to the 2001
Guidelines from the International Panel on the Diagnosis of MS [37], 10 patients with severe
refractory asthma according to the 2000 criteria published by the American Thoracic Society
Workshop [38], 10 patients with active SLE diagnosis and 10 patients with active RA
according to the American College of Rheumatology criteria [39,40] were included in the
study. All SLE, RA and MS patient blood samples were purchased from Asterand (Detroit,
MI). Peripheral blood samples from severe asthmatics were collected from University of
Pittsburg Medical Center (Pittsburg, PA). The blood samples of refractory Crohns’s disease
and ulcerative colitis patients were provided by Mayo Clinic (Rochester, MN). Human
peripheral blood units from healthy donors were purchased from Interstate Blood Bank

Cao et al. Page 2

Clin Immunol. Author manuscript; available in PMC 2014 January 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Memphis, TN) and used as controls. All human subject studies were approved by local
institutional review boards, and all patients have signed the consent form.

Purification of CD4+CD25+ Treg cells from human peripheral blood
50 ml of heparinized whole human blood was obtained from healthy donors and patients
with autoimmune and inflammatory diseases via standard procedure. Human peripheral
blood mononuclear cells (PBMCs) were isolated from blood samples by density gradient
centrifugation with Ficoll Hypaque (Amersham). The CD4+CD25+ Treg cells were purified
from PBMC using autoMACS and human CD4+CD25+ regulatory T cell isolation kits
(Miltenyi Biotec, Auburn, CA) according to manufacturer instructions. Briefly, CD4+ T
cells were first negatively isolated from PBMC by depleting non-CD4 cells with the mixture
of monoclonal antibodies against human CD8, CD14, CD16, CD19, CD36, CD56, CD123,
TCRγ/δ and CD235a. Human CD4+CD25+ Treg cells were then positively isolated with
anti-human CD25 antibody-conjugated microbeads from the enriched CD4+ T cell
population. The purity of the isolated cells was analyzed with flow cytometry after
purification.

Ex vivo activation and expansion of human CD4+CD25+ Treg cells
The purified human CD4+CD25+Treg cells were activated and expanded ex vivo in cell
culture plates with CD3/CD28 T cell expander beads (Dynal, Invitrogen) in the presence of
recombinant human IL-2 (rhIL-2, 1000 U/ml, R&D systems). The CD4+CD25+ Treg cells
were cultured in X-VIVO™ 15 medium supplemented with 10% heat inactivated human AB
serum (Lonza, MD), L-glutamine, hepes, sodium pyruvate, penicillin, streptomycin (Gibco).
Fresh medium with rhIL-2 were added 2–3 times per week. After 2–3 weeks, the CD3/CD28
beads were removed from the Treg cells, and the expanded Treg cells were then rested for
1–2 days in low IL-2 (50 U/ml) containing medium before in vitro characterization and
function analysis.

In vitro suppression assay
Human dendritic cells (DCs) were generated from adherent cells or CD14 bead-purified
monocytes from PBMC and cultured with RPMI 1640 medium in the presence of 10% FCS,
recombinant human GM-CSF (50 ng/ml, R&D systems) and IL-4 (25 ng/ml, R&D systems).
Cytokines and medium were changed every other day. On day 5 to 6, DCs were harvested
and cryopreserved for in vitro suppression assays.

Human CD4+CD25− T responder cells were also purified from PBMC of normal donors
using Miltenyi kit and autoMACS. The purified human CD4+CD25− T cells were frozen in
aliquots for in vitro suppression assays.

The in vitro suppressive activity of the ex vivo expanded human Treg cells was measured in
anti-CD3 antibody induced T cell proliferation assays. Human CD4+CD25− T effector cells
(1 ×105 cells/well) and allogeneic human dendritic cells (1×104 cells/well) were co-cultured
in the 96-well U-bottom plates in the presence of anti-human CD3 antibody (1 μg/ml,
OKT3, Ebioscience). Expanded human Treg cells or freshly purified human Treg cells were
serially diluted and added into the cultures at different Treg/T effector ratios and cells were
cultured for 4 days. At the last 16 h of culture, 3H-thymidine (1 μCi/well) was added. The
plates were harvested and 3H-thymidine incorporation was counted with Topcount
(PerkinElmer). Mean counts per minute (cpm) of triplicate cultures and standard deviation
were calculated. Percent inhibition of proliferation was calculated as: % inhibition =[(cpm
responder cells – cpm responder/Treg)/(cpm responder cells)]×100.
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Flow cytometry analysis
For immunofluorescence staining, cells were stained for 30 min at 4 °C with different
fluorescence-conjugated antibodies as indicated. CD4-FITC, CD4-allophycocyanin (APC),
and CD25-PE were purchased from BD Biosciences. For intracellular staining of Foxp3, the
cells were fixed, permeabilized and further blocked with normal mouse serum according to
the manufacturer’s protocol using anti-human Foxp3 staining set (Ebioscience). The Foxp3
was stained with either Clone 236A/E7 PE (Ebioscience) or isotype control. The cells were
acquired with FACSCanto (BD Pharmingen) and the data were analyzed using FlowJo
software (Tree Star, Inc.).

Statistical analysis
The data were analyzed by ANOVA or Mann Whitney test (nonparametric test) with Prism
software. Values of p≤0.05 were considered statistically significant.

Results
CD4+CD25+ Treg cells can be purified from the peripheral blood of the patients with
autoimmune and inflammatory diseases

As reported by several groups [20–31], the Treg cell deficiency might be an underlying
cause of certain autoimmune and inflammatory diseases, so we first measured the frequency
of Treg cells in the CD4+ T cell population of the patients. The average percentage of Treg
cells in CD4 population for normal donor was 9.18%, and for SLE, MS, RA, asthma, CD
and UC patients were 7.89%, 5.99%, 6.07%, 7.83%, 7.02% and 6.92%, respectively. There
was no significant difference for Foxp3+ Treg cell frequency in CD4+ T cell population
among all patients (Fig. 1). The average percentage of Treg cells in SLE, severe asthma and
Crohn’s patients were similar to that of the normal donors, but the average percentage of the
Treg cells in RA, MS and UC patients were significantly lower compared to that of normal
donors (p=0.0076, 0.0043 and 0.035, respectively, Mann Whitney test). Overall, in our study
the Treg cell frequencies in patients with immune mediated diseases displayed lower trend
compared to normal donors and there were considerable subpopulations of patients bearing
lower frequencies of Treg cells (Fig. 1). These results may indicate Treg cell number defects
in these patients; however, additional studies with a larger patient sample size are needed to
confirm the results.

Human CD4+CD25+ Treg cells were purified from PBMC of the patients with autoimmune
and inflammatory diseases, as well as from normal donors using the autoMACS system and
human CD4+CD25+ regulatory T cell isolation kits as described in materials and methods.
After purification, the purity of human CD4+CD25+ Treg cells determined by Foxp3
expression ranged from 40% to 80% of the total cells. As shown in Fig. 2, the average
percentage of purified CD4+Foxp3+ Treg cells from normal donors and the patients with
SLE, MS, RA, asthma, CD or UC were 53.1%, 56.5%, 49.1%, 55.7%, 59.4% and 66.6%,
respectively. Interestingly, the purity of the purified CD4+CD25+ Treg cells from the
patients was similar to that of the normal donors (Fig. 2). These results demonstrated the
successful enrichment of human CD4+Foxp3+ Treg cells from the peripheral blood PBMC
of the patients with variety of immune-mediated diseases.

Ex vivo expansion of human Treg cells from the patients with autoimmune and
inflammatory diseases

The enriched human CD4+CD25+Foxp3+ Treg cells were then activated and expanded with
CD3/28 T cell expander beads at a 1/3 cell to bead ratio in the X-VIVO 15 medium with
rhIL2 and 10% of heat-inactivated human male AB serum. After 2 to 3 weeks of culture, the
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human Treg cells were expanded approximately 1000 fold for the majority of the patients
(Fig. 3A). These results demonstrated that a clinically relevant number of human Treg cells
could be obtained from patients with certain immune-mediated diseases by ex vivo
expansion.

The purity of week 2 expanded human Treg cells was evaluated using intracellular Foxp3
staining as shown in Fig. 3B. The average purity of expanded human Treg cells from normal
donors and patients with SLE, MS, RA, Asthma, CD, and UC were 49.6%, 43.9%, 38.5%,
36.4%, 48.7%, 35.6% and 40.5%, respectively. Treg cell purity in most cultures was slightly
lower compared to the starting cells (Fig. 2, post purification). The average Treg cell purity
in the culture of cells from MS, RA, CD and UC patients was significantly lower than that of
normal control subjects. Reduction of the Treg purity seemed to be independent of the initial
purity, as the average Treg purity from patients with CD and UC was higher than that of
normal donor (Fig. 2). Due to the small sample size, additional studies with more patient
samples are needed to confirm the significance of the Treg cell purity difference in different
patient populations.

Ex vivo expanded Treg cells from the patients with autoimmune and inflammatory
diseases acquired enhanced in vitro suppressive function

In vitro function of expanded human Treg cells was evaluated in an anti-CD3 antibody
induced T effector cell proliferation assay as described in the materials and methods. In
order to standardize the assay and compare in vitro function of Treg cells among patients as
well as between freshly purified and expanded Treg cells from the same patient, we used the
same lots of CD4+CD25− T responder cells, allogeneic DCs, and anti-CD3 antibody in the
in vitro suppressive assays, so the only variants in the assay were the Treg cells. As shown
in Fig. 4, almost all the ex vivo expanded CD4+CD25+Foxp3+ Treg cells from patients
demonstrated potent dose-dependent in vitro suppression of anti-CD3-induced T cell
proliferation. Most of the ex vivo expanded CD4+CD25+Foxp3+ Treg cells from patients
with immune-mediated diseases exhibited more than 50% inhibition of T cell proliferation at
a Treg/Teffector ratio of 1/10 in the suppression assays (Fig. 4), suggesting expanded human
Treg cells from patients retained strong suppressive activities. The potency of expanded
Treg cells from patients with inflammatory diseases was similar to that of expanded Treg
cells from normal donors (previous publication) [34].

In addition, we also evaluated the in vitro function of freshly purified Treg cells from some,
but not all patients due to the limited availability of freshly purified Treg cells. Most of
freshly purified Treg cells from patients with immune-mediated diseases still displayed 50%
inhibition to anti-CD3 antibody induced T cell proliferation at a Treg/Teffector ratio of 1/1.
Although the freshly purified Treg cells exhibited dose-dependent inhibition of T effector
cell proliferation, the potency was about 3–10 fold lower comparing to that of the expanded
Treg cells from the same patients. These results demonstrated that ex vivo expansion not
only increased Treg cell number but also enhanced the biological function of these cells. Our
study further supports the potential use of ex vivo expanded human Treg cells for the
treatment of autoimmune and inflammatory diseases.

Discussion
Naturally occurring CD4+CD25+Foxp3+ regulatory T cells play an indispensable role in the
induction and maintenance of self-tolerance. Defect in the development and function of Treg
cells is a primary cause of autoimmunity and certain inflammatory diseases in humans and
animals [1,2]. Recent clinical studies and our current data demonstrated deficits in the
numbers and/or functions in the CD4+CD25+Foxp3+ Treg cells from patients with certain
autoimmune diseases [20–31], suggesting that correcting these defects of Treg cells might
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be a feasible therapeutic approach for these diseases. Our study demonstrated for the first
time the feasibility of ex vivo expanding Treg cells from patients with SLE, RA, CD, UC,
MS and severe asthma. In addition, our results suggested that ex vivo expansion not only
increased the number but also enhanced the in vitro inhibitory function of Treg cells from
these patients. Our result is consistent with the recent reports that functional Treg cells can
be expanded from patients with autoimmune hepatitis, type 1 diabetes and healthy normal
donors [32–35]. Therefore, providing additional support for the potential use of adoptive
transfer of expanded human Treg cells as a therapeutic approach for autoimmune and certain
inflammatory diseases [48,49].

Our study indicated that there were considerable subpopulations of patients with immune-
mediated diseases bearing lower frequencies of Treg cells (Fig. 1), which may result from a
shift of blood Treg cells to inflamed tissues in certain diseases, further characterization of
the subpopulation may help Treg cell therapy to target the right populations of patients. The
technical challenge of using ex vivo expanded Treg cells as a cell therapy is generating the
billions of human Treg cells to fulfill the clinical requirements [41]. The paucity of human
Treg cells in peripheral blood becomes a major hurdle for the clinical use [41], especially for
patients with certain autoimmune diseases. In this study, we showed that human
CD4+CD25+Foxp3+ Treg cells can be efficiently enriched from peripheral blood of patients
with autoimmune diseases, interestingly, with the similar purity to normal donors, and can
be successfully activated and expanded ex vivo to 100–2000 fold within 3 weeks, suggesting
that multiple clinical administrations may be feasible. In addition, the enhanced Treg
function may offset the deficiency in numbers.

Regulatory T cells inhibit T effector cell proliferation by cell-contact-dependent
suppression, suppressive cytokines, modification or killing of antigen-presenting cells and T
effector cells [1,47]. Expanded human Treg cells with enhanced suppressive function may
help to restore the proper balance of immunity and tolerance, reverse or repair the Treg
functional deficits in patients with certain autoimmune diseases, and eventually achieve a
sustained immune tolerance to self-antigens. Our results suggest that adoptive transfer of
functional Treg cells may be beneficial to patients and support the potential clinical use of
Treg cell therapy for autoimmune diseases [48,49]. We and others recently demonstrated
expanded human Treg cells prevented lethal GVHD in vivo, suggesting that the expanded
Treg cells could carry their potent in vitro functions into in vivo environments and
effectively suppress pathogenic T effector cell activation, proliferation, and the disease
progression [34,35].

A recent murine study demonstrated a substantial percentage of Treg cells had transient or
unstable expression of Foxp3 in vivo, especially higher in the inflamed tissues [50], which
raises potential concern for the stability of the expanded human Treg cells in vivo once
infused back to the patients. Therefore, strict phenotype characterizations such as CTLA-4,
GITR, CD27, CD62L, CD127 expressions, cytokine profiles and DNA methylation at the
Foxp3 locus of expanded human Treg cells from patients with each disease are important.
To mitigate the challenge, several other approaches could be applied to enhance the efficacy
and safety in future clinical studies: (1) Additional purification of Treg cells based on their
lack of expression of CD127 could enhance the purity of the therapeutic Treg cells [42,43];
(2) expanding human Treg cells with rapamycin could strengthen the purity as well as the in
vitro suppressive function of the expanded Treg cells, however, cell expansion was
suppressed in the presence of rapamycin [44–46]; and (3) administration of low dose of IL-2
could help to stabilize Treg cells in vivo.

In conclusion, ex vivo expanded CD4+CD25+Foxp3+ Treg cells from peripheral blood of the
patients with SLE, MS, RA, IBD and severe asthma acquired potent and enhanced in vitro
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suppressive function by inhibiting T effector cell proliferation. Within 3 weeks, human
CD4+CD25+Foxp3+ Treg cells from the diseased patients could be expanded ex vivo 100–
2000 fold. By exploiting the enhanced suppressive activity, these expanded Treg cells could
restore the proper balance of the immune system and reverse or repair the Treg functional
deficits in the patients. Our data support the feasibility of using the expanded Treg for the
treatment of autoimmune and inflammatory diseases [48,49]. Although there are still
technical and clinical challenges, we believe that with a better understanding of Treg cell
biology and the pathology of different immune-mediated diseases, Treg cell-based therapy
could provide a unique therapeutic benefit to patients with autoimmune or inflammatory
diseases, such as SLE, MS, RA, CD, UC and severe asthma.
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Abbreviations

Foxp3 forkhead box P3

Treg cell regulatory T cell

DC dendritic cell

APC allophycocyanin

rhIL-2 recombinant human IL-2

SLE systemic lupus erythmatosus

RA rheumatoid arthritis

MS multiple sclerosis

CD Crohn’s disease

UC ulcerative colitis

IBD inflammatory bowel disease
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Figure 1.
The frequency of Foxp3+ Treg cells in the CD4+ T cell population of patients and normal
donors. CD4+ T cells were purified from the peripheral blood of patients with SLE, RA, MS,
CD, UC, asthma and normal donors (ND) as described. The frequencies of Foxp3+ Treg
cells in the peripheral blood CD4+ population of patients and normal donors were
determined with intracellular Foxp3 staining. The percentage of Foxp3+ Treg cells in CD4+

T cell population from each patient was shown. Each dot represents one subject and the bar
represents the average percentage of Foxp3+ Treg cells in each group (*p<0.05, Mann
Whitney test for two group comparison).
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Figure 2.
Successful enrichment of CD4+CD25+Foxp3+ Treg cells from the peripheral blood of
patients with SLE, RA, MS, UC, CD, severe asthma and normal donors (ND). Human
CD4+CD25+ regulatory T cells were purified from the peripheral blood of patients and
normal donors using the autoMACS system and the CD4+CD25+ human regulatory T cell
isolation kit as described. The purity of purified CD4+CD25+ Treg cells was determined by
intracellular Foxp3 staining and was expressed as the percentage of the Foxp3+ cells in the
total purified cell population. Each dot represents one subject, and the average purity in each
group was represented by the bar.
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Figure 3.
CD4+CD25+ Treg cells isolated from the peripheral blood of patients with immune-
mediated diseases can be expanded 100–2000 fold ex vivo with sustained purity. Human
CD4+CD25+ Treg cells enriched from the peripheral blood of patients with immune-
mediated diseases were activated and expanded ex vivo with Dynal CD3/28 T cell expander
beads and recombinant IL-2 as described. Cell numbers on day 7, 14 and 21 cultures were
counted for each individual culture. The ex vivo Treg cell growth curves were shown in A.
Each line represents a single subject. The purity of ex vivo expanded human Treg cells at
week 2 was determined by intracellular Foxp3 staining, and was shown in B. Each dot
represents one subject and the bar represents the average purity of expanded Treg cells (Fig.
3B, *p<0.05, Mann Whitney test for two group comparison).
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Figure 4.
Ex vivo expanded CD4+Foxp3+ Treg cells from patients with immune-mediated diseases
acquired enhanced inhibitory activities. In vitro suppressive function of expanded human
Treg cells at week 2 and freshly purified Treg cells from some of the patients were measured
with a standardized T cell proliferation inhibition assay. Expanded or freshly purified human
Treg cells were serially diluted and added into the cultures at different Treg/T effector ratios
as indicated. The percentage of inhibition of T effector cell proliferation by either expanded
or fresh Treg cells was shown in Fig. 4. Each line represents a single patient.
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