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Preface
Candida species cause frequent infections due to their ability to form biofilms – surface-associated
microbial communities – primarily on implanted medical devices. Increasingly, mechanistic
studies have identified the gene products that participate directly in Candida albicans biofilm
formation, as well as the regulatory circuitry and networks that control their expression and
activity. These studies have revealed new mechanisms and signals that govern C. albicans biofilm
formation and associated drug resistance, thus providing biological insight and therapeutic
foresight.

Introduction
The medically relevant Candida species 1 are mainly commensal fungi that reside on
mucosal surfaces and in the gastrointestinal (GI) and genitourinary (GU) tracts. Although
these organisms are generally benign, they can cause infection if immune function is
impaired or if an environmental niche becomes available 2. Many Candida infections arise
as a result of the organism’s ability to grow as a biofilm on implanted medical devices 3–6.
The use of these devices, such as venous catheters, urinary catheters, and artificial joints, is
routine, with well over 10 million recipients per year 7. Device-associated Candida
infections have mortality rates as high as 30% 7, 8, and the annual cost of antifungal
therapies in the United States alone is estimated at $2.6 billion 9. Like the biofilms of
bacterial pathogens, Candida biofilms are resistant to many antimicrobial agents, so
treatment may require surgical removal and later replacement of the infected device 5, 7.
Here, we review Candida biofilm formation with a focus on Candida albicans, the most
frequently isolated Candida pathogen 10.

Overview of C. albicans Biofilm Formation
C. albicans biofilms comprise mainly two kinds of cells: small oval yeast-form cells (also
called blastospores), and long tubular hyphal cells. Biofilms grown in vitro often have a
foundation of yeast cells, from which a hyphal layer emanates (Fig. 1A) 5. Extracellular
matrix material is clearly evident as well, bound to both yeast and hyphal cells. It is typically
interspersed throughout the biofilm, though it is apparent primarily at the top of this sample.
Biofilms from in vivo catheter infection models appear more complex, with yeast and
hyphae interspersed (Fig. 1B) 11. Genetic analysis indicates that both yeast cells and hyphae
are critical for biofilm formation, which suggests that each cell type has unique roles in the
process 5.

In vitro experiments allow C. albicans biofilm formation to be viewed as a series of
sequential steps (Fig. 2) 5, 12. Biofilm formation begins with adherence of yeast cells to a
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substrate (adherence step) (Fig. 2). Soon afterwards, the yeast cells proliferate across the
surface and produce elongated projections that grow into filamentous forms, including
hyphae or and pseudohyphae (initiation step). Extracellular matrix accumulates as the
biofilm matures, and high-level drug resistance is also acquired (maturation step). Finally,
non-adherent yeast cells are released from the biofilm into the surrounding medium
(dispersal step) (Fig. 2). While these steps may occur concurrently rather than sequentially
during natural biofilm formation in vivo, they provide a useful framework to guide
mechanistic analysis.

Simple Inferences from Biofilm Genetics
Recent strides in expression profiling and genetic manipulation have driven our
understanding of the regulatory pathways and mechanisms that govern biofilm formation
and biofilm-based drug resistance. In addition, such analyses have pointed to an intriguing
relationship between biofilm formation and mating. Of course, genes can have net positive
or negative roles in biofilm formation, based on known mutant phenotypes. This distinction
is useful in thinking about gene relationships because, for example, a negative gene product
can act through inhibition of a positive gene product. On the other hand, it is worth bearing
in mind that “dispersal” is an unraveling of the steps in biofilm formation. Therefore, for
example, the negative function of Ywp1 in the adherence step that leads to biofilm
formation might go hand in hand with a positive function in biofilm dispersal.

The genes that govern C. albicans biofilm formation (Table 1) fit into several broad
functional categories. Many of these genes are required for production of hyphae
(filamentation). Some of the first C. albicans biofilm genetic studies indicated that hyphae
are required for stable biofilm formation 13, 14. In addition, several biofilm genes are
involved in the response to the quorum-sensing molecule farnesol 15, 16. Farnesol is an
inhibitor of filamentation 15, 16 and, as one would thus expect, inhibits biofilm formation in
vitro 17. In fact, several additional quorum sensing molecules accumulate in mature biofilms
(see Box 1), and addition of such molecules to biofilm cultures in vitro suggests that they
may promote biofilm dispersal 18–20.

Box 1

Quorum sensing

Quorum sensing phenomena are those in which microbial behaviors or responses are
governed by cell density. Such community behaviors are generally determined by
secreted signaling molecules, whose accumulation is a measure of cell density 100.
Quorum sensing plays a pivotal role in biofilms of all kinds 101, 102. The most well
studied quorum sensing molecule in C. albicans is E,E-farnesol, an inhibitor of hyphal
formation. Exogenous farnesol inhibits biofilm formation if provided early, during the
time of adherence 17, 18. The limited biofilms that form in the presence of farnesol
comprise mainly yeast and pseudohyphal cells, rather than hyphae. Farnesol accumulates
in supernatants of mature biofilms 20, where stimulation of yeast cell production may
promote biofilm dispersal. Tyrosol, an alcohol derived from tyrosine, has an activity
opposite that of farnesol: it stimulates hyphal formation. Exogenous tyrosol addition does
not have a measurable effect on overall biofilm formation, but can partially overcome
biofilm inhibition by exogenous farnesol 18. Tyrosol also accumulates in mature biofilm
supernatants 18, 20, and the overall inhibition of hyphal formation by such
supernatants 17, 18, 20 seems to reflect the dominant activity of farnesol 18. Several
additional small molecules are detectable in biofilm supernatants, including phenylethyl
alcohol, dodecanol, and nerolidol 20. Each isolated molecule can inhibit hyphal
formation, and thus all may aid in biofilm dispersal by promoting yeast cell formation. It

Finkel and Mitchell Page 2

Nat Rev Microbiol. Author manuscript; available in PMC 2014 January 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



will be of interest to block synthesis of or response to individual molecules in order to
assess their biological functions, and to test their roles in biofilms formed in vivo.

Several noteworthy classes of gene products govern biofilm properties. Many biofilm genes
encode known or predicted cell wall proteins. These proteins are of special interest because
they may play a direct role in cell-substrate or cell-cell adherence. Indeed, heterologous
expression studies indicate that Eap1, Hwp1, Als1, and Als3 have such roles 21–23. Surface
proteins are of further interest as accessible therapeutic targets. Finally, it has become
increasingly evident that cell heterogeneity is a critical feature of biofilms 24. This attribute
is obvious from the different cell types evident in C. albicans biofilms (Fig. 1), and fungal
cell wall protein genes are subject to both genetic and epigenetic mechanisms that further
contribute to cell heterogeneity 25, 26.

Many of the C. albicans genes involved in biofilm formation encode predicted transcription
factors or protein kinases. These regulatory proteins must act indirectly to control biofilm
properties, but can be informative indicators of the internal and external signals that
influence biofilm development. For example, the transcription factor Bcr1 is required for
biofilm formation and is upregulated in hyphae, thus suggesting that Bcr1-dependent gene
products may be the hyphal components that are required for biofilm formation 27, 28.
Similarly, the zinc-responsive transcription factor Zap1 is a regulator of extracellular matrix
accumulation, suggesting that ambient zinc levels may alter matrix levels 29. The signals
that influence the activity of many of the other biofilm regulators listed in Table 1 are not
well understood, thus presenting an opportunity for future study.

Several alcohol dehydrogenase and aryl-alcohol dehydrogenase genes have an impact on
biofilm formation. The fact that both positive and negative roles for these genes have been
deduced may suggest that substrate specificity is critical for their biological function 29, 30.
Although it is possible that their substrates and products act primarily through effects on
intermediary metabolism, we note that the aryl alcohol dehydrogenases in particular have
been implicated in synthesis of amino acid-derived alcohols that may function in quorum
sensing 19, 31, 32.

We have assembled a model that connects steps in biofilm formation, biofilm genes, and
regulatory pathways (Fig. 2). The regulatory relationships diagrammed are based on diverse
lines of evidence, including mutant phenotypes, genetic epistasis tests, microarray analysis,
gene overexpression phenotypes, and chromatin immunoprecipitation. Some pathway
relationships are thus indirect or tentative. The model is intended as a framework for the
identification of new areas of inquiry and for interpretation of future studies.

Perhaps the greatest utility of a model for gene function in biofilm development is the
application to in vivo models for biofilm formation on implanted devices 11, 33–35. In vivo
models are critically important because the nature of the device surface, the presence of host
derived conditioning film, the levels of oxygen and carbon dioxide, and liquid flow all affect
biofilm development 12, 36–38. It is thus impossible to duplicate all relevant in vivo
conditions in vitro.

Diversity of Biofilm Environments and Cohabitants
Many studies have focused on C. albicans biofilm formation on implanted vascular
catheters, a major source of infection 7. However, biofilm formation occurs on many other
devices. A rat denture biofilm model has been described recently that recapitulates features
of denture stomatitis 33. Microscopic and microbiological analysis revealed the signature
features of biofilm formation – adherent cells, presence of extracellular matrix material, and
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high-level drug resistance. One other recently described rat model, in which biofilms form
on catheters implanted subcutaneously, also has characteristic matrix material and an
abundant hyphal population 34. The latter provides both ethical and technical advantages in
that a single animal can be used to culture numerous biofilms.

Biofilms also form on tissue surfaces, such as infections of the oral and vaginal mucosa. In
such infection models, C. albicans produces dense three-dimensional biofilms embedded in
extracellular matrix material 39, 40. The level of biofilm drug resistance has not been tested
directly, though Noverr and colleagues point out that drug resistance is seldom a clinical
problem with vaginal candidiasis 40.

Is biofilm formation in these novel environments mechanistically distinct from that the more
commonly studied in vitro and in vivo models? There are certainly some conserved features.
For example, biofilm formation in all of the models described above depends upon
transcription factor Bcr1 (Filler, personal communication, Dongari-Bagtzoglou, personal
communication) 33, 34, 40. Where tested, filamentation-defective strains were biofilm-
defective as well 34, 40. However, it is likely that distinct genetic requirements and
mechanisms will emerge for each system, based on precedents from systematic
manipulation of in vitro biofilm environments 38 and the pronounced gene expression
responses of C. albicans to distinct host niches 41.

For any one type of biofilm, the environment may be altered by presence of co-infecting
microbes. The overall frequency of mixed species biofilm infections has not been reported,
but over 20% of Candida bloodstream infections are polymicrobial 42. A recent analysis of
24 implanted device-associated endocarditis cases reported that ~25% of those infections
were polymicrobial 43. Within biofilms grown in vitro, the interactions between bacteria and
C. albicans are diverse 44. Symbiotic interactions include augmented adherence or antibiotic
resistance 45, 46. However, most known interactions are inhibitory. Among the most
intriguing examples are those that arise from transkingdom quorum sensing molecule
responses. For example, farnesol produced by fungi inhibits biofilm formation of
Staphylococcus aureus, and increases its antibiotic susceptibility 47, 48. Bacteria fight back
though; for example, the Pseudomonas aeruginosa quorum sensing molecule homoserine
lactone mimics farnesol and inhibits C. albicans filamentation, thus preventing biofilm
formation by C. albicans 49. Other inhibitory interactions arise from broader environmental
manipulation: vaginal bacteria inhibit C. albicans growth and virulence by producing H2O2
or lactic acid 44, 50. The significance of further study in this area is demonstrated by the fact
that the presence of combined infection by both bacteria and C. albicans can result in
increased mortality 51, 52.

Adherence and Attachment Responses
Gene products assigned to the adherence step (Fig. 2) have been shown through either null
mutant analysis or heterologous expression studies to affect binding to a plastic or protein-
coated substrate. One of the most clearly defined biofilm adhesins that mediates surface
binding is Eap1 21, 53. Eap1 has sequence features commonly found among fungal cell
surface proteins 54, 55, including a signal sequence and a composition rich in the prospective
glycosylation acceptors serine and threonine. It also contains internal repeats of a peptide
motif, WPCL, that is found in numerous fungal cell surface proteins. Finally, it has a short
C-terminal sequence that directs attachment of a glycosylphosphatidylinositol (GPI) anchor.
GPI-linked proteins are found in many eukaryotes, where the GPI moiety tethers proteins to
the plasma membrane. However, C. albicans and many other fungi can cleave this anchor,
and then transfer the cleavage product and attached protein to a covalent linkage with β
glucan in the cell wall 54, 55. Several approaches indicate that Eap1 is indeed a GPI-linked

Finkel and Mitchell Page 4

Nat Rev Microbiol. Author manuscript; available in PMC 2014 January 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cell wall protein 53. Eap1 functions directly in biofilm adherence, as indicated by three
observations: its expression in a non-adherent Saccharomyces cerevisiae strain confers
adherence to polystyrene; a C. albicans eap1Δ/Δ deletion mutant has reduced adherence to
polystyrene; and a C. albicans eap1Δ/Δ deletion mutant is defective in biofilm formation, as
assayed both in vitro and in an in vivo catheter model 53, 56.

The highly related cell wall proteins Als1 and Als3 also may function in biofilm surface
attachment 57. Expression of Als1 or Als3 in S. cerevisiae promotes binding to several
different protein-coated substrates 58, which may resemble the conditioned surface of an
implanted device. In addition, a C. albicans als1Δ/Δ als3Δ/Δ double mutant is defective in
biofilm formation in vitro and in vivo 22. In particular, catheter surfaces inoculated with the
double mutant are virtually devoid of cells after incubation in vivo 22, as expected if the
mutant has a severe substrate adherence defect.

The idea that Eap1 and Als1 might function in the initial adherence step is consistent with
the fact that expression of both genes is detectable in cells grown as either yeast or hyphal
cell types 56, 59. This is not the case for Als3, which is expressed primarily or exclusively in
hyphae 59. It is possible that the initial adherence step leading to biofilm formation in vivo
can be carried out by either yeast-form cells, which express Als1, or by hyphae, which
express Als3.

Adherence itself may activate a gene expression response. Murillo and colleagues conducted
a microarray comparison of planktonic cells and substrate-adherent cells 60. Interestingly, as
little as 30 min after adherence, a change in gene expression was established that, for several
genes, was maintained for hours. In addition, Mateus and colleagues found that GFP fusions
to the drug efflux proteins Cdr1 and Mdr1 were up-regulated within a few minutes after
adherence to a glass slide 61. Thus C. albicans may sense and respond to surface contact.
The regulators that promote attachment responses are unknown, but the transmembrane
protein Dfi1 and MAP kinases Mkc1 and Cek1 are mediators of other surface-dependent
responses 62–64 and are thus excellent candidates. Mkc1 is required for normal biofilm
formation 64, and it would be interesting if this requirement reflected effects on adherence-
induced gene expression.

Adherence is also highly regulated through a novel mating factor-response pathway (Box 2).
Interestingly, the pathway operates in cells that do not mate, but rather assist in mating
through formation of a biofilm 65–68. The responsive cells are of genotype MTLa/MTLa, and
thus have the potential to mate with MTLα/MTLα cells. They are unable to do so because
they have not made the epigenetic transition from the “white” mating-incompetent state to
the “opaque” mating-competent state 69. They nonetheless respond to α mating factor
through a newly evolved hybrid signal transduction pathway 66 to create a biofilm. Four
white cell α factor-induced genes are required for full adherence of this biofilm, those
encoding the cell surface proteins Eap1 and Pga10, the predicted secreted protein Pbr1, and
the putative aryl-alcohol dehydrogenase Csh1 68. (Csh1 has been detected on the C. albicans
cell surface 70 so the nature of its role in adherence is uncertain.) Most C. albicans isolates
are MTLa/MTLα and do not secrete or respond to mating factor; MTLa/MTLα strains have
been used for the bulk of the biofilm studies described in this review. However, the fact that
Eap1, Pga10, and Csh1 all have roles in MTLa/MTLα biofilm formation (discussed above
and below) argues that both kinds of C. albicans biofilms may employ similar gene
products 68.
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Box 2

C. albicans mating

One of the most exciting C. albicans biological discoveries in recent years is the finding
that this organism, long considered asexual, can mate. A mating type locus called MTL
determines sexual identity through regulatory relationships with some similarity to those
of S. cerevisiae: MTLa/MTLacells can mate with MTLa/MTLα cells, and MTLa/MTLα
cells cannot mate 103. The mating response is induced by secreted mating pheromones:
MTLa/MTLacells secrete a factor; MTLa/MTLα cells secrete α factor 104. Mating
involves more than just MTL-specified sexual identity, though; cells must switch from
the mating-incompetent “white” cell type to the mating-competent “opaque” cell
type 105–109. The epigenetic white-opaque switch responds to numerous genetic and
environmental signals, but is not regulated by mating factors as far as we know
now110, 111.

Mating of two C. albicans diploid cells yields a tetraploid that breaks down through
chromosome loss to yield recombinant diploid progeny 112–115. Normal functioning of
the chromosome loss pathway depends upon Spo11 116, whose orthologs function in
meiosis in other organisms, but there is no evidence that C. albicans has a complete
meiotic pathway.

Although white cells do not mate, they do respond to mating pheromone. The response
can be assayed through changes in gene expression as well as increases cell-cell and cell-
substrate adherence, yielding biofilm formation 65–68, 104, 117 Interestingly, only a portion
of the opaque pheromone-response pathway is utilized in white cells; they employ a
hybrid pathway with novel downstream components 66–68. Opaque cells may be rare in
many niches, and the biological role of this white cell biofilm seems to be to facilitate
mating among disperse opaque cells 65, 110, 115.

Biofilm Initiation, Filamentation and Cell-Cell Adhesion
Gene products assigned to the initiation step (Fig. 2) reflect a range of functions. This
diversity reflects in part our broad definition: these are genes in which mutations cause
production of only a small, rudimentary biofilm in vitro. A few additional gene products in
this group (Rbt5, Als9 and Ece1) are those whose overexpression improves biofilm
formation in a bcr1Δ/Δ mutant, which is defective in biofilm initiation (see below). We note
that a mutant with a partial adherence defect might be categorized as an initiation mutant;
thus our assignment of gene products to this step is tentative.

The production of hyphae is a hallmark of initiation, and many initiation-defective mutants
grow solely as yeast cells under biofilm conditions (see Table 1). What is the role of
hyphae? Insight has come from the transcription factor Bcr1, expression of which is up-
regulated in hyphae 27, 28. Bcr1 is required for biofilm initiation, but not for production of
morphologically normal hyphae 27, 28. Rather, it is required for full expression of a number
of cell-surface proteins, several of which are hyphally induced. The failure to express
hyphally induced surface proteins, such as Als3 and Hwp1, is the cause of the bcr1Δ/Δ
mutant biofilm defect, because increased expression of ALS3 or HWP1 in the bcr1Δ/Δ
mutant restores biofilm formation ability, both in vitro and in vivo (Fig. 3) 23, 28. Moreover,
expression of Bcr1 or its target genes can even permit biofilm formation by mutants
defective in hyphal morphogenesis: Specifically, increased expression of BCR1 in a hyphal-
defective tec1-/- mutant permits in vitro formation of a biofilm, albeit a fragile one 28. In
addition, expression of a surface-directed Als3 fusion protein permits biofilm formation in
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vitro by a hyphal-defective efg1Δ/Δ mutant 71. Therefore, the major way that hyphae
promote biofilm formation is through expression of their surface protein complement.

Interestingly, the Bcr1 ortholog in biofilm-forming Candida parapsilosis is also required for
biofilm formation 72. Because C. parapsilosis does not form hyphae, the regulatory pathway
upstream of Bcr1 may be divergent. Nonetheless, this finding points toward the exciting
possibility that Bcr1 orthologs in other species may also govern biofilm formation.

What do these hyphal surface proteins do? Hyphae are extremely “sticky”, and both Als3
and Hwp1 are adhesins in some contexts 54, so it seems reasonable that they may promote
cell-cell or cell-substrate binding. In fact, Als3 (along with the closely related Als1) and
Hwp1 seem to function as complementary cell-cell adhesins, analogous to the mating
agglutinins of S. cerevisiae that promote binding between a and α cells. Two main
observations support this idea. First, both an hwp1Δ/Δ mutant and a double als1Δ/Δ als3Δ/Δ
mutant are defective in biofilm formation, but a mixture of the two mutant strains produces a
robust biofilm both in vitro and in vivo 22. This finding indicates that Hwp1 and Als1/3 have
distinct and complementary roles in biofilm formation. Second, expression of HWP1 in S.
cerevisiae promotes its adherence to hyphae of wild-type C. albicans 22. Adherence is
diminished when tested with hyphae of an als1Δ/Δ als3Δ/Δ mutant C. albicans. These
findings points toward cell-cell adherence as the function that is mediated by Hwp1 and
Als1/3.

At this juncture, one can envision a minimalist pathway of biofilm formation. First, yeast
cells express Eap1 and Als1, which mediate cell-substrate binding. Second, surface-bound
cells propagate and express Als3 and Hwp1, which mediate cell-cell binding. Hyphal
formation might provide a simple pathway that leads to Als3 and Hwp1 accumulation. Als3
would also augment cell-substrate binding, as discussed in the previous section. In addition,
it has been shown that Eap1 mediates cell-cell binding as well as cell-substrate binding, so it
would participate in both processes. Many gene products required for biofilm initiation are
also required for hyphal formation; their functions are explained by the minimalist model as
ultimately being required for ALS3 and HWP1 expression.

However, one group of biofilm initiation gene products is less readily explained by the
minimalist model: the additional cell surface proteins, including Sun41, Csa1, Pga10, Rbt5,
Hwp2, and Rbt1 (Table 1). Analysis has been challenging for several of these gene products
because they belong to families with overlapping or compensatory functions (Csa1/Pga10/
Rbt5; Hwp2/Rbt1/Hwp1; Sun41/Sun42) 67, 73–76. The requisite construction of multi-gene
mutants for study of these genes is non-trivial, even in this era of accelerated C. albicans
genetics. In any case, current observations suggest that some of these gene products may
function as adhesins. In particular, additive effects of hwp2 and rbt1 mutations with an hwp1
mutation, along with the known role of Hwp1 as an adhesin, suggests that Hwp2 and Rbt1
are adhesins67. They may contribute to a threshold level of cell-cell binding, for example,
that is required for biofilm stability. (C. parapsilosis Bcr1 promotes expression of CpRBT1,
so perhaps CpRbt1, which has a major role in biofilm formation 72, 77, has assumed a
predominant adhesin function in that species.) A second suggestion is that some of these
cell-surface proteins may have general roles in cell wall structure, and that perturbation of
cell wall architecture impairs adherence through effects on either post-translational
modification or expression of adhesins. We note that loss of Sun41 or Pga10 confers
hypersensitivity to cell wall inhibitors, an expected consequence of a general cell wall
defect 73–76. It is also noteworthy that ALS1 RNA levels are reduced in the biofilm- and cell
wall-defective protein kinase mutants gin4-/-, ire1-/-, and cbk1-/-, thus suggesting that
adhesin gene expression may be regulated through cell wall regulatory pathways 78. The
mechanistic contribution of so many cell surface proteins to biofilm formation is among the
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major questions to be addressed, particularly because such proteins are inviting therapeutic
targets.

Biofilm Maturation and the Extracellular Matrix
Biofilm maturation includes continued growth as well as accumulation of extracellular
matrix material. Genes assigned to this category (Fig. 2) include those affecting matrix
production or overall biofilm biomass.

The composition of the matrix that is produced in vitro includes carbohydrate, protein,
hexosamine, phosphorus and uronic acid 79. One major extracellular carbohydrate
constituent is β-1,3 glucan, and increased production is associated with biofilm cells
compared to planktonic cells 80. Proteomic analysis has revealed the presence of specific
proteins associated with the biofilm cell surface; these proteins may include matrix
components 30, 81. Finally, a recent study reports detection of extracellular DNA 82, as has
been found in bacterial biofilms 83. Addition of DNase to a mature biofilm partially disrupts
the biofilm 79, 82 and the addition of eDNA at the beginning of biofilm development results
in mature biofilms with increased biofilm biomass. Thus the matrix eDNA contributes to the
structure and stability of a mature biofilm.

The transcription factor Zap1, a regulator of zinc acquisition 84, 85, is a net negative
regulator of biofilm matrix production (Fig. 2). A zap1Δ/Δ mutant forms a biofilm with
elevated levels of matrix β-1,3 glucan in vitro and in vivo 29. Zap1 activates expression of
CSH1 and IFD6, which have inferred negative roles in matrix production, and represses
GCA1, GCA2, and ADH5, which have inferred positive roles 29. Gca1 and Gca2 may
function through hydrolytic release of soluble β-1,3 glucan fragments from longer glucan
chains. The precise functions of the alcohol dehydrogenase-related gene products, Csh1,
Ifd6 and Adh5, are unknown, but several similar S. cerevisiae alcohol dehydrogenases
function in synthesis of acyl and aryl alcohols 31, 32, 86, 87. These alcohols have roles in
quorum sensing and cell signaling (see Box 1), as indicated for example by effects on
hyphal growth 15–18, 20, 88. Thus a possible mechanistic role for these dehydrogenases is to
promote biogenesis of biofilm-associated acyl and aryl alcohols that in turn would control
matrix synthesis. Csh1 and Ifd6 may act preferentially to yield a matrix inhibitory signal,
while Adh5 may act preferentially to yield a matrix stimulatory signal 29. The known role of
Zap1 in zinc-responsive gene expression suggests that ambient zinc levels may be a critical
determinant of biofilm matrix levels.

Zap1 may have a broader role in biofilm maturation than simply to control matrix
accumulation. The zap1Δ/Δ mutant has reduced levels of several genes that are normally up-
regulated in mature biofilms, including ergosterol biosynthetic genes and putative hexose
transporters 29. Thus Zap1 seems to govern several aspects of biofilm maturation. It will be
interesting to see if any of these mutant phenotypes reflect the postulated alteration of
quorum sensing molecule levels.

A unique feature of mature biofilms, in addition to matrix accumulation, is the acquisition of
high-level resistance to antifungals 5, notably the azoles and polyenes that target membrane
sterols. The nature of biofilm drug resistance may reflect four distinct mechanisms. First,
mature biofilm cells have reduced membrane sterol levels 89 and elevated expression of
several ergosterol biosynthetic genes 60, 90, 91, perhaps reflecting hypoxia 38, 77. The ability
of mature biofilm cells to survive with low sterol levels, combined with elevated
biosynthetic enzyme levels, may contribute to azole and polyene resistance. Indeed, a recent
study revealed that a polyene-resistant biofilm cell subpopulation displays substantially
increased ergosterol biosynthetic gene expression 92. Second, the azole efflux genes CDR1,
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CDR2, and MDR1 are induced early in biofilm formation, and may contribute to overall
azole resistance. However, their phenotypic contribution is detectable only in early biofilm
cells 89. Third, like several bacterial biofilms 93, C. albicans biofilms contain a
subpopulation of “persister cells” that are tolerant to a variety of otherwise cidal
treatments 94. The significance of this phenomenon is highlighted by the presence of
persisters in human oral C. albicans populations 95. Persisters do not have the long-term
stability of mutants, but are phenotypic variants that may arise from an epigenetic change or,
perhaps, transient aneuploidy 96. Finally, the β-1,3 glucan of biofilm matrix binds to and
sequesters azole drugs 80. The physiological significance of this mechanism has been
demonstrated through analysis of a strain with reduced β-1,3 glucan biosynthetic capacity
(genotype FKS1/fks1Δ) 97. Biofilms of this strain have reduced matrix β-1,3 glucan and
reduced azole resistance levels in both in vitro and in vivo models. The dramatic sensitivity
of the mutant biofilm cells to azole treatment, particularly in the in vivo biofilm model,
suggests that this sequestration mechanism is a major contributor to C. albicans biofilm
azole resistance 97.

Cell Dispersal
Ultimately a biofilm releases cells that can initiate formation of new biofilms or disseminate
into host tissues. Recent studies examined the quantitative and qualitative properties of cells
released from a C. albicans biofilm 98, 99, yielding three important findings. First, the
majority of dispersed cells are yeast cells, as depicted in Fig. 2 98. This observation suggests
that the transition from yeast to hyphae that occurs during biofilm initiation may be thrown
into reverse for dispersal. Second, three new regulators of dispersal, Ume6, Pes1 and Nrg1,
were identified. Over-expression of UME6 reduced the release of cells from a biofilm, while
over-expression of either PES1 or NRG1 increased release 98, 99. Thus changes in expression
or activity of Ume6 or Pes1 during biofilm maturation – perhaps in response to quorum
sensing molecule accumulation – may govern cell dispersal. Finally, the study reports the
fascinating observation that dispersed cells have distinct phenotypes from planktonic cells;
they display elevated adherence, filamentation capacity, and increased pathogenicity in a
disseminated infection model. Thus the dispersal step releases cells that are uniquely
equipped to seed new biofilms and sites of infection 98, 99.

Concluding Remarks
C. albicans biofilm formation on implanted devices is a major source of disseminated
Candida infection. The last decade has seen major advances in the definition of C. albicans
genes that govern biofilm formation. In many cases we have moved forward from gene
discovery to definition of pathway relationships and, in some cases, mechanistic
understanding. In addition, numerous molecules with the potential for quorum-sensing roles
in biofilm maturation have been defined. Moreover, there are now several animal models for
analysis of biofilm formation in vivo that have validated the significance of key biofilm
genes discovered in vitro. Yet a summary of that substantial progress also reveals major
gaps in our understanding: How can so many cell wall proteins participate in biofilm
formation; are they all adhesins? Which small molecules are actually active in quorum
sensing in vivo, and can we harness their activities for therapeutic development? Can we use
our understanding of biofilm drug resistance to develop better therapeutics and more
focused assays of biological activity? What are the dynamics of formation and key
molecular players in mixed-species biofilms? And, perhaps most difficult to answer and
most interesting to ponder, what selective pressures caused evolution of biofilm formation
ability – was it for mating, or for mucosal surface adherence and persistence in the host?
There has never been a more interesting time to study C. albicans biofilms.
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Figure 1. C. albicans biofilm structure in vitro and in vivo
A) Scanning electron micrograph (SEM) of an in vitro biofilm. The biofilm sample was
sliced to reveal three layers in a cross-sectional view (J. S. Finkel, J. Suhan, and A. P.
Mitchell, unpublished results). The basal layer includes primarily yeast cells, as evident in
the lower enlarged inset. The central layer is mainly hyphae. The upper layer has yeast cells
budding from the hyphae. The upper enlarged inset shows extracellular matrix material,
which appears fibrous in this preparation. B) SEM of an in vivo biofilm from the rat catheter
model 11. Yeast cells, hyphae, and some pseudohyphal cells are evident, along with
extracellular matrix material. (This image was provided by J. Nett and D. Andes.)
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Figure 2. Gene function in biofilm formation
In the adherence step, yeast-form cells adhere to the substrate. In the initiation step, the cells
propagate to form microcolonies and germ tubes form to yield hyphae. In the maturation
step, the biofilm biomass expands, the extracellular matrix accumulates and drug resistance
increases. In the dispersal step, yeast-form cells are released to colonize the surrounding
environment. The upper half of the diagram depicts several known pathway relationships.
The bottom half includes additional genes that function in a specific step, but may not be
connected to a known pathway. For simplicity, some known pathway relationships have
been omitted. A few genes are presented more than once if they have roles in more then one
step of biofilm formation. Arrows represent positive relationships; T-shaped bars represent
negative relationships. A “+” indicates that the upstream gene/signal stimulates expression
of the downstream target; a “−” indicates that the upstream gene/signal inhibits expression
of the downstream target. Dashed lines indicate repression by an indirect mechanism.
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Figure 3. Restoration of biofilm formation in a bcr1Δ/Δ mutant background by overexpression of
surface protein gene ALS3
These panels are confocal scanning laser micrographs of concanavalin A-alexafluor stained
biofilms, grown under standard in vitro conditions 28. The top panels are side views; the
bottom panels are pseudocolor depth views, in which blue color represents cells closest to
the substrate and red color represents cells farthest from the substrate. The wild type biofilm
has a dense mixture of yeast cells and hyphae, which gradually becomes predominantly
hyphae at the top of the biofilm. The bcr1Δ/Δ biofilm forms a basal layer of yeast cells
attached to the substrate with little to no hyphae. Increased expression of ALS3 in the bcr1Δ/
Δ strain permits substantial biofilm formation.
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Table 1

Molecular function of gene
producta

Role of gene
product

Gene Reference

Transcription Factor Positive ACE2c, BCR1, CPH1, CZF1c, EFG1c, FLO8c,

GCN4, TEC1c, UME6c, NRG1c

14, 27, 28, 90, 98, 99, 118–122

Negative ZAP1 29

Cell Wall Related Protein Positive ALS1, ALS2c, ALS3, ALS4, ALS5, ALS7, ALS9,
CSA1, EAP1, FKS1, HWP1, HWP2, OCH1,

PGA1, PGA10c, PMT1c, PMT2c, PMT4, PMT6,

RBT1, RBT5, SUN41c

22, 23, 28, 38, 56, 67, 71, 73–76, 97, 123–125

Negative YWP1 126

Alcohol dehydrogenase Positive ADH5 127

Negative ADH1, CSH1, IFD6 29, 30

Protein Kinase Positive CBK1c, GIN4c, IRE1c, MKC1, YAK1c 64, 78, 128

Negative CHK1, TOR1, 129, 130

Drug efflux pump Positive CDR1, CDR2, MDR1 89

Gluco-amylase Positive GCA1, GCA2 29

Otherb Positive CAT2, ECE1, KEM1c, MDS3c, NDH51,

NUP85c, PBR1, PES1, PDX1, RIX7, SUV3c,

VAM3c, VPS1c

28, 68, 98, 131–136

a
Molecular functions have been inferred from protein sequence homology in most cases.

b
Other refers to gene product functions that does not fit into any of the above categories. For specific functions refer to supplemental table 1.

c
Indicates a regulator of filamentation
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