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Abstract
Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and
troughs of malaria parasitaemia, which in turn affect disease severity and transmission.
Quantitatively partitioning the relative roles of these effects through time is challenging. Using
data from rodent malaria we estimate the effective propagation number, which shows that the
relative importance of contrasting within-host control mechanisms fluctuates through time and is
sensitive to the inoculating parasite dose. Furthermore, the capacity of innate responses to restrict
initial parasite growth saturates with parasite dose, and experimentally enhanced innate immunity
can affect parasite density indirectly via resource depletion. Our statistical approach offers a tool
to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and
interactions of within-host regulatory mechanisms.

In the bloodstream phase of many malaria species, including those infecting humans,
infected red blood cells (RBCs) burst in synchrony, releasing merozoites that must locate
and infect a new RBC rapidly or else they die (1). Twenty-four to seventy-two hours later
(depending on the Plasmodium species) the next generation of merozoites bursts out. The
cycle repeats itself until the host dies or clears the infection (Fig. S1). Clearance of infection
requires various complex immunological and physiological processes, the relative roles and
timing of which have proven difficult to quantify (2-4). We propose a straightforward
statistical approach to the problem. Building on the analogy between cell-to-cell propagation
and host-to-host transmission (5), we borrow a model from between-host disease population
ecology (6) to show how cell-to-cell transmission of malaria can be estimated using standard
experimental data from rodent malaria (the modeling framework is readily extended to
suitably-detailed data on human malaria, discussed below). If It is the number of infected
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RBCs at time t, and St is the number of uninfected RBCs, then the expected number of
infected RBCs observed at time t+1 will be E[It+1] = PE,t St It where E[] denotes the
expectation and PE,t is the effective propagation number of the infection at t. This number
can be thought of as the product of merozoite burst size, contact rates between merozoites
and uninfected RBCs, and invasion probability given that a contact has occurred. This
quantity is analogous to the transmission coefficient in canonical models of between-host
infection dynamics (7). The effective propagation number will vary through time as a
function of variation in the availability of susceptible RBCs and efficacy of immune
mechanisms. Taking the log on both sides of the relationship above, we can write

1

Applying regression techniques to [1] enables estimation of PE,t, whenever time-series of I
and S are available. While of critical interest in its own right, PE is also important because of
its relation to the within-host basic (R0) and time-varying effective (RE) reproductive ratios.
For blood phase malaria, these two dimensionless quantities are defined as the number of
newly infected cells that would arise from the merozoites that burst from a single infected
cell in an otherwise uninfected bloodstream, and the average number of new infected cells
per infected cell in a previously infected bloodstream, respectively (8). From our estimates
of PE,t, we can directly quantify the effective reproductive ratio, as RE,t = PE,t St. When RE
>1, within-host parasite density will increase. When RE <1, parasite density will decrease.
The maximum upper bound on RE (and R0) is the burst size, or number of merozoites
emerging from a single infected RBC, and is attained if invasion probability on contact is 1,
and crowding and immune effects are absent.

A variety of immune and non-immune factors determine the magnitude of PE and thus RE.
The relative importance of these factors will vary during the course of an infection because
of time-dependent variation in RBC availability/susceptibility and the density of immune
effectors (9, 10). A standard approach to quantifying this variation is to test data against
mathematical models that incorporate a series of differential equations chosen to reflect
processes involving explicitly defined interacting populations of cells and effectors, as a
function of time and/or pathogen titer (3, 5, 11-18). Focusing on PE allows us to side-step
many complex unknowns required for this approach, not least the arbitrary choice of
specific functional forms for key relationships such as immune killing (14, 19), and the need
to wrestle with parameter identifiability issues (12, 18, 20).

To illustrate our data-driven approach, we use data on the rodent malaria Plasmodium
chabaudi in laboratory mice. Infected RBCs burst every 24 hours in this species, releasing
on average 6 merozoites (21). Applying [1] therefore requires daily estimates of numbers of
infected and uninfected RBCs. Here we analyse experimental work on CD4+ T-cell depleted
mice (22), intact mice infected at a range of starting parasite densities (23), and mice treated
with a neutralizing antibody that acts to up-regulate immunity (24), all infected with the AS
clone of P. chabaudi (see Figs S2-S4 and (25) for details). Framing our analysis in
ecological terms (4, 14) we contrast bottom-up processes (analogous to resource availability
for free-living organisms) with top-down mechanisms (analogous to control by natural
enemies). There are two widely recognized bottom-up controls in malaria dynamics (3, 4,
11-13, 26-28): the availability of susceptible cells and age-dependent variation in
susceptibility of these cells. For example, younger RBCs (reticulocytes, less than four days
old) are less susceptible to P. chabaudi AS infection than are normocytes (29). Both RBC
availability and age-distribution are shaped by infected cell density (since parasites destroy
RBCs) and RBC supply (erythropoiesis and/or splenic retention of uninfected RBCs (30)).
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Top-down regulatory mechanisms include innate and adaptive immunity provided by
effectors ranging from macrophages to strain-specific antibodies (9).

We first estimate the time-varying quantities defined above. In both CD4+ T-cell depleted
and intact mice, the effective propagation number (PE,t) fluctuates considerably over the
course of the infection (Fig. 1). This combined with the fluctuations in susceptible RBC
supply leads to variation in the effective reproductive ratio (RE,t), typically ranging from 4-6
early in the infection to less than 1 later on. The effect of treatments on PE,t and RE,t reveals
three broad determinants of within-host malaria dynamics in rodents, detailed below.

Dose dependence of early innate immunity
Comparing the dynamics of PE across inoculum sizes in intact mice (Fig. 1) reveals a
surprising and conspicuous dose-dependence in the early propagation of the parasite: higher
starting numbers of parasites resulted in substantially higher effective propagation numbers
early in infections (Fig. 2). This curve resembles the type II functional response classically
described for predator-prey systems: if the immune response has a ‘predator’ handling time
associated with each ‘prey’ caught (i.e., infected RBCs or free merozoites killed) (e.g. (31)),
the prey per-capita death rate will decline as a function of prey numbers. This interpretation
is also compatible with innate immunity modeled as drawing on a limited pool of effectors
(32). Thus, early host defenses (active within 1-4 days and thus likely to reflect an arm of
innate immunity (9)) can retain RE near 1 for small numbers of parasites (Fig. 1), but if
numbers of parasites are above a threshold, this control is overwhelmed. In fact, the upper
limit of the range of burst sizes reported for the AS clone (6, (21)) is close to the maximum
estimate of RE observed at high doses (Fig. 1), suggesting that for sufficiently high inocula,
there is negligible loss of parasites to immunity in the early phase. More effective control at
low doses might contribute to the dose-dependence of pre-patency observed in human
malaria infections during neurosyphilis treatments (33). However, detecting dose-
dependence of innate immune efficacy in human hosts is likely to be complicated, since
evidence from both neurosyphilis treatments (2, 3) and vaccine trials (10) points to
considerable patient to patient variability in innate immunity.

Impact of RBC age structure
If adaptive immunity can be assumed to be very impaired in CD4+ T-cell depleted mice (9),
temporal fluctuations in PE will primarily reflect the action of RBC availability, age
structure and/or innate immunity. The age structure of RBCs can be inferred via the change
in RBC numbers due to processes other than infection of individual cells (25)(Fig. S5).
Significant shifts towards younger age classes occur over the course of the infection: from
<5% reticulocytes in uninfected mice to as much as 80% in CD4+ T-cell depleted and 40%
in intact infected mice (Fig. 1; proportion occupied by grey polygons increases with time).
This replacement of normocytes by reticulocytes is associated with a reduction in PE
reflecting reduced average susceptibility of circulating RBCs. We can build on the
regression equation defined in [1] to fit two age-specific propagation parameters (PE1, PE2,
which respectively account for effective propagation in normocytes and reticulocytes) to the
time-series of immune depleted mice (25). Incorporation of these parameters significantly
improves the fit to the temporal pattern of effective propagation compared to a model
lacking age structure (Fig. S7) (LR=11.53, p<0.01, df=1). This provides direct empirical
evidence of the importance of RBC age-structure to control of malaria parasites in immune
depleted mice. Indeed, the joint effect of RBC depletion and skewed age structure results in
a 3-fold reduction of the effective reproductive ratio (Table S1), which suggests that the
many host-dependent mechanisms of RBC reduction that are evident in both rodent and
human malaria (30) may reflect an evolutionary adaptation.
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Impact of adaptive immunity
Using the two RBC age-specific parameters estimated from immune depleted mice (PE1,
PE2), we can predict the pattern of effective propagation through time that would be
observed if all fluctuations in PE,t were due to bottom-up controls only, and compare this
with the observed time-series in intact mice to reveal the relative importance of top-down
and bottom-up factors through time (Fig. S8, S9). Our approach reveals that this is also
highly dependent on initial parasite dose. For mice inoculated with high doses, dynamics for
the first approximately 10 days are adequately explained by RBC availability and age
structure, but after that the effective propagation number is consistently and substantially
over-predicted by the bottom-up model (Fig. S9). This indicates that potent top-down
controls are established after about a week. Mice infected with low parasite density have an
additional early over-prediction of PE,t because the bottom-up only model does not capture
the ability of early innate immunity to control propagation from low densities (Fig. 2, S8,
S9). We can extend the model to incorporate early immunity (Fig. 2) by defining early
parasite survival to be a function of parasite density that increases towards a plateau, and
fitting this to time-series of intact mice (25)(Fig. S10). A combined model of bottom-up and
early innate controls can precisely predict the early propagation numbers and course of
infection, but not the later propagation numbers (Fig. S9). The failures of prediction from
this simple model reflect the action of adaptive immunity. Conversely, successes of this
restricted model highlight the interval of time over which failure to account for resource
limitation as a mechanism of malaria control could impair inference about immunity (Fig.
S8).

The discrepancy between observed and predicted PEs allows us to calculate the efficacy of
immune clearance via the proportion of infected cells pt that must be killed to obtain the
observed number of parasitized cells while accounting for RBC limitation (25). To visualize
changes in immune efficacy (parasite kill rates) we plot the smoothed surface of this fraction
through time, ranking mice by early parasite density (Fig. 3A). Immune efficacy peaks
around 0.85, indicating that at its maximum efficacy, adaptive immunity removes on the
order of 85% of parasites per day, resulting in a 13-fold reduction in the effective
reproductive ratio (Table S1). From an applied point of view, this quantification might
represent a useful yardstick against which the efficacy of immunity elicited by candidate
vaccines or new drugs could be measured. The peak efficacy was similar in all mice,
irrespective of inoculating dose, but the timing of the peak varied. Mice receiving higher
doses experienced an earlier peak in parasitaemia (Fig. 3A, dashed line) and an earlier
increase in immune efficacy (as early as day 8 vs. as late as day 20 for the lowest dose, Fig.
3A). Declines in immune efficacy occur after initial parasitaemia is controlled, with kill
rates approximately halved (Fig. 3A). This decline, which might reflect down-regulation of
immunity (under host or parasite control), depletion of the immune effector pool, and/or
antigen escape, allows re-emergence of parasitaemia in some mice (Fig. S3). The pattern of
decline is complex and dose-dependent (Fig. 3A). Higher starting densities result in a rapid
dip in immune efficacy following the initial peak. Subsequently, in response to
recrudescence (Fig. S3, peaking at around 15 days, Fig. S11), immune efficacy increases
and then decays again (around day 35). By contrast, mice infected with intermediate starting
densities experience slower declines in immunity. Feedbacks inherent in activation of
adaptive immunity may partly underlie this variability (34, 35): if conditions at the peak of
infection are such that few susceptible RBCs are available, control may be achieved by
relatively less sustained immune killing, with the result that immune memory is retained less
well (36) for higher inoculum sizes.

To further illustrate how the time series approach can provide new insights from
manipulative immunological experiments, we calculated surfaces of immune efficacy for
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control and anti-interleukin 10 receptor (anti-IL-10R) treated mice (Fig. 3B). Treated mice
experience a slightly earlier increase in immune efficacy, in keeping with the accelerated
innate response generated by blockade of the potent modulatory cytokine IL-10 (24). This
slight difference in the timing of peak immune efficacy between anti-IL-10R treated and
untreated mice results in rather different maximum parasite densities (Fig. 4A). Two factors
may explain this. First, because malaria within-host kinetics are so dynamic, a small impact
at the right time may have a large consequence several time steps later. Second, anti-
IL-10R-treated mice experience earlier anemia (Fig. 4A), perhaps attributable to increased
bystander killing, suppression of erythropoesis and/or retention of uninfected RBCs by the
spleen (some of which are likely repercussions of increased TNF-α production (30)).
Consequently, there is a decline in the effective reproductive ratio in treated mice, beyond
the reduction due to direct killing of infected cells (Fig. 4). Therefore, this immune
manipulation generates an apparent increase in immune efficacy (in the sense that the
effective propagation number is reduced) that is mediated via a resource depletion
mechanism. Low levels of IL-10 have been implicated in severe anemia in human malaria
(37), suggesting similar mechanisms could be operating. An intriguing corollary is that
substantial bystander killing (whereby more than 4 uninfected cells may be killed for every
infected cell killed during rodent malaria (4)), rather than being an unintended side-effect of
immune activity, may in part be an evolutionary adaptation for using top-down mechanisms
to enhance bottom-up controls.

Discussion
Anti-parasite effects of RBC resource limitation (e.g., via suppression of erythropoesis, or
the action of protective RBC polymorphisms that reduce susceptibility) are indicated by a
range of studies on human malaria (38, 39). A key merit of the effective propagation number
is that it provides a straightforward way of controlling for effects of target cell availability
on within-host replication, thus revealing the relative and absolute strength of mechanisms
that drive within-host dynamics (e.g., killing of infected cells, or heterogeneities among
target cells in transmission characteristics), and their variation through time. The method
also yields a direct quantification of fluctuations in the within-host effective reproduction
number, RE, thus identifying key points for interventions – e.g., when parasite effective
reproduction is so low that any additional challenge to growth may result in clearance of the
infection (8), with potential relevance for applications towards human health. Finally, our
application of the methodology to the P. chabaudi case study shows that the method can
reveal previously-overlooked aspects of control in mouse malaria, producing new
hypotheses for the regulation of human malaria. Interestingly, the diminishing impact of
innate immunity with increased dose may be the selective pressure responsible for the
evolution of the large burst size of liver schizonts (and, as a consequence, the long
incubation period in the liver), which is compatible with estimates of 105 - 106 merozoites
released following a single infective bite (40) and robustly over the threshold of innate
immune escape discovered here (Fig. 2).

Previous work on malaria has fitted more mechanistically detailed dynamic models to time-
series data on uninfected and infected cells (3, 4, 11-14, 26, 41). Our simpler statistical
method confirms conclusions from this work (e.g., roles for age-structure of RBCs (12, 13)
and clearance of uninfected RBCs (11)) but also identifies dynamical features not previously
detected (e.g., dose-dependence in the impact of innate immunity and complex time-
dependence in the efficacy of adaptive immunity). Our method also sidesteps much of the
difficulty involved in fitting such models and provides empirical insights into the shapes that
functional forms in more mechanistic models should reflect (such as the dose-dependent
saturation of the early innate control (Fig 2), or the response surface of adaptive immunity
(Fig 3)). As shown (Fig. 3B, 4), our approach enables detailed interpretations of existing
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experimental data (e.g., time-series following knock-downs of immune factors (42, 43),
induced erythropoeisis or blood transfusions (41, 44), etc.). Given time-series of susceptible
and infected RBCs, estimates of time-varying effective propagation are directly accessible to
anyone with basic statistical knowledge. This should ultimately open the way for a complete
characterization of the roles of direct and indirect top-down and bottom-up mechanisms
involved in the regulation of parasite densities (Fig. S12, Table S1) in the context of both
single and mixed infections, and how this in turn impacts transmission and disease severity.

The underlying process of bursting infected RBCs and invasion of uninfected RBCs is
common to blood-phase malaria across animal taxa. The methods we introduce will
consequently be generally applicable. The strength of the mouse data we have used is the
finely resolved measures of uninfected and infected red blood cells. We are unaware of any
experimental time series in human patients in which these parameters were directly
measured but our analyses suggest that future longitudinal studies of individual patients that
undertake the simple assays required to directly assess RBC densities in addition to parasite
densities will lead to considerable insights into the factors regulating human malaria.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Within-host effective propagation
The red line is the estimate of effective propagation for 5 or 10 intact AS infected mice with
different inocula sizes (1-4th columns to the left) and 5 CD4+ T-cell depleted AS infected
mice (far right, dashed enclosure). The size of the inocula is indicated by the title of each
column (101, 103, 105, 106, CD4+ T-cell depleted mice inocula sizes are comparable to the
largest levels used in intact mice); standard errors from the regression are shown as dashed
vertical lines. Grey polygons show mean approximate proportion of RBCs aged 1-3 days,
based on RBC-change reconstruction (right-hand axis). The bottom row shows the
corresponding RE, up to day 50 for intact mice; PE changes little over the later days.
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Figure 2. Decelerating control
Effective propagation over the first 2-4 days (with the last day set when PE,t starts to decay
sharply, see Figure 1) for 4 different starting inoculation sizes (101 in black (n=10 mice, 3
days), 103 in red (n=5, 4 days), 105 in green (n=5, 2 days), 106 in blue (n=5, 2 days))
indicates a decelerating function of density suggestive of a handling-time type-effect for
innate immunity; vertical lines are standard errors from the regression defining PE,t;
horizontal lines are 95% quantiles for abundance of parasites observed on that day.
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Figure 3. Visualizing efficacy of immunity
in A) intact mice for different starting inoculum sizes (y axis labels); and B) intact mice and
intact mice treated with IL-10R, which up-regulates innate immunity (y axis labels to the
right). Surfaces show smoothed proportion of infected cells killed, pt, against time in days (x
axis) with mice ranked via their early densities within each category (rows, y axis); dashed
thick line indicates the timing of the first major peak of infection; and for A) the crosses
indicate secondary peaks, generally following dips in immune efficacy. In A) higher early
densities experience an earlier increase in mortality of infected cells but this effect decays,
then increases, finally dipping significantly around the 35th day associated with a resurgence
of parasites. In B) mice treated with IL-10R experience an earlier peak in immune efficacy.
However, treated mice generally died by day 9.
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Figure 4. Top-down controls acting via bottom-up effects
Time-series (×10-2 per μl) of parasites (A) and RBCs (B) for mice treated with IL-10-R
(grey, n=4) and controls (blue, n=4), and the corresponding estimate of the effective
reproductive ratio, RE on days 4-7 (C) that would be observed in the absence of immune
killing of infected cells obtained by combining RBC age-specific estimates of PE obtained
from CD4+ T cell-depleted mice with the RBC dynamics and age-structure indicated by
these time-series. Dotted regions in A and B show the time period plotted in C. In IL-10R
treated mice, this predicted RE drops precipitously simply due to RBC depletion (B); and
this anemia is not due to parasite levels, which remain comparable in controls and treated
mice (A). This indicates that immune-mediated killing of uninfected RBCs is a key
mechanism of control.
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