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Review

Introduction

In the past 30 years, the signal transduction pathways initiated 
by growth factors or oncogenes have been the focus of intense 
research and the major ones have been characterized. It also 
became apparent that the three-dimensional tissue architecture 
and mechanical forces applied upon a cell in a tissue are 
important signals informing fundamental cell decisions such as 
proliferation, differentiation, and apoptosis (reviewed in ref. 1).

In normal tissues or tumors, cells have extensive opportunities 
for adhesion to their neighbors, unlike sparsely growing, cultured 
cells. Dense cell cultures however, although two-dimensional, 
may in part mimic some of the physiological stress signals present 
in tissues. In this review, we integrate some recent findings on 
a common signal transducer, STAT3 (signal transducer and 
activator of transcription-3), whose activity was demonstrated 
to be dramatically increased through cadherin-mediated, cell-to-
cell contact, thus contributing substantially to cellular survival. 

Apoptosis inhibition is, in fact, a prerequisite for neoplastic 
transformation, as well as normal tissue function.

Activation of STAT3

Classical pathways of STAT3 activation
STAT3 is a member of the STAT family of transcription 

factors (STAT1 to STAT6), that mediate a variety of responses 
in mammalian cells. STAT3 is activated by cytokine receptors 
especially of the IL-6 family, receptor tyrosine kinases, such as 
the EGFR (epidermal growth factor receptor) family including 
Her2/neu, as well as members of the non-receptor tyrosine 
kinase Src family (Fig. 1). A number of studies have shown 
that in quiescent cells STAT3 is inactive in the cytoplasm. 
Following receptor stimulation, STAT3 is phosphorylated at the 
critical tyr-705 by the associated JAK or Src kinases (STAT3-
ptyr705). This leads to STAT3 dimerization through reciprocal 
Src homology 2 (SH2)-ptyr interactions, which are facilitated 
by the MgcRacGAP (male germ cell RacGAP) molecule, bound 
to activated Rac1. The complex is then targeted to the nucleus, 
driven by the NLS (nuclear localization signal) of MgcRacGAP 
(reviewed in ref. 2). The phosphorylated STAT3 dimer then 
binds a 9 bp sequence (TTCNNNGAA) in the regulatory region 
of target genes, thereby activating the transcription of specific 
genes involved in cell division and survival, such as myc, bcl-xL, 
mcl-1, and survivin while it downregulates the tumor suppressor 
p53,3 thus protecting tumor cells from apoptosis.4,5 In addition, 
STAT3 monomers were shown to regulate transcription by 
binding to NFκB.6

In addition to these functions, it has recently emerged that 
STAT3 can also inhibit apoptosis by affecting the cellular 
metabolism. STAT3-ptyr705 transcriptionally activates the oxygen 
sensor HIF1α (hypoxia inducible factor-1α) transcription factor, 
and this leads to increased aerobic glycolysis.7 At the same time, 
STAT3-ptyr705 downregulates mRNAs of mitochondrial genes, 
thereby reducing oxidative phosphorylation and ROS (reactive 
oxygen species) production with apoptosis reduction as a result.8 
STAT3 is also phosphorylated on ser727 downstream of a number 
of stimuli that trigger MAP kinase activation, including Ras 
signaling or stress.8,9 Interestingly, contrary to STAT3-ptyr705, 
which is acting in the nucleus, STAT3-ser727 localizes to the 
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in normal tissues or tumors, cells have extensive 
opportunities for adhesion to their neighbors. This state is 
mimicked by dense cell cultures. in this review, we integrate 
some recent findings on a key signal transducer, STAT3 (signal 
transducer and activator of transcription-3), whose activity is 
dramatically increased following cadherin-mediated cell to 
cell adhesion. Cadherin engagement, favored in dense cell 
cultures, causes a dramatic increase in total Rac/Cdc42 protein 
levels through inhibition of proteasomal degradation, which 
is followed by activation of iL-6 and STAT3. The cadherin/
Rac/iL-6/STAT3 axis offers a potent survival signal that is a 
prerequisite for neoplastic transformation, as well as normal 
tissue function.
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mitochondria where it acts in a transcription-independent manner 
to enhance the activity of ETC (electrotransfer chain) complexes 
and glycolysis, thus promoting survival as well. Moreover, STAT3-
ptyr727 opposes the mitochondrial permeability transition pore, 
thereby inhibiting apoptosis further.7,10,11

STAT3 is found to be overactive in a number of human cancers 
and to be required for transformation by a number of oncogenes.5 
Persistent activation of STAT3 occurs mainly downstream of 
pro-oncogenic tyrosine kinases and rather infrequently through 
a direct STAT3 mutation.12 In any event, a constitutively active 
form of STAT3 (STAT3C) alone is sufficient to induce neoplastic 
transformation of cultured mouse fibroblasts,13 which points to 
an etiological role for STAT3 in neoplasia.

Cadherin engagement also activates STAT3
Classical cadherins activate STAT3 through Rac/Cdc42, NFκB, 

and IL-6
Recent results from a number of labs indicated that besides 

growth factors and oncogenes, confluence of cultured cells 

induces a dramatic surge in STAT3 and ptyr705 phosphorylation 
and activity in a number of cell lines14-20 (reviewed in ref. 21). 
The fact that STAT3 activity is actually increased in growth-
arrested cells cultured to high densities was an unexpected 
finding, since STAT3 was generally accepted to have a positive 
role in cell proliferation. It was further demonstrated that this 
STAT3 increase requires calcium, which pointed to a role for the 
cadherins, calcium-dependent, cell-to-cell adhesion proteins.

Cadherins are a superfamily of adhesive receptors that control 
the specificity, organization and dynamics of intercellular 
recognition and junction formation, which is crucial for the 
development, stability, and homeostasis of tissue architecture and 
function in all multicellular metazoans.22-24 Classical cadherins 
are glycoproteins that consist of an extracellular (EC) domain of 
five cadherin modules (EC1 to EC5), a single-pass transmembrane 
domain and a highly conserved intracellular part, which interacts 
with the cytoskeleton via the catenin family of proteins.25,26 
Upon calcium binding, the EC domains change conformation 

Figure 1. STAT3 activation. Following activation of receptors such as cytokine receptors of the iL-6 family or growth factor receptors such as Her2/erbB2 
(that can be inhibited by drugs such as herceptin), or expression of activated forms of non-receptor tyrosine kinases such as Src, STAT3 is activated by 
phosphorylation at tyr705 by the receptor itself, or the associated Src or JAK kinases. STAT3 phosphorylation by the iL-6/JAK complex or Src is facilitated 
through binding to activated Rac1-GTP in a complex with MgcRacGAP. This results in targeting of the complex to the nuclear envelope, driven by the 
NLS (nuclear localization signal) of MgcRacGAP. The STAT3 dimer then binds specific DNA sequences to initiate transcription of STAT3-responsive genes, 
or downregulation of other genes such as the p53 tumor suppressor. in addition to this mechanism, cadherin engagement was shown to cause a dra-
matic increase in the levels of Rac1 and Cdc42 proteins and activity, which results in a transcriptional activation of iL-6 through NFκB, hence STAT3 acti-
vation. At the same time, cadherin engagement suppresses erk1/2 activation by iL-6 (not shown). inset: Lysates from mouse Balb/c3T3 fibroblasts were 
grown to different densities as indicated and probed for STAT3-ptyr705, perk1/2 or active Akt-pser473 (lanes 1–8). Lane 9: Balb/c3T3 cells transformed 
by activated Src. Note that STAT3-ptyr705 is dramatically increased with density, while levels of p-erk and Akt-pS473 remain unchanged. Similar results 
were obtained by plating cells on surfaces coated with e-cadherin or cadherin-11 fragments.19,20 (Modified and adapted from refs. 2 and 20).
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to form adhesive structures between adjacent cells, named 
adherens junctions.23,27,28 Such adhesive structures participate in 
cell polarity and differentiation, and provide local reinforcement 
against mechanical stress. Classical cadherins are subdivided into 
type I (E, N, M, P, R, and C cadherin) and type II (VE, 6–12, 
18–20, 22, 24) based on the structure of their EC domains.26 
Interestingly, it has been demonstrated that differences observed 
in the adhesion efficiency between cells expressing type I and 
type II cadherins could be due to differences in the structure of 
the adhesive interface.29-33

The first discovered and best characterized classical type 
I cadherin is the E (epithelial)-cadherin, which is involved in 
the formation and maintenance of epithelial structures and 
is abundant in cultured cells of epithelial origin.24,34,35 Early 
results showed that continued plasma membrane expression of 
E-cadherin is required for cells to remain tightly associated within 
the epithelium, so that loss of E-cadherin function, including 
mislocalization to the cytoplasm, is associated with metastasis 
of breast cancer.22 Other cadherins however, such as N-cadherin 
and cadherin-11, recently defined as “mesenchymal”,36 have 
been positively implicated in cancer as putative proto-oncogenic 
proteins and are often upregulated in tumor tissues of epithelial 
origin. N-cadherin overexpression and engagement has been 
reported to be associated with a highly invasive phenotype and 
motility in mammary cell lines.22,37 Cadherin-11 (classical type 
II) was originally identified in mouse osteoblasts, but it was 
later found to be constitutively expressed in a variety of normal 
tissues of mesodermal origin,38 as well as in cultured fibroblasts.20 
Cadherin-11 correlates with metastasis and a poor prognosis in 
cancers such as cancer of the breast and prostate.39,40

Cadherin engagement was previously shown to regulate the 
activity of the Rho family of small GTPases,41 which, in turn, 
regulate actin organization.42 Examination of the mechanism 
of STAT3 activation in confluent cultures later indicated that 
the engagement of E-cadherin in HC11, mouse breast epithelial 
cells induces a dramatic increase in total protein levels of the Rac 
and Cdc42, small GTPases through inhibition of proteasomal 
degradation, and this could account for the increase in Rac/
Cdc42 activity observed (Fig. 1). Activated Rac leads to a surge in 
secretion of cytokines of the IL-6 family through the transcription 
factor NFκB and JAK kinases, and this, in turn activates STAT3, 
which constitutes a potent survival signal19 (reviewed in ref. 21). 
Downregulation of gp130, the common subunit of the family, 
did reduce STAT3-ptyr705 substantially,19,20 indicating that the 
IL-6 family is a significant contributor to the density-induced, 
STAT3 upregulation. Other cytokines such as the TNF family 
may also be involved, however their levels varied with the cell line, 
indicating that the additional pathways may not be well preserved 
between different cells and tissues.19,20 Interestingly, although 
JAK activity increased with cell density,14 Src activity remained 
unchanged.43,44 In addition, fibroblasts from mice where cSrc, as 
well as the related Fyn and Yes genes had been genetically ablated 
displayed the same increase in STAT3-ptyr705 with cell density, 
and treatment with the Src inhibitors Dasatinib or PD180970 
did not reduce the density-dependent STAT3 activation in a 
number of lines.43 These data indicate that, despite the fact that it 

has been implicated in cell adhesion signaling, Src is not involved 
in the density-mediated STAT3 activation.14,15 Similarly, cells 
from Fer or IGF-R-knockout mice displayed the same increase in 
STAT3 activity with cell density, indicating that these receptor 
kinases are unlikely to be involved.14

Recent findings revealed that cadherin engagement can 
directly activate STAT3, in the absence of cell to cell contact. 
Plating noneoplastic, mouse breast epithelial HC11 cells on 
surfaces coated with a cadherin fragment encompassing the 
two outermost modules of E-cadherin, resulted in a dramatic 
increase in STAT3, tyr705 phosphorylation and activity. These 
data conclusively demonstrated that the cell density-dependent, 
STAT3 activation is directly due to cadherin engagement on 
the functionalized surface.19 As anticipated, this activation was 
mediated through an increase in total Rac/Cdc42 protein, 
followed by a transcriptional upregulation of IL-6 family 
cytokines, indicating that cadherin engagement is sufficient to 
initiate this cellular signal, in the absence of cell to cell contact.19 
Interestingly, examination of E-cadherin and STAT3-ptyr705 
levels in normal mouse breast tissues by immunohistochemistry 
staining, demonstrated the presence of constitutively activated 
STAT3 in the breast luminal epithelial cells where E-cadherin 
is engaged, i.e., the corresponding normal breast tissue of origin 
of HC11 cells. This finding reveals a distinct correlation in the 
distribution and presumably the function of these two molecular 
markers observed in HC11 cells growing at high, but not low 
densities in culture, with the same type of cell in vivo.19

Recent results demonstrated that the “mesenchymal” 
cadherins, N-cadherin and cadherin-11, which belong in the 
type I and type II classical cadherins, respectively, and whose 
expression in epithelial cells, unlike E-cadherin, often correlates 
with metastasis,39 can also trigger a dramatic surge in STAT3 
activity in mouse Balb/c3T3 fibroblasts.20 This activation 
occurs through upregulation of Rac and members of the IL-6 
family of cytokines as well, and this is necessary for cell survival, 
proliferation, and migration. A cadherin-mediated Rac activation 
was also observed for C-45 and M-cadherin,46 strongly suggesting 
that this may be a feature common for classical cadherins. Taken 
together, the above data indicate that the cadherin/Rac/IL-6/
STAT3 axis may be a pathway used by multiple cadherins of 
widely divergent functions.

Cadherin engagement does not allow Erk1/2 activation by IL-6
Besides STAT3, IL-6 stimulation was shown to activate the 

Erk1/2 (Erk) kinase by triggering its phosphorylation at a TEY 
sequence.47 Surprisingly however, despite the IL-6 secretion by 
the confluent cells, p-Erk1/2 levels remained the same at high 
cell densities, or by direct cadherin engagement, at the time when 
STAT3-ptyr705 levels were dramatically increased. This was 
found to hold true for both E-cadherin19 and cadherin-11.20 It 
was subsequently demonstrated that IL-6 addition to confluent, 
HC11 or Balb/c3T3 cells was unable to activate Erk1/2, hinting at 
the possibility of a profound effect of confluence on the response 
of Balb/c3T3 cells to IL-6 addition. To investigate whether this 
might be due to cadherin function per se, the ability of IL-6 to 
activate Erk in Balb/c3T3 cells rendered deficient in cadherin-11 
was examined. The results demonstrated that, in sharp contrast 
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to the parental Balb/c3T3 cells, IL-6 does stimulate Erk in 
densely growing, cadherin-11-deficient, Balb-shCad11 cells, 
clearly indicating that it is indeed cadherin-11 that prevents Erk 
activation by IL-6 (Fig. 2).

The reasons for the STAT3 specificity of cadherin engagement 
are at present unclear. The fact that other growth factors such 
as EGF or PDGF can activate Erk in densely growing, mouse 
fibroblasts,48 argues against a blanket Erk inhibition by cadherin 
engagement, for example, through the activation of Erk-specific 
phosphatases such as Cdc25A.49 It is tempting to speculate that 
cadherin engagement stimulates IL-6 secretion in dense tissues 
in order to counteract apoptotic death signals through STAT3 
activation. On the other hand, Erk would promote mainly cell 
division, which is absent in contact-inhibited cells. In any event, 
taken together, these findings, obtained with three different type 
I and type II cadherins demonstrate a specific STAT3 response 
of cells to cadherin engagement, despite the fact that the two 
pathways, Erk and STAT3, have been reported to be coordinately 
regulated by cytokine receptors.

Consequences of STAT3 Activation

The three cadherins described were found to activate STAT3 
via the same Rac/NFκB/IL-6/gp130/JAK/STAT3 pathway. 

The fact that the “mesenchymal” cadherins, cadherin-11 and 
N-cadherin, actually activate STAT3, although, contrary to 
the epithelial E-cadherin, they generally promote metastasis 
in cells of epithelial origin,22,36,39,40 may point to STAT3 as a 
central survival, rather than metastasis, factor, whose function 
is important in both tumor and normal tissues. Following are 
possible mechanisms:

Survival function in neoplastic transformation
Since the initial discovery that STAT3 is required for 

transformation by activated Src,50,51 it became evident that 
STAT3 inhibition in Src-transformed cells induces apoptosis, not 
simply reversion of the cell to a normal phenotype. This initial 
observation provided the first clue as to the important role of 
STAT3 in the survival of tumor cells.

A variety of receptor and non-receptor tyrosine kinase oncogenes 
affect the phosphorylation status of the Rb (retinoblastoma 
susceptibility) family of nuclear phosphoproteins, through a 
number of upstream regulators (G1 cyclins, cyclin-dependent 
kinases, and their inhibitors). Rb phosphorylation reduces its 
ability to bind to and regulate their best characterized targets, 
the E2F family of transcription factors (the “activating” E2Fs, 
E2F1–3a), which are important cell cycle controllers.52 A detailed 
examination of E2F-activated genes by microarray analysis 
indicated that they have many targets including genes involved 

Figure 2. (A) iL-6 activates STAT3, but not erk, at high densities in Balb/c3T3 cells. iL-6 was added at 0, 10, 50, or 100 ng/mL for 15 min to Balb/c3T3 cells 
grown to 50% confluence (lanes 1–3), or 2 d postconfluence as indicated. Cell extracts were probed for STAT3-ptyr705 (upper panel) or erk1/2 (lower 
panel), with tubulin or GAPDH as loading controls. Note the absence of erk activation at high densities (lower panel, lanes 4 and 5). (B) iL-6 activates 
STAT3 and erk in the absence of cadherin-11. Same as above, cadherin-11-deficient, Balb-shCad11 cells. Note the erk activation at high densities (lower 
panel, lanes 3 and 4), same as STAT3, even at high densities (upper panel, 4 vs 6). (From ref. 20, reproduced with permission.)
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in DNA synthesis, as well as growth factor and 
receptor genes.53 Interestingly, at the same time 
E2F activation leads to apoptosis, as shown in 
vivo in Rb knockout animals.54 Moreover, ectopic 
E2F expression has been demonstrated to induce 
apoptosis under conditions where serum growth 
factors, which normally impart survival signals, 
are limiting. Apoptosis is induced through 
expression of p19ARF by E2F, which negatively 
regulates the Mdm2, p53-specific ubiquitin 
ligase, with a surge in p53 levels as a result.55 
Furthermore, E2F can also induce apoptosis 
through p53-independent mechanisms, such 
as activation of the tumor suppressor p73,56 
and induction of Apaf1 expression which, in 
combination with cytosolic cytochrome c and 
caspase-9 forms the apoptosome, which activates 
the final apoptosis effectors57 (reviewed in ref. 
58). Therefore, E2F activation, which was shown 
to occur in the majority of tumors, also induces 
apoptosis, through both p53-dependent and 
-independent mechanisms. Certainly, apoptosis 
is normally prevented, due to activation of PI3 
kinase or STAT3 by tyrosine kinase receptors 
induced by E2F, or directly by the oncogenes 
which had activated E2F in the first place, so 
that transformation does occur. Upon inhibition 
of STAT3 activity however, tumor cells, having 
high E2F levels, may succumb to apoptosis.15 
Most importantly, inhibition of cadherin-11 or 
N-cadherin would induce apoptosis (through 
STAT3 inhibition) in metastatic tumor cells 
specifically, since normal cells, even cells with 
cadherin-11, would have low E2F activity hence 
would be spared (Fig. 3A; ref. 43; Raptis, Guy, 
and Geletu, in preparation).

Survival function in normal cells and tissues
In tumor cells, the high E2F levels would necessitate the action 

of a survival agent, such as STAT3, in order to block apoptosis 
and allow transformation to occur (Fig. 3A). Still, the fact that 
STAT3 inhibition in cultured, non-malignant, densely growing 
cells induces apoptosis14,15,19,59 points to the possibility that even in 
normal cells the role of STAT3 at high cell densities, which may 
be the densities with relevance in vivo, is not simply to promote 
proliferation, but to provide a potent survival signal as well.

What could be the apoptotic signal in normal cells grown to 
high densities? Recent evidence has implicated the cytoskeletal 
changes occurring as a result of cell shape constraints.

Cell shape is modulated by the biomechanical properties 
of the cellular environment. Cells can feel the environment 
via two types of adhesive junctions, namely (a) junctions 
between the cell and the extracellular matrix (ECM) and (b) 
junctions between cells. Due to their transmembrane structure, 
both types of adhesive receptors can establish bridges with 
cytoskeletal filaments.60-62 These interactions are subject to 
mechanical forces, and the receptors’ behavior under force is 

an important parameter of cytoskeletal organization and signal 
regulation.1,63-65

Cell-ECM adhesion is mediated by the integrins, a family 
of receptors clustered into focal adhesions. Integrins sense 
the mechanical properties of the ECM by changing their 
conformation, avidity, and clustering, and this, in turn, 
regulates signal transduction.66,67 In fact, it is the degree of cell 
spreading itself, forced by the actin cytoskeleton, rather than 
the extent of cell-ECM contact or signaling through the ECM, 
which is a fundamental, dose-dependent factor of proliferation 
and differentiation.64,68-70 Integrins promote the bundling of 
actin filaments64,70 and in a feedback loop, the rate of actin 
polymerization as well as actin regulatory molecules affect 
integrin function.65 Integrin adhesion triggers the development of 
contractile filamentous F-actin structures with myosin molecules, 
a process regulated by the Rho family of small GTPases.71

Cell-cell interactions are also key players in cell and tissue 
architecture and cytoskeletal dynamics. At the adherens 
junctions, cadherins generate, receive, and integrate contractile 
forces.72,73 At the molecular level, cadherin interactions, mediated 
through the extracellular domain, are very dynamic and sensitive 

Figure 3. Model of STAT3 as a survival signal. (A) in transformed cells. Growth factor recep-
tors or Src activate the transcription factor e2F1–3a, through a number of steps.58 e2F, in 
turn, can induce apoptosis through p53-dependent and -independent pathways, while 
Src or activated receptors also activate STAT3 which blocks apoptosis, so that transforma-
tion can occur. However, cadherin engagement may also be necessary to increase STAT3 
activity further, even in cells expressing STAT3 activating oncogenes such as Src, and 
despite the fact that Src may also trigger cadherin downregulation (Guy, Raptis, et al., in 
preparation). (B) in normal tissues or cells grown to high densities. when cells are spread 
on the extracellular matrix (eCM), the forces exerted through integrin-eCM adhesion pro-
mote the formation of contractile F-actin structures with myosin molecules, regulated 
by the Rho GTPase. F-actin filaments oppose YAP/TAZ phosphorylation and degradation 
through inhibition of the LATS kinases and other mechanisms yet to be identified. in con-
fluent cultures or tissues on the other hand, mechanical constraints reduce integrin-eCM 
adhesion and F-actin formation, thus allowing LATS activation, hence downregulation 
of YAP/TAZ and apoptosis.1 At the same time, cadherins activate STAT3 to achieve cell 
survival. As a result, STAT3 inhibition would cause apoptosis in confluent cultures. (Not 
shown: Cadherin engagement may also lead to the formation of contractile F-actin.)
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to force, while their organization into clusters is complex, 
with several pathways under investigation25,29-31,74,75 (Bron and 
Feracci, in preparation). Cell to cell contact maturation includes 
intracellular strengthening by recruitment of the actomyosin 
cytoskeleton, as well as actin-associated proteins.72

It has recently emerged that key mediators of the biological 
effects observed in response to cell shape and actin cytoskeletal 
changes are the transcription coactivators YAP (yes-associated 
protein) and TAZ (transcriptional co-activator with PDZ-
binding motif) which have partly overlapping functions.76,77 
The YAP and TAZ shuttle between the cytoplasm and nucleus 
where they associate with promoter-specific transcription factors, 
such as TEA domain (TEAD) family members to regulate 
gene expression.78,79 As a result, high YAP/TAZ levels promote 
proliferation, while low YAP/TAZ shifts cell responses toward 
apoptosis or growth arrest.1 The action of YAP and TAZ is kept 
in check by the LATS1 and 2 (large tumor suppressor-1 and 2) 
kinases, which phosphorylate YAP/TAZ, thereby promoting 
their cytoplasmic localization or degradation.78,79 In extended 
cells, YAP/TAZ are active and localized in the nucleus, while 
in cells grown on a small adhesive area they are excluded from 
the nucleus and inactive. It was further demonstrated that the 
activity of YAP/TAZ determines the response of the cell to 
mechanical cues; knockdown of YAP/TAZ in cells grown in large 
adhesive areas produced a phenotype typical of cells grown in 
small adhesive areas. Conversely, YAP/TAZ overexpression was 
sufficient to induce an extended cell response.76 Moreover, it was 
recently shown that contractile F-actin cytoskeletal structures 
can sustain YAP and TAZ nuclear localization and activity, and 
oppose YAP and TAZ phosphorylation and degradation through 
inhibition of the LATS kinases.76

Interestingly, high cell density (hence cadherin engagement) 
was in fact shown to induce LATS1/2 activity, thereby inhibiting 
YAP/TAZ target gene expression.80 Therefore, it is tempting to 
speculate that, at least in certain systems,81 the mechanically 
constrained cell shape hence low YAP/TAZ levels in confluent 
cultures is the apoptosis trigger, and this would need to be 
overcome by cadherin engagement and STAT3, to confer cell 
and tissue survival.

Conclusions

The three cadherins described so far, E-cadherin,19 
N-cadherin, and cadherin-11,20 in various combinations are 
present in essentially all tissues. The fact that all activate the 
same STAT3 pathway, points to a central importance of this 
pathway in cellular survival. This may explain the presence of at 
least one cadherin in all cells of the organism during embryonic 
development and homeostasis. It is interesting to note that a 
close correspondence was found in genes expressed specifically 
in the prostate carcinoma line, LNCaP, cultured to high, but not 
low, densities with genes associated with prostate cancer in vivo, 
which further stresses the relevance of cell interactions observed 
in densely growing cultured cells to the in vivo situation.82

The need for STAT3 to maintain survival, in both tumor 
and normal cells may be an indication that survival signals are 
in limited supply; in tumor cells this may be because of the 
high E2F-apoptosis inducers, while in normal tissues due to 
the low YAP/TAZ levels, caused by mechanical constraints. 
It is interesting to note that no increase in active Akt-p473, 
the effector of the PI3 kinase survival pathway, was noted in 
confluent cultures (Fig. 1, inset). Therefore, the fact that cells 
have evolved to call up from dormancy the STAT3 pathway 
rather than PI3k to overcome apoptosis, may be an indication 
that STAT3 may be a more potent inhibitor of apoptosis in both 
normal and tumor tissues.

Since the discovery of the STAT3 activity surge upon cadherin 
engagement, other genes have been shown to be affected by cell 
density to different degrees.83,84 This includes “housekeeping” 
genes such as GAPDH (glyceraldehyde 3-phosphate 
dehydrogenase), whose function has long been considered to be 
constitutively needed. Whether cadherins or STAT3 affect the 
expression levels of housekeeping genes remains to be determined.

Engagement of cadherins is known to affect cell differentiation. 
As such, STAT3 is emerging as an oncogene which, unlike 
activated receptor or non-receptor kinases, it is promoting rather 
than inhibit the differentiation of epithelial MDCK cells,16 as 
well as adipocytes (Raptis, Guy, and Geletu, in preparation). 
Cadherins are also required for gap junction formation and it was 
recently demonstrated that, contrary to other oncogenes, STAT3 
can increase, rather than decrease intercellular, gap junctional 
communication.83,84 In any event, the cadherin/STAT3 axis is 
emerging as a central survival factor, which would be especially 
critical to tumor cells. Most importantly, since cadherin-11 
promotes metastasis, inhibition of cadherin-11 would promote 
apoptosis of metastatic tumor cells specifically (through STAT3 
inhibition), a finding which could have important therapeutic 
implications.
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