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Abstract
Interventions aimed at improving HIV medication adherence could be dismissed as ineffective due
to statistical methods that are not sufficiently sensitive. Cross-sectional techniques such as t tests
are common to the field, but potentially inaccurate due to increased risk of chance findings and
invalid assumptions of normal distribution. In a secondary analysis of a randomized controlled
trial, two approaches using logistic generalized estimating equations (GEE)—planned contrasts
and growth curves—were examined for evaluating percent adherence data. Results of the logistic
GEE approaches were compared to classical analysis of variance (ANOVA). Robust and
bootstrapped estimation was used to obtain empirical standard error estimates. Logistic GEE with
either planned contrasts or growth curves in combination with robust standard error estimates was
superior to classical ANOVA for detecting intervention effects. The choice of longitudinal model
led to key differences in inference. Implications and recommendations for applied researchers are
discussed.
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Introduction
Inappropriate statistical analyses can result in the failure to detect an effective intervention
or to incorrectly support an ineffective intervention. Both false negatives and false positives
undermine the validity of the results [1, 2]. A commonly cited statistical problem with
randomized controlled trials (RCTs) is the excessive use of cross-sectional significance tests
(e.g., Student’s t) at every time point to compare group differences [3, 4]. The prevalence of
cross-sectional testing in RCT reports is understandable given its ease, but this approach is
accompanied by two methodological hazards: (a) inflation of Type I error and (b) failure to
account for measurements taken at different time points as coming from the same individual.

Statistical analysis is fundamentally about quantifying signal-to-noise ratio, and the
treatment of error is different when data are longitudinal, as in the case of RCTs. Outcomes
measured across time often are correlated, which must be considered in the calculation of
standard errors [5]. Failure to model noise (i.e., error) correctly can lead to erroneous
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findings. An array of alternatives is available for analyzing longitudinal data, including
multilevel models such as generalized estimating equations (GEE) and generalized linear
mixed regression (GLMM), but these are under-utilized [6]. In the context of RCT research,
techniques for longitudinal data analysis may be the most appropriate because they permit
the estimation of treatment effects (i.e., group differences) across multiple time-points
within a single statistical model. Such an approach minimizes the accumulation of Type I
error from multiple endpoint comparisons. Furthermore, true multilevel regression
techniques that model the correlation of measurements within the same subjects permit
inference using valid standard errors.

In the present study, the issue of statistical model selection is addressed in the context of
adherence to antiretroviral (ARV) therapy, a relatively nascent area of RCT research with
particularly challenging outcome variables. Although medication adherence is critical for
successful treatment of HIV, non-adherence is widespread. Adherence is most commonly
measured as a percentage of prescribed doses taken in a specified period, ranging from the
past 3 to 30 days [7]. However, adherence data are often highly skewed or multi-modal, with
high frequencies of individuals reporting either zero or perfect adherence. Consequently,
continuous measures of adherence may be ill-suited to statistical models with strong
assumptions of normally distributed data.

A common alternative to measuring adherence continuously is to categorize adherence at
cut-points presumably associated with viral suppression, such as 95 or 100% adherence.
Dichotomous variables have minimal distributional requirements since there are only two
possible outcomes (e.g., adherent and non-adherent). However, the disadvantage of
dichotomization is that information is discarded, resulting in lower statistical power and
increased likelihood of Type II error [8]. A more principled alternative to dichotomization is
to utilize statistical methods that are capable of analyzing percentage data. Although logistic
regression is most commonly used to analyze dichotomous variables, it can also
accommodate any fractional outcome bounded between 0 and 1. The application of logistic
regression in this manner is not widespread, but has practical advantages since the
assumptions of a logistic model more closely reflect the nature of fractional data.
Consequently, estimates of standard error would, in principle, be more trustworthy when
analyzing medication adherence data using a logistic approach.

Additional means of obtaining accurate standard error estimates include well-established
techniques such as “robust” variance corrections [9] and bootstrapping [10] that can be
applied to obtain empirical standard error estimates, valid even if the assumptions of the
statistical model are not entirely met. Notably, both dichotomous [11] and fractional data
[12] are inherently heteroskedastic, meaning that variance of the outcome is tied to the
values of the predictors. This can result in inflated standard error estimates in both linear and
logistic regression models, leading to reduced statistical power for detecting a treatment
effect. Recent quantitative work by Papke and Wooldridge [12] suggests that the
combination of logistic GEE and robust standard error correction may be the most accurate
approach for analyzing fractional data in longitudinal studies. Both GEE and robust standard
error estimation are available in commercial statistical packages including SPSS, SAS, and
Stata.

The literature on ARV adherence offers a case example of the importance of statistical
methodology and model selection. A recent meta-analysis of 18 behavioral interventions for
medication adherence among HIV patients reported an odds ratio of 1.50 (P < 0.01) for
achieving 95% adherence across studies [13], corresponding with a small effect size [14].
Given that effects appear to be generally small, choosing the most sensitive techniques for
detecting effects may be particularly important for this area of research.
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Simoni and colleagues’ [13] meta-analysis provides a window into the methods commonly
used for evaluating medication adherence. Of the eighteen RCTs they reviewed, thirteen
(72%) examined adherence as a continuous outcome and five (28%) used a dichotomous
outcome. With respect to studies that focused on continuous adherence, eight (62%) utilized
two-sample tests to evaluate group differences at follow-up, three (23%) used repeated
measures analysis of variance (ANOVA), and two (15%) used GEE. Only three (38%) of
the studies using two-sample methods used non-parametric tests, such as the Wilcoxon
signed-ranks or Mann–Whitney U, with relaxed assumptions of normality [15-17]. The
reliance on parametric two-sample tests in the medication adherence literature may be
highly problematic due to alpha inflation through multiple testing and incorrect assumptions
of normality. Across the 18 RCTs reviewed, eight (44%) yielded null effects at post-
intervention assessment, pointing to the need for maximizing statistical sensitivity when
analyzing adherence data.

The objective of the present study is to identify the most sensitive technique for
characterizing treatment effects for percent adherence data. We compare three statistical
approaches to assessing intervention effectiveness: (1) classical ANOVA, (2) logistic GEE
with planned contrasts and (3) logistic GEE with growth curves. Illustrative data come from
the Promoting Adherence for Life (PAL) project, a 2 × 2 factorial RCT that evaluated the
effect of a peer and pager support on compliance to ARV medication regimens [18].

We first perform classical ANOVAs to evaluate the interventions separately at each follow-
up, consistent with an approach commonly utilized in the literature. These results assume the
dependent variable is normally distributed and are provided for reference. We improve upon
the classical ANOVA by relaxing the assumption of normal distribution and combining the
separate statistical models at each time point into a unified model using logistic GEE. We
perform two sets of GEE analyses: (1) a planned contrast model where the intervention
effects at each follow-up were evaluated in relation to baseline via dummy variables and (2)
a growth curve model to provide a full-fledged longitudinal test of interventions. We
estimate all logistic GEE models with robust standard errors as recommended when
analyzing fractional data [12, 19]. Standard errors are re-estimated using bootstrap
estimation to gauge the effect of an alternate standard error correction.

It was hypothesized that logistic GEE using growth curves would be more sensitive than
classical ANOVA by combining information from all time points to estimate the
intervention effect. We hypothesized that the GEE model with categorical contrasts would
be less sensitive than the longitudinal approach since each contrast would only leverage
information from two time points (i.e., half of the data) to assess the treatment effect. We
conclude with a discussion of the strengths and weaknesses of each statistical technique,
reporting issues associated with each model, and the implications for medication adherence
intervention research.

Method
Procedures

This is a secondary analysis of data collected as part of an NIH-supported RCT conducted in
an outpatient HIV clinic to evaluate the effectiveness of peer support and pager support on
ARV medication adherence. The sample consisted of 224 patients recruited from the adult
HIV primary care outpatient clinic at Harborview Medical Center, a public institution
serving mainly indigent, ethnic minority individuals in Seattle, Washington. A full
description of the peer and pager support treatments is detailed in a previous report [18].
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Measures
Medication Adherence—Past three-day dose ARV adherence was assessed using a
modified version of the Adult AIDS Clinical Trial Group Instrument [20]. For each
medication, separate questions assessed the number of doses missed yesterday, the day
before yesterday, and three days ago. Prescribed regimen was ascertained by referencing the
three days prior to the assessment date with information from patient medical charts. From
these data, we determined the three-day dose adherence across all ARV medications,
calculated as the fraction of doses taken (doses prescribed – doses missed) over the total
number of doses prescribed during the period.

Statistical Analyses
All statistical analyses were performed in the Stata 11 statistical software [21]. Exploratory
analyses were conducted to examine the distribution of the adherence data, including the
magnitude of skew and kurtosis and the presence of multiple modes and floor/ceiling
effects. These descriptive analyses provided information on any departure from normal
distribution that could have a bearing on classical ANOVA. Bivariate correlations were
calculated between measurements at baseline, 3, 6, and 9 months to assess how adherence
outcomes were associated across time.

All analyses excluded the interaction effect between peer and pager support. This approach
maximizes the statistical power for detecting intervention effects when analyzing a factorial
trial [22], but assumes that the effectiveness of each intervention does not change when
combined. To verify that the peer and pager support interventions did not have an interactive
effect, full factorial GEE analyses incorporating all peer support × pager support interactions
were conducted using robust estimation. These preliminary GEE models were replicated
using both a planned contrast and growth curve specification. Wald tests indicated that the
additional interaction effects were collectively non-significant (P’s > 0.05) in both models
(data not shown) so they were excluded from all analyses.

Classical Analysis of Variance—Between-subject ANOVA provides a statistical test of
whether the means of two or more groups are equivalent. It is a generalization of the t test
that can accommodate multiple grouping factors. In contrast to full-fledged longitudinal
techniques such as GEE, the dependent variable in a between-subject ANOVA is limited to
a single time point. In classical ANOVA models, the dependent variable is assumed to have
a normal distribution. Each adherence outcome was analyzed with four separate two-factor
ANOVA models to assess treatment effects at baseline, 3, 6, and 9 months. For these
analyses, the adherence outcome at each follow-up was regressed on both peer support and
pager support treatment. The treatments were evaluated by the main effects of peer support
and pager support. These main effects were reported as un-standardized betas, interpreted
directly as percent adherence (0.01 = 1%).

Logistic Generalized Estimating Equations—GEE [23] is a multilevel regression
technique that adjusts standard errors to account for correlated data, such as the correlation
of repeated measurements in a longitudinal study. A “working correlation” structure is
specified a priori and defines the hypothesized relationship between repeated observations
on a subject. Regression parameters in GEE are first estimated through a generalized linear
regression that initially ignores whether the data are longitudinal. Next, the standard error
estimates are adjusted according to the hypothesized correlation between different time
points of the outcome. This adjustment updates the standard errors in the analysis to account
for repeated observations within the same subject. The adherence outcome was analyzed
using a logit link function, which accounted for the floor and ceiling effects at 0 and 1,
respectively.
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A first-order autoregressive correlation structure (AR-1) was chosen for the main GEE
models. This assumption is appropriate in the context of balanced longitudinal data when
measurements closer in time are more correlated than measurements further apart in time.
Balanced data occurs when subjects are assessed at the same intervals, which is typical of
RCTs. In a first-order autoregressive structure, the correlation of the outcome between any
two points in time is a mathematical power of their distance in time. For example, adherence
measurements a single time point apart would be correlated by r1 (i.e., r raised to the power
of one), adherence measurements two time points apart would be correlated by r2 (i.e., r
raised to the power of two), and so forth.

In planned contrast analyses, time was categorized into three contrasts of baseline versus 3,
6, and 9 months. The interventions were evaluated by the peer support × time (Month 3 vs.
0, 6 vs. 0, 9 vs. 0) and pager support × time (Month 3 vs. 0, 6 vs. 0, 9 vs. 0) interactions.
Wald tests of all peer support × time and pager support × time interactions provided an
omnibus test of each intervention. The interaction effects were reported as odds ratios,
interpreted as the odds of perfect versus zero adherence (1 vs. 0).

A piecewise linear approach [24] was used for the growth curve analysis. This analysis
allowed for unique slopes of adherence between (1) baseline and post-intervention and (2)
post-intervention to 9-month follow up. This specification was the consistent with the design
of the RCT, structured with a 3-month intervention phase followed by 6 months of follow-
up. For each outcome, adherence at all time points was regressed on peer support, pager
support, time, peer support × time, and pager support × time. Time was divided into two
linear parameters, one corresponding with the entire study interval (Month 0, 3, 6, 9 = 0, 1,
2, 3) and a “deflection” term (Month 0, 3, 6, 9 = 0, 0, 1, 2) that allowed the slope after post-
intervention to change. In combination, these parameters are interpreted as the slope (i.e.,
rate of change) from Month 0 to 3 and the increase or decrease in slope from Month 6 to 9.
The interventions were evaluated by the peer support × time (Month 0–3; Month 3–9) and
pager support × time (Month 0–3; Month 3–9) interactions. Wald tests of all peer support ×
time and pager support × time interactions provided an omnibus test of each intervention.

Empirical Standard Errors—Robust [25, 26] and bootstrapped [10] standard errors were
calculated for all logistic GEE models to derive standard error estimates resistant to
departures from model assumptions, including heteroskedasticity and the correlation of data
from different time points. Bootstrapping is an alternate data-driven and computationally
intensive simulation method that involves randomly sampling observations with replacement
from the original dataset. Consequently, the sample is treated as if it were the population.
The effect of sampling with replacement is that one observation may be represented more
than once while another may be left out. As a result, the bootstrap dataset is equal in size to
the original but not necessarily identical. Bootstrapping involves three steps: (a) creating a
random sample with replacement from the original data, (b) calculating the statistic of
interest using the generated data, and (c) repeating the process a minimum of 1,000 times
[10]. This iterative procedure approximates the sampling distribution of a desired statistic
(e.g., regression coefficient), and can be used to adjust estimates of standard error for
violations of parametric assumptions, such as normal distribution or equal variance of the
outcome across groups.

In the present study, all analyses were replicated with both the Huber-White correction and
bootstrap simulation to calculate adjusted standard error estimates for each analysis.
Bootstrapping was performed with 10,000 iterations to provide a conservative margin above
the minimal number recommended by Efron and Tibshirani [10]. The P values and standard
errors from the (1) unadjusted models were compared to estimates from the (2) robust and
(3) bootstrapped models to assess relative sensitivity.
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Results
Preliminary Analyses

Missing Data—Across the four assessment points, 67% of participants had complete data,
18% missed a single assessment, and 15% missed two or more assessments. Differences in
retention were evaluated to identify potential bias in the findings due to greater drop out in
certain treatment groups. Retention did not differ significantly by study condition at any
assessment point, indicating that differential attrition did not occur. Collectively, these
results suggest that missing data occurred randomly and did not bias the statistical
evaluation of the interventions.

Although GEE can accommodate data containing missing values without dropping
participants, ANOVA cannot. Therefore, to retain participants with missed assessments
across all analyses, multiple imputation was performed using the multivariate normal
method [27]. This method has been shown to perform well even when used to impute non-
normally distributed variables [28]. All analyses were replicated across the same imputed
datasets, with the final results calculated as a pooled average of the ten analyses using
Rubin’s rules [29]. This insured that the sample was consistent across analyses and that
differences between results were not artifacts of missing data.

Adherence Outcomes—Bivariate correlations, means, standard deviations, skew, and
kurtosis statistics across assessment points for medication adherence are provided in Table
1. Average adherence over the three-day windows was 85%. An examination of the means
and standard deviations indicated that medication adherence eroded over time from 91% at
baseline to 82% at 9 months. The distribution for continuous adherence was multi-modal
with the highest concentrations of adherence data at 0 and 100%. Kurtosis statistics for
adherence were positive (i.e., leptokurtotic) and ranged from 5 to 11 across time points,
reflecting a high probability of extreme values, a pattern consistent with previous
investigations [30]. Adherence assessed closer in time (e.g., baseline and 3 months) was
more highly correlated than when separated by one or two assessments (e.g., baseline and 9
months), indicating a decay in correlation across greater intervals.

The statistical sensitivity of classical ANOVA and logistic GEE with planned contrasts or
growth curves was evaluated by comparing estimated intervention effects, standard errors,
and P values from each method. The classical ANOVA models at each time point served as
reference analyses. All logistic GEE models were replicated with robust standard errors and
bootstrap correction to derive corrected estimates of standard error.

Sensitivity Analyses
Beta coefficients/odds ratios, standard errors and significance levels for the peer and pager
support interventions estimated from classical ANOVA and logistic GEE are reported in
Tables 2 and 3. The pager support intervention was not associated with statistically
significant effects in any of the models and is not described in detail.

Classical ANOVA—In the classical ANOVA model, baseline medication adherence did
not differ significantly between the peer support and standard of care groups (Beta = −0.03,
95% CI −0.08–0.02, P = 0.28). Peer support was not associated with any cross-sectional
difference in medication adherence at 3 months (Beta = 0.06, 95% CI −0.01–0.13, P = 0.1)
or 9 months (Beta = −0.03, 95% CI −0.13–0.06, P = 0.51). At 6 months, peer support was
associated with marginally lower adherence (Beta = 0.06, 95% CI −0.08–0.02, P = 0.28).
Across time-points, the cross-sectional intervention effect estimated by ANOVA varied
between −0.09 and 0.06, with standard errors comparable in size to the beta coefficients,
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suggesting that peer support when analyzed in this fashion had a net effect of zero on
medication adherence.

Logistic GEE—To facilitate interpretation, model-estimated medication adherence for the
peer support and standard of care groups is plotted in Fig. 1 for the contrast and growth
curve models. In the contrast models, adherence in the standard of care group dropped from
0.94 at baseline to 0.81 at 3 months, rebounded to 0.86 at 6 months, and dropped again to
0.81 at 9 months. For peer support, adherence from baseline to 3 months was stable at 0.91
and 0.89, respectively, and dropped to 0.78 at 6 and 9 months.

In the unadjusted logistic GEE model with contrasts, the omnibus peer support × time effect
indicated a marginally significant association between peer support and change in adherence
over time, F(3,1000) = 2.48, P = 0.06. Peer support was associated with a marginally
smaller drop in adherence (OR 2.58, 95% CI 0.92–7.23, P = 0.07) from baseline to 3
months. Peer support was not associated with any difference in medication adherence at 6
months (OR 0.83, 95% CI 0.28–2.47, P = 0.74), or 9 months (OR 1.17, 95% CI 0.37–3.74,
P = 0.79) compared with baseline. In the robust model, the omnibus peer support × time
effect indicated a statistically significant association between peersupport and change in
adherence over time, F(3,1000) = 3.70, P = 0.01. The smaller drop in medication adherence
associated with peer support at 3 months compared with baseline reached statistical
significance (P = 0.01). Robust standard error adjustment was associated with smaller
standard errors across all other points.

In the logistic GEE models with growth curves, adherence in the standard of care group
dropped from 0.94 at baseline to 0.84 at 3 months and remained stable at 0.83 at 6 and 9
months. For peer support, adherence dropped from 0.91 to 0.87 at 3 months and continued
dropping to 0.83 at 6 months and 0.77 at 9 months. In the unadjusted models, the omnibus
peer support × time effect was non-significant, F(2,1000) = 1.24, P = 0.29. The erosion rate
of adherence was not significantly different between standard of care and peer support from
baseline to 3 months (OR 2.00, 95% CI 0.74–5.39, P = 0.17) or from 3 to 9 months (OR
0.37, 95% CI 0.11–1.30, P = 0.12). In the robust model, the omnibus peer support × time
effect indicated a marginally-significant association between peer support and change in
adherence over time, F(2,878.5) = 2.62, P = 0.07. The erosion rate of medication adherence
from baseline to 3 months was significantly lower in the peer support group (P = 0.04).
Additionally, the robust model indicated that while adherence stabilized after 3 months in
the standard of care group, it continued to erode in the peer support group, a difference that
was statistically significant (P = 0.03).

Across all models, bootstrapped estimates were close or identical to the robust estimates.
Robust and bootstrap standard error adjustment resulted in comparable estimates of standard
error and statistical significance for both the peer and pager support interventions.

Discussion
This study compared three statistical approaches to assessing interventions for improving
adherence to ARV medication: (1) classical ANOVA, (2) logistic GEE with planned
contrasts, and (3) logistic GEE with growth curves. The objective was to identify the most
sensitive method for detecting intervention effects when evaluating adherence as a
percentage of doses taken. One aspect of statistical methodology included the broad
selection of statistical model (e.g., ANOVA vs. GEE) and whether medication adherence
was modeled appropriately as a fractional outcome in a logistic analysis. A second aspect
was the manner in which the chosen model was parameterized, such as a GEE analysis with
planned contrasts or growth curves. The strength of our comparison was the use of real data,
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which demonstrated how differences in statistical methodology can lead to markedly
different conclusions regarding intervention effectiveness. Although there was consensus
among the two logistic GEE approaches with respect to adherence, inference regarding the
long-term effect of peer support diverged across statistical methods.

In the classical ANOVA models, the cross-sectional effect of peer support fluctuated
between −9 and +6% with a single difference reaching only marginal significance, a pattern
suggestive of a null intervention effect. If inference were based solely on a classical
ANOVA model, the conclusion would be that the peer and pager support interventions did
not change adherence.

We improved upon the classical ANOVA by analyzing medication adherence as a fractional
outcome in a unified logistic GEE analysis using planned contrasts, an approach analogous
to repeated measures ANOVA. In these analyses, baseline levels of the outcome were
incorporated into the dependent variable and robust estimation was utilized. In the logistic
GEE analysis with planned contrasts, the overall effect of peer support, but not pager
support, was statistically significant. Specifically, peer support was associated with a smaller
drop in adherence from baseline to 3 months compared with standard of care (−2 vs. −12%).
However, the non-significant results at 6 and 9 months indicated that the short-term benefits
at post-intervention were not maintained at follow-up.

Finally, we performed a full-fledged longitudinal analysis in logistic GEE analysis using
growth curves. These models leveraged data from all time points to estimate the intervention
effects. We incorporated flexibility into this longitudinal analysis by allowing the effect of
peer and pager support to change after the intervention was completed. In the logistic growth
curve analysis, peer support was associated with a smaller drop in adherence from baseline
to 3 months compared with standard of care (−4 vs. −10%). However, this pattern reversed
during the follow-up period such that adherence in the peer support group continued
dropping, but stabilized in the standard of care group (−10 vs. −1%), a difference that was
statistically significant.

In contrasting classical ANOVA with logistic GEE using planned contrasts or growth curves
it is important to recognize that each model evaluated intervention effectiveness in a
different way. In the classical ANOVA, a positive intervention effect was defined as higher
adherence than standard of care at each time point. By this definition, the classical ANOVA
approach found no evidence cross-sectionally that either the peer or pager support
interventions were effective.

The most illustrative findings comes from the respective logistic GEE analyses. In both the
planned contrasts and growth curve models, intervention effectiveness was defined as
slower erosion in adherence than standard of care. In the planned contrast model, change in
adherence was examined in a piecemeal manner by comparing each time point with
baseline. Although this definition of adherence had lower statistical power, the estimated
adherence at each time point exactly reflected the data. In the growth curve model, change in
adherence was examined across the entire 9-month study period, an approach with higher
statistical power that averaged across multiple time points.

Our comparison demonstrated that the type of longitudinal model can have a dramatic effect
on inference, with the results from GEE using planned contrasts versus growth curves
having different interpretations. The superimposed plot of the two models revealed that the
growth curve analysis was less representative of adherence at follow-up. The protective
effect of peer support, up until 3 months, was supported in both logistic GEE models.
However, the growth curve model implies that once peer support was removed, adherence
among those who previously received the intervention degraded while those receiving the
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standard of care were stable. In comparison, the contrast model indicates that adherence
stabilized in the peer support group with no such iatrogenic effect after the intervention was
completed. The logistic GEE model with growth curves illustrated that a well-intentioned, a
priori longitudinal analysis can average over data in unexpected ways, potentially leading to
mistaken conclusions.

Collectively, logistic GEE with planned contrasts and growth curves identified intervention
effects that were missed by a classical ANOVA approach. Specifically, these models
converged upon a post-intervention effect of peer support that was not detected by the
ANOVA. Although logistic GEE with growth curves did not accurately predict adherence
after post-intervention, this shortcoming was not a general problem with logistic GEE, but
rather a specific problem with assuming linear change in adherence over time. The
discrepancy between the growth curve model and the pattern of adherence over time
highlights the importance of careful model-checking [5] to verify that the assumed shape of
a growth curve fits the data. Our results indicated that the combination of logistic GEE with
robust standard error adjustment was the most sensitive approach for evaluating medication
adherence. There is an extensive quantitative literature dating back decades supporting the
validity of robust standard error adjustment [9]. Furthermore, the convergence of the
bootstrapped analyses with the robust analyses increases confidence regarding the validity of
the results.

In principle, a fully longitudinal approach like the growth curve model used in the present
study would be the preferred analysis for several reasons. First, statistical power is
maximized because data across all time points are leveraged in the estimation of intervention
effectiveness. Although some statistical sensitivity is “lost” by testing the intervention in a
single way rather than multiple ways, this is offset by the gain in sensitivity by consolidating
all of the data into a single more powerful test. Second, because the intervention effect is not
subdivided, the risk of chance findings from numerous statistical comparisons is reduced.
However, since the assumptions of a particular longitudinal model can influence the
substantive findings, the predictions made by the statistical model should always be
compared against the data to ensure validity of the analysis. If necessary, alternative models
can be presented to inform interpretation. For example, had logistic GEE with growth curves
been chosen as the a priori analysis, a post hoc statistical analysis using GEE with
categorical contrasts could temper interpretation regarding the long-term effect of peer
support following the intervention.

Theoretically and practically, GEE is an attractive option for evaluating adherence data. On
a theoretical level, longitudinal regression maximizes statistical power by adjusting standard
errors and P values for correlated outcomes, while the addition of robust estimation accounts
for characteristics of fractional data that lead to inefficient estimates of standard error. On a
practical level, logistic GEE does not require specialized software and is available in major
menu-based commercial statistical packages including SPSS, SAS, and Stata, making it
accessible to non-statisticians. The basic code for running logistic GEE in these three
statistical packages is provided as an Electronic supplement to this article. This syntax
illustrates logistic GEE with both the planned contrast and piecewise growth curve
specifications.

It is important to consider the limitations of this study when interpreting the findings. First,
because the statistical models defined the intervention effect differently, the standard errors
were not directly comparable between models. Therefore, our sensitivity analysis placed
emphasis on P values for assessing statistical sensitivity. Although the reliance on P values
and null hypothesis testing for inference is frequently criticized [31], it was utilized as a tool
for comparison since it is the convention in both the psychological and biomedical literature.
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Second, we focused on only some of the possible longitudinal models for analyzing
medication adherence as a percent variable. All of the GEE models could be estimated using
a GLMM approach using random effects [24], also known as hierarchical generalized linear
modeling. In principle, the results from GLMM should be similar if not identical if modeled
with the same specifications as a comparable GEE model. Differences in results would be
due to the mathematical underpinnings of the statistical models and vagaries of estimation.
However, follow-up research to examine the use of GLMM in the context of fractional
adherence outcomes would be useful since the literature to date has focused on GEE.

Despite these limitations, it is possible to make some specific recommendations. We showed
that the choice of statistical method could mean the difference between evaluating an
intervention as effective, ineffective, or even iatrogenic. Given the urgent need to identify
effective interventions in areas such as medication adherence, it is crucial that researchers
take advantage of not only the most sensitive methodology available, but also the most
accurate. Logistic GEE in tandem with robust standard error estimates can maximize
statistical power when assessing medication adherence as a percentage outcome. However,
statistical results depend as much on the way the model is used as the model itself.
Predictions made by all a priori statistical models should be carefully checked against both
the data and alternative statistical models to insure that conclusions are not idiosyncratic to a
single model with a particular set of statistical assumptions.
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Fig. 1.
Predicted medication adherence for peer support intervention and standard of care by
logistic GEE model
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Table 1

Pearson correlations among month 0, 3, 6, and 9 adherence outcome with means, standard deviations, skew,
and kurtosis statistics

Month 3 Month 6 Month 9 M SD Skew Kurtosis

Month 0 0.30 0.24 0.05 0.91 0.19 −2.80 11.43

Month 3 0.32 0.26 0.88 0.26 −2.38 7.95

Month 6 0.36 0.79 0.34 −1.45 3.56

Month 9 0.82 0.31 −1.76 4.87

Note: All pairwise correlations significant at P < 0.05 except for the correlation between month 0 and 9

AIDS Behav. Author manuscript; available in PMC 2014 January 14.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Huh et al. Page 14

Table 2

Effect of peer support intervention on past 3-day medication adherence

Unadjusted

B SE P

Classical ANOVA

 Month 0 −0.03 0.03 0.28

 Month 3 0.06 0.04 0.11

 Month 6 −0.09 0.05 0.06^

 Month 9 −0.03 0.05 0.51

Unadjusted Robust Bootstrapped

OR SE P SE P SE P

Logistic GEE (Planned contrasts)

 Peer support × Month 3 versus 0 2.58 1.35 0.07^ 0.99 0.01* 1.02 0.02*

 Peer support × Month 6 versus 0 0.83 0.46 0.74 0.32 0.64 0.33 0.65

 Peer support × Month 9 versus 0 1.17 0.69 0.79 0.51 0.72 0.53 0.73

Logistic GEE (Growth curves)

 Peer support × Month 0–3 2.00 1.01 0.17 0.69 0.04* 0.71 0.05*

 Peer support × Month 3–9 0.37 0.24 0.12 0.16 0.03* 0.17 0.03^

Note: B un-standardized beta, OR odds ratio, SE standard error, P P value;

^
P ≤ 0.10;

*
P ≤ 0.05
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Table 3

Effect of pager support intervention on past 3-day medication adherence

Unadjusted

B SE P

Classical ANOVA

 Month 0 −0.03 0.03 0.27

 Month 3 0.03 0.04 0.46

 Month 6 −0.06 0.05 0.22

 Month 9 0.02 0.05 0.64

Unadjusted Robust Bootstrapped

OR SE P SE P SE P

Logistic GEE (Planned contrasts)

 Pager support × Month 3 versus 0 1.98 1.06 0.20 0.81 0.09^ 0.83 0.10^

 Pager support × Month 6 versus 0 1.01 0.56 0.99 0.39 0.99 0.40 0.99

 Pager support × Month 9 versus 0 1.66 1.00 0.40 0.74 0.26 0.76 0.27

Logistic GEE (Growth curves)

 Pager support × Month 0–3 1.64 0.84 0.34 0.59 0.18 0.61 0.19

 Pager support × Month 3–9 0.59 0.38 0.42 0.27 0.26 0.28 0.27

Note: B un-standardized beta, OR odds ratio, SE standard error, P P value;

^
P ≤ 0.10
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