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Abstract
Astrocytes, the most important energy regulator in the brain, support brain energy needs. In the
meantime, numerous studies have demonstrated that impaired brain glucose metabolism is closely
linked to abnormal astrocytic metabolism in AD. Indeed, the interaction between amyloid plaques
and perturbed astrocytic homeostasis contributes to AD pathogenesis and astrocytic metabolic
dysfunction is thought to be a trigger for Aβ pathology through oxidative stress and
neuroinflammation Moreover, astrocytic metabolic dysfunction may regulate Aβ generation via
modulating proteolytic processing of amyloid precursor protein (APP) by β-secretase, γ-secretase,
and α-secretase, and may also modulate APP post-translational modifications such as
glycosylation, phosphorylation, and tyrosine sulfation. While it is known that metabolic
dysfunction of astrocytes contributes to the failure of Aβ clearance, it has also been reported that
such dysfunction has neuroprotective property and exhibits no detrimental outcomes. Therefore,
the exact role of astrocytic metabolic dysfunction in Aβ pathology remains to be further
investigated.
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1. Introduction
Alzheimer's disease (AD) is a neurodegenerative diorder leading to cognition decline,
behavioral symptoms, and eventual loss of social or occupational function. Beta-amyloid
(Aβ) plaques (extracellular Aβ deposition) and neurofibrillary tangles (NFT, intracellular
deposits of hyper-phosphorylated tau protein) have been identified as two classical
pathological hallmarks of AD [1-3]. Accordingly, numerous studies have focused on Aβ
generation and deposition as well as on NFT formation as the triggering factors for AD
occurrence [4, 5].

By maintaining brain homeostasis, astrocytes are the most important energy regulator in the
brain [6, 7]. Indeed, astrocytes play a role of metabolic activation in the brain and support
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brain energy needs [7, 8]. Over the past decade, numerous studies on astrocytes attempting
to elucidate AD etiology have evidenced that impaired brain glucose metabolism is closely
associated with abnormal astrocytic function in AD [9-11]. Firstly, the interaction between
amyloid plaques and perturbed astrocytic homeostasis has been found in AD. Secondly, it is
via oxidative stress and neuroinflammation that metabolic dysfunction of astrocyte
contributes to Aβ pathology [12]. In addition, it is known that metabolic dysfunction of
astrocyte regulates proteolytic processing of APP by β-secretase, γ-secretase, and α-
secretase [13]. Moreover, metabolic dysfunction of astrocytes may also be a regulator of
APP post-translational modifications such as glycosylation [14], phosphorylation, and
tyrosine sulfation [15-18], and may lead to failure in Aβ clearance [19, 20].

This review focuses on the role of metabolic dysfunction of astrocytes in Aβ pathology. An
overview is provided for the proposed general pathogenic mechanisms of metabolic
dysfunction of astrocyte in Aβ pathology that are mainly via oxidative stress and
neuroinflammation, regulation of proteolytic processing of APP and APP post-translational
modification, and failure in Aβ clearance. Finally, the possibility of improving astrocytic
function as a potential target for AD prevention and treatment is also discussed.

2. Astrocytes
Astrocytes, large and star-shaped neuroglial cells with many branches, are specialized glial
cells that out-number neurons by more than five-fold [21]. They play multifunctional roles
including physical support, nutritional supply, and biochemical support to the blood-brain
barrier (BBB) and neurons [22-24] as well as to the repair and scarring of injury [25, 26].
Astrocytes are critical mediators of brain homeostasis, such as maintaining the balance of
ions and the integrity of BBB in the central nervous system, communicating with neurons
and other important structures, releasing growth factors, and regulating neurotransmitter
levels [24, 27, 28]. Numerous studies have indicated that astrocytes are involved in all types
of brain pathologies from acute lesions such as trauma or stroke to chronic
neurodegenerative processes such as AD, Parkinson's disease, multiple sclerosis [29-33],
and psychiatric diseases. Many studies also reported a role of astrocytic degeneration and
atrophy in various neurodegenerative disorders [34-36].

3. Abnormal glucose metabolic dysfunction in astrocytes: a direct link to
AD

Glucose, an essential energy source for the brain, is oxidized through sequential metabolic
pathways including glycolysis, the tricarboxylic cycle, and oxidative phosphorylation.
Glucose can also be stored as polysaccharide glycogen in the brain. Medical scientists
confirm that low glucose metabolism is the early warning signs of AD [37, 38], and glucose
metabolic failure is an early event in neurodegenerative disease represented by altered
expression of nutrient transporters, metabolic enzymes and molecular components of
cellular respiration [39, 40]. Therefore, it is well established that brain glucose metabolism
is impaired in AD [41, 42] and alterations in cerebral blood flow and oxygen consumption
would decrease most severely with age and neurodegenerative process accompanied by low
glucose metabolism [43, 44]. It has been reported that in AD glucose hypometabolism,
mostly due to glycolytic breakdown and pyruvate oxidation [45, 46], promotes Aβ
pathology, facilitates abnormal hyperphosphorylation of tau [47], damages synaptic
transmission function, and leads to the occurrence of cognitive impairment [48, 49].

Astrocytes are thought to play a role in metabolic activation in the brain by promoting
glycolysis, glycogenolysis activities, and production of lactate, all of which supports brain
energy needs. Astrocytic glycogen breaks down to lactate against hypoglycemic neural
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injury. Studies have shown that the activities of key glycolytic enzymes in the brains of
patients with AD are changed, including a significant increase of pyruvate kinase and lactate
dehydrogenase in frontal and temporal cortex, and a significant decrease of glucose 6-
phosphate dehydrogenase activity in hippocampus [50, 51]. Furthermore, some glycolytic
enzyme activities are correlated with contents of lactate dehydrogenase and glial fibrillary
acidic protein (GFAP) in astrocytes, implicating that the increased activity of some
glycolytic enzymes may be the result of astrocytic dysfunction developed in the course of
AD [50]. AD is also linked to aerobic glycolysis whereby glucose does not go into oxidative
phosphorylation in astrocytes. Indeed, it is found that the spatial distribution of aerobic
glycolysis correlates spatially with Aβ deposition [52].

4. Metabolic dysfunction from astrocytes: a trigger for Aβ pathology
Although the brain is about 2% of the whole body weight, it consumes about 15% of the
cardiac output, 20% of the oxygen, and 25% of the glucose to maintain cerebral functions.
Therefore, the brain is such an organ with the highest energy requirements in the human
body. It is well-known that astrocyte, as the most important energy regulator in the brain,
maintains brain homeostasis and restores ion gradients such as post-synaptic and action
potentials, as well as uptake and recycling of neurotransmitters, which all count toward
energy consumption in the brain.

The generation and deposition of Aβ in the brain is a conventional molecular trend in the
pathogenesis of AD. So far the amyloid hypothesis of AD has been recognized as the main
pathological features. Therefore, not surprisingly, compelling studies have supported the
notion that metabolic dysfunction of astrocyte is a trigger for Aβ pathology [53, 54] given
the importance of astrocytes in the brain.

4.1 Brain homeostasis disorders induced by astrocytic dysfunction: a contributor to Aβ
pathology

Increasing evidence has indicated that astrocytes, the most abundant cells in the brain, plays
a pivotal role in maintenance of brain extracellular homeostasis and functional recovery
from injuries through a variety of means, including regulating intracellular ion homeostasis
[55], providing a metabolic support for brain energy [55], regulating metabolism of
neurotransmitters, maintaining the structure and function of BBB, clearing the abnormal
aggregates in the brain, and regulating the brain immune response and neurodevelopmental
processes [56-58]. Astrocytic dysfunction induces and facilitates neurodegeneration, which
leads to cognitive impairment found in neurodegenrative diseases, such as AD, Parkinson's
disease [59] and Huntington disease [60, 61]. Therefore, it is thought that brain homeostasis
disorders induced by astrocytic dysfunction are closely associated with AD.

Brain homeostasis failure leads to an inability to maintain brain physiological balance that
causes severe maladjustment [62, 63]. During aging, the capabilities of brain homeostasis
are increasingly vulnerable as evidenced by age-related Alzheimer's disease [64, 65].
Therefore, numerous studies have demonstrated that failure in brain homeostasis enhances
Aβ deposition and a decline in Aβ clearance. The past several decades have witnessed many
important discoveries that provide novel insights into associations between amyloid plaques
and perturbed astrocytic homeostasis [10, 55, 65]. Impaired cellular ion homeostasis and
energy metabolism not only are triggers for Aβ deposition and a decline in Aβ clearance, but
also render neurons vulnerable to Aβ excitotoxicity [66]. It is also known that presenilin
mutations perturb calcium homeostasis in astrocytic endoplasmic reticulum, indicating that
aberrant calcium homeostasis is linked to altered APP processing [67].
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4.2 Oxidative stress and neuroinflammation induced by metabolic dysfunction from
astrocytes: a contributor to Aβ pathology

Increasing evidence demonstrates that neuroinflammation and oxidative stress occur
throughout the pathological process of AD [68-70]. An important pathological feature of AD
is that oxidative stress triggers an active and self-perpetuating cycle of chronic
neuroinflammation, which further promotes oxidative stress that eventually leads to
irreversible neuronal dysfunction and cell death [69, 71, 72]. Evidence has also indicated
that not only oxidative stress and neuroinflammation have a close association with Aβ
pathology, but also the interaction between oxidative stress and neuroinflammation enlarges
Aβ generation [71, 73].

It is known that senescent astrocytes may link advanced age with increased risk for sporadic
AD [65, 74]. It is also known that astrocytes, as a site for the production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS), are the initiator of oxidative stress that
occurs through the whole process of AD pathogenesis [65]. Compelling evidence has also
demonstrated that the inflammatory reaction and oxidative stress are generated by activated
astrocytes and/or senescent astrocytes that produce a number of inflammatory cytokines
including interleukin-6 (IL-6) and IL-1 [65, 74, 75]. Astrocytic metabolic phenotype
modified by proinflammatory cytokines is observed in AD while long-term treatment with
IL-1β or TNF-α alone enhances glucose utilization in astrocytes [11]. Given that energy
failure, increased oxidative stress, and neuroinflammation are critical for Aβ pathology [76,
77], astrocytic metabolism dysfunction may dictate the occurrence of Aβ-related events
through mechanisms that are yet to be elucidated.

4.3 Proteolytic processing of APP regulated by metabolic dysfunction from astrocytes
Proteolytic processing of APP—Amyloid precursor protein (APP), an integral
membrane protein, is best known as the Aβ precursor molecule. Proteolytic processing of
APP commonly includes an amyloidogenic and a non-amyloidogenic pathway. In the
amyloidogenic pathway Aβ is generated by the sequential proteolysis of two enzymes: β-
secretase and γ-secretase [78]. The non-amyloidogenic pathway is a process whereby α-
secretase cleaves APP in the extracellular domain and releases soluble APPα. Following this
cleavage, the C-terminal fragment (α-CTF) is cleaved again by γ-secretase to yield 3kDa
fragment known as P3.

α-secretase—APP can be cleaved by α-secretase within the APP domain between Lys687
and Leu688, producing a soluble α-APP domain and the C-terminal fragments containing
C83. C83 can then be cleaved by γ-secretase at residue 711 or 713 to release a P3 fragment.
This process does not yield Aβ peptide [79]. Hence, the α-secretase pathway has a beneficial
effect in lowering Aβ peptide levels. Considerable evidence has demonstrated that abnormal
astrocytes play a crucial role in Aβ generation and deposition. The production and
aggregation of Aβ is regulated by abnormal astrocytes via interfering with APP cleavage. A
recent study has discovered that a group of high-energy compounds (HECs), including ATP,
GTP, CTP, phosphocreatine, phosphoenol pyruvate, S-adenosylmethionine and acetyl
coenzyme A, promotes APP α-secretase-processing with varying potencies whereas their
cognate counterparts do not have the same effects that could be eliminated by energy
inhibitors [80]. Yao et al [81] have also shown that 2-deoxy-D-glucose (2-DG) increases α-
secretase and decreases γ-secretase expression via inducing ketogenesis and sustaining
mitochondrial function, and reduces pathology in female mouse model of AD. These
findings implicate that improving astrocytic energy supply may be useful in slowing down
the progression of AD via enhancing α-secretase-processing.
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β-secretase—A large body of evidence supports that β-secretase (beta-site amyloid
precursor protein-cleaving enzyme 1, BACE1) is the rate-limiting enzyme for the production
of Aβ [82, 83]. In APP transgenic (Tg2576) mice, energy inhibition by several
pharmacological agents (insulin, kainic acid, 2-deoxyglucose and 3-nitropropionic acid)
caused approximately a 150% increase in cerebral BACE1 levels and a 200% increase in
cerebral Aβ40 levels, respectively, when compared with controls, implicating that impaired
energy production in the brain may enhance Aβ pathology by elevating BACE1 levels and
activities [84]. In addition, bioenergy impairment could also contribute to neuronal apoptosis
and elevated β-secretase, thereby promoting AD pathogenesis [85]. It is obvious that
bioenergy impairment of astrocytes would be a decisive factor in Aβ generation owing to
elevated β-secretase levels and activities.

γ-secretase—γ-secretase is a multi-subunit protease complex that consists of four
individual proteins: presenilin (PS1 or PS2), nicastrin, APH-1 (anterior pharynx-defective 1,
APH-1α or APH-1β), and PEN-2 (presenilin enhancer 2). As described above, improving
astrocytic energy supply by 2-DG lowers γ-secretase level and limits Aβ pathogenesis in
vivo [81]. On the contrary, activated astrocytes have an increased expression of the γ-
secretase components presenilin-1 and nicastrin [86]. Hence, a hypothesis has been
postulated that astrocytic bioenergy impairment triggers γ-secretase overexpression and
contributes to Aβ pathogenesis.

4.4 Post-translational modification of APP by metabolic dysfunction from astrocytes ?
Besides many types of proteolytic processing, APP undergoes extensive post-translational
modifications including glycosylation, phosphorylation, and tyrosine sulfation [87]. Protein
glycosylation, common in Eukaryotic proteins, is the most important and complex form of
post-translational modifications. APP contains both N-linked and O-linked sugars [88, 89].
N-linked glycosylations are covalently attached to Asn residues within a consensus sequence
(Asn-Xaa-Ser/Thr), enabling prediction of the modification sites and sharing of a common
pentasaccharide core (GlcNAc2Man3) recognized by N-glycanase enzymes. Mucin-type, the
most prevalent O-linked glycosylation is characterized by an N-acetylgalactosamine
(GalNAc) residue linked to the hydroxyl group of Ser or Thr. GalNAc residue is installed by
a family of 24 N-acetyl-galactosaminyltransferases, and further elaborated by a series of
glycosyltransferases to generate higher O-linked structures. It has been identified that the
structures of the core type O-linked glycans are attached at the residues Thr291, Thr292 and
Thr576 of the full-length APP695 with the use of electron transfer dissociation and collision
[90]. Griffith et al. [91] first presented that APP is modified with O-linked N-
acetylglucosamine, namely O-linked to cytoplasmic serine or threonine residues (O-
GlcNAc). Numerous results support that the post-translational modification of APP by
glycosylation is a key event in determining the processing of the protein [92-94].

Phosphorylation of APP is known to occur on several phosphorylatable amino acid residues
in its cytoplasmic and luminal region [95, 96]. It has been found that phosphorylation of
APP at Thr668 induces neurodegeneration via regulating the nuclear translocation of the
APP intracellular domain [97] while Thr668 phosphorylation may facilitate the BACE1
cleavage of APP to increase Aβ generation [98].

It is also well known that APP is a type I transmembrane protein with a large ectodomain. It
is found that APP can undergo sulfation on tyrosine residues within its ectodomain [87].
Furthermore, sulfation is shown to be critical for the effect of heparin on APP processing
and Aβ production [17].
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Additionally, a number of post-translational modifications to APP have been found in the
brains of AD patients and transgenic animal models of AD. As metabolic disorder is an
important determinant for post-translational modifications [99-103], a reasonable conclusion
is that metabolic disorder will influence AD-associated APP post-translational
modifications. However, whether an astrocytic metabolism disorder promotes AD-
associated APP post-translational modifications remain unknown. Hence, identification of
APP post-translational modifications promoted by astrocytic dysfunction may provide novel
therapeutic targets for AD treatment.

4.5 Astrocytes, metabolic disorder and failure of Aβ clearance
Emerging evidence suggests that failure of Aβ clearance in the brain is an important factor
in the progression of AD [104]. Multiple cellular and molecular mechanisms have been
elucidated that astrocytes are involved in Aβ clearance. Within the progress of Aβ deposition
and pathological severity, the ability of astrocytes to clear Aβ is gradually compromised
under a cytokine cycle of molecular and cellular cascades induced by astrocytic activation,
microglial activation, and Aβ deposition, which all confer risks for AD. It has been
recognized that astrocytes can lose energy-generating reactions to clear aggregated proteins
when astrocytes show persistent response to the chronic inflammation and oxidative stress
induced by microglial activation and/or Aβ deposition [105-107]. Thus, the cytokine cycle
of molecular and cellular cascades from astrocytic activation, microglial activation and Aβ
deposition may be one of the most important factors in Aβ clearance [108-110].

Astrocytes play many pathophysiological roles, such as biochemical support of endothelial
cells that form the BBB, nutrient supply for the nervous tissue, maintenance of ion
homeostasis, as well as clearance and degradation of aggregated proteins. Various studies
implicate that the BBB plays a role in the deposition of Aβ and faulty clearance of Aβ from
the brain [111-113]. Astrocytic BBB disruption is a critical contributor to the failure of Aβ
clearance whereas the astrocyte end-feet encircling endothelial cells are in the maintenance
of the structural and functional integrity for BBB [114-116]. As the main function of BBB
regulates the passage of molecules and leukocytes in and out of the brain, BBB injury by
astrocytic disorder would be a major underlying cause of neurodegenerative disorders since
astrocytic-endothelial tight junctions disrupt the integrity of the BBB [117-119]. Therefore,
the main pathogenesis of AD involves disruption of BBB that subsequently not only delays
the Aβ clearance from the brain but also facilitates an increase in Aβ influx from the
cerebrospinal fluid (CSF). Metabolic dysfunction of astrocytes may perturb the rapid
clearance of Aβ across the BBB via increasing levels of receptor for advanced glycation end
products (RAGE) [120-122], downregulating low density lipoprotein receptor-related
protein 1(LRP-1) [123, 124], and dysregulating enzymatic degradation (such as matrix
metalloproteinases, MMPs) [125]. Furthermore, oxidative stress and neuroinflammation
may be critical mediators between Aβ clearance and astrocytic metabolic dysfunction
(Figure 1).

5. Conclusion and perspective
Increasing evidence supports the notion that impaired brain glucose metabolism is closely
associated with abnormal astrocytic function in AD. Oxidative stress and neuroinflammation
induced by metabolic dysfunction of astrocyte likely contribute to Aβ pathology.
Specifically, metabolic dysfunction of astrocyte may: 1) regulate proteolytic processing of
APP; 2) modulate APP post-translational modification; 3) lead to the failure of Aβ
clearance; 4) cause AD indirectly by interacting with many other pathologic processes.
However, a few studies also demonstrated that metabolic dysfunction of astrocytes could
have neuroprotective properties that did not exhibit detrimental outcomes [9, 72, 111, 130,
131]. Therefore, the exact role of astrocytic metabolic dysfunction in Aβ pathology remains
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unclear at this time. Clinically, it is also unclear whether metabolic dysfunction of astrocytes
would be indeed beneficial in AD intervention. Thus, it is necessary to further understand
the mechanisms of metabolic dysfunction of astrocytes before it can be targeted for AD
prevention and treatment.
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Figure 1. Schematic diagram of failure of Aβ clearance by metabolic dysfunction from astrocyte
Metabolic dysfunction from astrocyte leads to failure of Aβ clearance by disrupting BBB
transporter. Metabolic dysfunction from astrocyte may injury its rapid clearance across the
BBB via increasing RAGE level, downregulating LRP-1, and dysregulating enzymatic
degradation (such as MMPs). RAGE is a member of multi-ligand immunoglobulin
superfamily and cell surface receptor. RAGE promotes influx of circulating Aβ across the
BBB from blood to brain, which is antagonized by LRP-1-mediated efflux of Aβ [126, 127].
LRP-1, a multifunctional scavenger and signaling receptor belonging to the low-density
lipoprotein receptor family, plays a role in the cellular transport of cholesterol, endocytosis
of diverse ligands, transcytosis of ligands across the BBB [124, 128]. LRP-1, abundantly
expressed in capillary endothelial cells, is a major clearance receptor responsible for efflux
of Aβ from brain to blood [123, 124]. MMPs are involved in BBB damage related to Aβ
clearance [125] and formation of Aβ plaques [129]. Neuro-inflammation and oxidative stress
may a critical mediator between Aβ clearance and metabolic dysfunction from astrocyte.
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