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Intermittency Coding in the Primary Olfactory System:
A Neural Substrate for Olfactory Scene Analysis
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The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform
scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and
quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of
the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer
time scales can provide major cues for olfactory scene analysis for animals. We show that a bursting subset of primary olfactory receptor
neurons (bORNs) in lobster has the unexpected capacity to encode the temporal properties of intermittent odor signals. Each bORN is
tuned to a specific range of stimulus intervals, and collectively bORNs can instantaneously encode a wide spectrum of intermittencies.
Our theory argues for the existence of a novel peripheral mechanism for encoding the temporal pattern of odor that potentially serves as
a neural substrate for olfactory scene analysis.
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Introduction
Vision and audition provide dynamic perception of the world,
commonly referred to as visual and auditory scene analysis, re-
spectively, with enormous advantage for survival in higher verte-
brates (Bregman, 1994). Given that olfaction is phylogenetically
the oldest sensory system (Ache, 1991; Hildebrand, 1995), it
would be surprising if animals that rely primarily on chemosen-
sory information to quantify their sensory worlds did not evolve
some version of olfactory scene analysis as an edge for survival
(Mountain and Hubbard, 2001). Just as binocular disparity and
interaural time differences provide critical information about the
spatial perception in vision and audition, respectively, the irreg-
ular interval of odor encounters inherent in the odor plume
structure, the intermittency, is a strong candidate for that pur-
pose in olfaction (Moore and Atema, 1988; Murlis et al., 1992;
Gomez et al., 1999).

Most research on olfactory coding has been devoted to the
detection and discrimination of odor quality (Hopfield, 1999;
Bazhenov et al., 2001; Bathellier et al., 2008; Raman et al., 2010).

The study of intermittency in olfaction primarily has focused on
the rapid discontinuous stimulus acquisition process [e.g., sniff-
ing in mammals (Wachowiak, 2011), flicking in crustaceans
(Schmitt and Ache, 1979)], or rapid stimulus flux (Brown et al.,
2005; Geffen et al., 2009) that occurs over fractions of a second, in
contrast to the second to many tens of seconds intermittency that
characterizes the natural odor signal profile (Vickers et al., 2001;
Webster and Weissburg, 2001; Gardiner and Atema, 2010). Be-
cause intermittency is a major cue in both passive and active
sensing of the olfactory environment, one can hypothesize that
there is a specialized subsystem that represents some form of the
timing history of odor encounters.

Internal representation of interval timing is usually associated
with higher-order brain function. Various central neural mech-
anisms, including pacemaker-accumulators, neural oscillators,
and network dynamics have been proposed (Miall, 1989; Buhusi
and Meck, 2005; Laje and Buonomano, 2013). Peripheral strate-
gies, such as a system of uncoupled oscillating detectors, generally
have not been considered. However, the potential for such a pe-
ripheral sensory system capable of dynamic information extrac-
tion exists in the olfactory system. Although the majority of
olfactory receptor neurons (ORNs) in animals are canonical ton-
ically active cells that respond to odor with changes in discharge
rate, some are intrinsically or conditionally rhythmically active
ORNs (Sicard, 1986; Frings and Lindemann, 1988; Reisert and
Matthews, 2001a,b; Arnson and Holy, 2011) referred to here as
“bursting” ORNs (bORNs). bORNs have been well characterized
in the lobster olfactory organ, where they generate intrinsic bursts
in response to brief odor stimuli in a phase-dependent manner
(Bobkov and Ache, 2007). Although bORNs may potentially pro-
vide a basis for detecting odor intermittency, there are several
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fundamental questions that need to be addressed to ultimately
understand whether bORNs actually have the potential to serve
this purpose.

In the present study, we combine electrophysiological and
theoretical modeling approaches to explore the tuning properties
of individual lobster bORNs, and show that a heterogeneous
population of such bORNs can encode a wide spectrum of stim-
ulus intermittencies. Our findings argue for a heretofore unsus-
pected role for ORNs; encoding of the temporal structure of odor
signals in a manner that provides a potential neural substrate for
olfactory scene analysis.

Materials and Methods
Preparation, electrophysiology, calcium imaging, experimental data analy-
sis. Experiments were conducted using a lobster ORN in situ preparation
developed earlier (Bobkov and Ache, 2005; Ukhanov et al., 2011). A
single annulus was excised from the olfactory organ (the lateral antennu-
lar filament) of lobsters of either sex, and the cuticle on the side opposite
the olfactory (aesthetasc) sensilla was removed to provide better access to
the cell bodies of the ORNs. After enzymatic (�1 mg/ml trypsin, papain,
collagenase for 10 min) treatment and mechanical clearing individual
ORN somata were available for electrophysiological recording. The spec-
imens were mounted on a plastic 35 mm Petri dish and placed on the
stage of inverted microscopes (Axiovert 100, Zeiss). The cell bodies of the
ORNs were continuously superfused with Panulirus saline (PS) contain-
ing the following (in mM): 486 NaCl, 5–14 KCl, 13.6 CaCl2, 9.8 MgCl2
and 10 HEPES, pH 7.9. A second superfusion flow of PS allowed odorants
to be delivered exclusively to the olfactory sensilla containing the outer
dendrites of the ORNs. Both superfusion contours were gravity fed at
constant rates of flow. The odorant was an aqueous extract of Tetra-
Marine (TET), a commercially available marine fish food. Flakes of TET
were powdered, dissolved in water (0.1 g/ml), filtered through a 0.2 �m
syringe filter, and diluted 1:200 in PS for experiments. The total maxi-
mum concentration applied was estimated to be �60 –100 �M. The
concentration of any individual component might be expected to be 1
nM-100 nM range, depending on total number of components, consistent
with concentrations able to elicit chemotaxis in spiny lobsters (Ache et
al., 1978). The odorant stream was switched with the flow of PS that
otherwise continuously superfused the sensilla (both �250 �l/min) us-
ing a multichannel rapid solution changer (RSC-160, Bio-Logic).

Electrophysiological evaluation of ORN activity was performed using
both extracellular loose-patch and whole-cell recording. Patch electrodes
were pulled from borosilicate capillary glass (Sutter Instrument BF150-
86-10) using a Flaming-Brown micropipette puller (model P87). Resis-
tance of the electrodes was 1–5 m� as measured in PS. For whole-cell
recordings, the electrode contained intracellular solution: KCl 180 or 210
mM, NaCl 30 or 0 mM, GTP 0.5 mM, ATP 0.5 mM, MgCl2 1 mM, Glucose
696 mM, HEPES 10 mM, and Tris-base to adjust pH to 7.8.

For calcium signal-based evaluation of ORN activity, the antennular
segments were placed in an Eppendorf tube in PS containing the fluores-
cent calcium indicator (Fluo-4AM) 10 �M prepared with 0.2– 0.06%
Pluronic F-127 (Invitrogen). The tube was shaken for 30 – 60 min on an
orbital shaker (�70 rpm). The tissue was transferred into fresh PS and
mounted for imaging. Fluorescence imaging was performed on an in-
verted microscope (Olympus IX-71) equipped with a cooled CCD cam-
era (ORCA R2, Hamamatsu) under the control of Imaging Workbench 6
software (INDEC Systems). The stimulation paradigm was similar to that
used in electrophysiological experiments. A standard FITC filter set (ex-
citation at 510 nm, emission at 530 nm) was used. Images were collected
at the rate of �4.23 Hz. Recorded data were stored as image stacks, and
analyzed off-line using Imaging Workbench 6 or ImageJ 1.42 and
pCLAMP.

Voltages/currents were measured with an Axopatch 200B patch-clamp
amplifier (Molecular Devices) using an AD–DA converter (Digidata
1320A, Molecular Devices), low-pass filtered at 5 kHz, sampled at 5–20
kHz. Data were collected and analyzed with pCLAMP 9.2 software (Mo-
lecular Devices) in combination with Sigma Plot 10.0 (SPSS). The time of
occurrence of the spike was taken as the time of peak current deflection,

i.e., the peak of the spike. Burst detection and analysis was performed
using the burst analysis protocol provided in pCLAMP 9.0. Burst delim-
iting interval and a minimum number of spikes in a burst were individ-
ually specified for each ORN. Interburst intervals (IBIs) were usually
taken as the time between the first spikes of two subsequent bursts. The
bin width is varied in the range 0.25–2 s depending on individual bORN
bursting frequencies. The data are presented as the mean � SEM of n
observations unless otherwise noted. All recordings were performed at
room temperature.

Probabilistic modeling. We model the bORN bursts as a renewal pro-
cess with external resets (see Fig. 3). Let F be the cumulative distribution
of the spontaneous interburst intervals. Under the renewal assumption,
the dependence of the past state quickly is washed out, enabling simple
approximations. In other words, when the oscillator is noisy, no matter if
and when it bursted recently, the probability of bursting at a distant
future t approaches a constant. In fact, one can show that the asymptotic
distribution of the phase �, defined as the time since last burst at time t,
does not depend on t and is given by:

F���� �
1

��
0

�

�1 � F� x��dx, (1)

where � is the mean of F (Karlin and Taylor, 1975). The phase distribu-
tion Ft (�) converges to F�(�) geometrically fast. We parameterize F(�)
as a normal distribution with mean � and variance � 2, truncated to the
positive reals.

Odor stimulus evokes a burst with probability Pe(�), where � is the
time interval from last burst. We parameterize the evoked probability as

a sigmoid Pe��� �
1

1 � exp� � �� � x0� / b�
. We define the baseline

response as the probability of evoking a burst in the asymptotic state. Let
Y1 be the Bernoulli random variable for the response to the first stimu-
lation of the bORN in an asymptotic state (taking a value of 1 for re-
sponse, 0 for no response). The baseline response of a bORN is the
probability of response, p � Pr[Y1 � 1]. By taking the expectation on
the (asymptotic) time since last burst, we obtain:

p � � Pr 	Y1 � 1 � �
dF���� � �
0

�

Pe���dF����. (2)

Note that the empirically estimated probability of the baseline has a
positive bias of ��t, if the actual window for burst detection is �t, be-
cause the stimulation-induced response and spontaneous bursting are
virtually identical (see Fig. 2b).

Most recent interval tuning curve. We now derive the response proba-
bility of a bORN in the asymptotic state exposed to a pair of stimulations.
Let Y2�� be the Bernoulli random variable for the response to the second
stimulation � seconds after the first stimulation to the bORN. We as-
sume the bORN was in the asymptotic state at the time of the first stim-
ulus. If q��� � Pr 	Y2 � 1 � �
 is different from p, it indicates that the
system response is tuned to the stimulation interval �. Using the law of
total probability conditioned on the first response, we have:

Pr 	Y2 � 1 � �
 � Pr 	Y2 � 1 � �, Y1 � 0
 Pr 	Y1 � 0


� Pr 	Y2 � 1 � �, Y1 � 1
 Pr 	Y1 � 1
, (3)

where Pr[Y1 � 0] is simply equal to 1 � Pr[Y1 � 1] � 1 � p. Note that
Pr[Y2 � 1��, Y1 � 0] 
 Pr[Y1 � 1], because if the bORN did not respond
to the first stimulus, it is not in the asymptotic state anymore; it
selectively lost some portion of the phase distribution due to the first
stimulus. Taking the expectation over the time since the most recent
burst �,

Pr 	Y2 � 1 � �, Y1 � 1
 � E 	Pr 	Y2 � 1 � �, Y1 � 1, �

.

(4)
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The distribution of the time since last burst �
depends on how many spontaneous bursts
were there in the interval �. The distribution of
k�th spontaneous burst given Y1 � 1 corre-
sponds to the k-fold convolution of F, denoted
as Fk. The phase distribution at � given k spon-
taneous bursts, but not k � 1 is given by the
product of k-fold convolution and the proba-
bility of having no burst in � � �:

Pr 	Y2 � 1 � �, Y1 � 1
 �

Pe(�)(1 � F(�)) � �
k � 1

� �
0

�

Pe �� � ��

�1 � F�� � ���dFk���. (5)

If Y1 � 0, right after the first stimulation, the
phase distribution is proportional to (1 �
Pe(�)) F�(�). This quickly converges to the
asymptotic distribution F� in the order of
(� � x0) seconds. Therefore, we approximate
Pr[Y2 � 1�	, Y1 � 0] � p. Finally, we obtain
q(�), the (approximate) most recent interval
tuning curve; the conditional probability of fir-
ing given that the last odor stimulation was �
seconds ago, as in Eq. 6.

Experimentally measured parameters and
population extrapolation. Each bORN is mod-
eled with four parameters: (�, �) parameter of
� which corresponds to the mean and SD of the
normal distribution before truncation, and (x0,
b) for shift and slope of the sigmoid Pe���.

We extrapolate a collection of sample pa-
rameter pairs [187 bORNs for �, 28 for (�, �),
15 for (�, �, x0, b)] obtained from electrophys-
iology to a large realistic population of bORNs
each modeled with four parameters. Figure 5
shows a particular instantiation of the simu-
lated parameters extrapolated from data as de-
scribed below.

The mean parameter for the interburst in-
terval (IBI) � is strictly positive, and cannot be
shorter than either the minimum burst dura-
tion nor the absolute refractory period of the
bORN. Based on the observation from several
bORNs, we consider this minimum to be 50
ms. The Weibull distribution (with 50 ms shift)
fit the data best (Fig. 1c).

Experimentally, it is easier to detect bORNs
with a shorter IBI. The procedure to find these
bORNs was to patch random cells and wait to
see if it bursts spontaneously or in an odor-
induced manner. Hence, this distribution is
likely biased toward shorter IBIs.

Once the mean IBI was determined, the SD
of the IBI distribution was obtained by a linear
fit. The variance was not constant, hence the fit
was crosschecked with a generalized least-
squares method, and the difference was negli-
gible. The noise was assumed to be Gaussian
with zero mean and SD estimated from the re-
siduals. A sigmoid function with slope param-
eter 1/10 was used to model the change of
variance (see Fig. 5a). The coefficient of varia-
tion, defined as the SD over the mean of the
interval distribution, is �0.3. Hence, the point
process is sub-Poisson as expected, and fairly
regular.
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Figure 1. Characteristic of spontaneous activity of bORNs recorded extracellularly. Examples of bORNs (a) with different intrinsic
bursting parameters: burst structures (b) and bursting frequencies (c). Each raw represents a different cell. Bursting parameters for the cells
shown(fromtoptobottom;meanIBI�SD;sec,numberofspikesinburst;burstduration,sec;n):1.34�0.18,10.5�0.14,0.16�0.003,
119;4.78�1.34,5.73�0.06,0.08�0.001,165;7.17�2.14,5.8�0.06,0.166�0.004,99;10.2�1.77,5.98�0.08,0.23�0.006,
108; 13.6�1.59, 4.02�0.04, 0.06�0.001, 98. Current scales are the same in a, b. b, Superposition of at least 20 bursts shown for each
ORN. Bursts are aligned relative to the highest instantaneous frequency within each burst. Red traces show single individual bursts. c, IBI
histogramandanormalfit.Binwidthis0.5sexcepttopORN(0.1s).Notethatthefrequencyofspontaneousburstingandtheburststructure
for any given cell were consistent. d, Distribution of spontaneous burst frequencies across bORN subpopulation evaluated extracellularly
(N � 187, bin width 3 s). Solid line shows the Weibull fit.
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The shift x0 in Pe(�) was also linearly fitted (see Fig. 5b). In this case,
the bias was fixed to zero; a free bias results in negative x0, which is
unacceptable because it would imply that there is no refractory period.

The sigmoid slope parameter b in Pe(�), is more tightly connected to x0

than � (see Fig. 5c). Because, x0 is generated from � with noise, we
assumed conditional independence of b and � given x0. For small values
of x0, the slope of the regression line is flatter. In addition, the value is
strictly positive; hence, we fit an exponential function. To generate
strictly positive noise, zero mean Gaussian noise was added to the argu-
ment of the exponential. This induces slight positive bias to the generated
points.

Calcium image data analysis. Spontaneously oscillating cells were de-
tected by inspecting average activity in the region of interests. Previous
studies show that these oscillations correspond to bORN activity (Bob-
kov et al., 2012). The time series was denoised by removing the popula-
tion average from each session (simultaneous recording of several cells).

Then, low-frequency fluctuations were removed by low-pass filtering
(cutoff 0.012 Hz) and subtracting. Three neurons were discarded from
the analysis because calcium signal oscillations corresponding to
bursting events weakened in amplitude over time making impossible
to reliably detect bursts toward the end of the recording sessions.
Burst detection was done by selecting a threshold crossing in the
numerical-derivative. It was semiautomated: a Gaussian mixture
model was fit to the distribution of the derivative to find the bound-
ary, and then the threshold was manually fine-tuned. Evoked bursts
were detected if there was a burst in the window after the stimulus
with 1 s offset and size of 1–5 s.

Maximum a posteriori estimate of the parameters for the sigmoid
Pe(�) were obtained by imposing a Gaussian penalty of �
�1/ b� 2 to the
log-likelihood where 
 � 0.01. Due to the limited number of trials (me-
dian of 7), estimated q(�)’s were sometimes highly variable. Because the
log-likelihood Eq. 8 is most sensitive to cells with extreme conditional

Figure 2. Analysis of odor-evoked activity of a bORN. a, Extracellular single unit recording of spontaneous bursts (top) and stimulus-evoked activity (bottom) of the same ORN. Blue bars mark odor
application. Stimuli were always applied randomly, independent of any ongoing activity. Segments of the trials aligned relative to preceding spontaneous bursts. a, Bottom, Recordings were also
aligned according to the time interval between last spontaneous burst and the stimulus application. The time interval increases from the bottom to the top of the panel. b, Plot of the probability of
eliciting a burst in response to an odorant (blue symbols and sigmoid fit) as a function of the time since the last burst and odorant pulse (probability estimated over 1 s bins). Superimposed IBI
histogram represents probability density function and cumulative distribution function for the spontaneous bursts (gray bars and red curves, bin width 1 s). c, Comparison of the structure of
spontaneous (top) and evoked (middle) bursts for the same ORN as in a, b. Bursts are aligned relative to the pair of spikes within each burst yielding greatest instantaneous frequency. Superposition
of 20 bursts is shown in each case. Black (c, top panel) and blue (c, middle panel) traces show individual spontaneous and evoked bursts respectively. Aligned spike histograms (c, bottom) were
generated using 5 ms bin width for 24 spontaneous and 23 odor-evoked bursts. Note that the structures of spontaneous (red) and odor-evoked (blue) bursts are similar. d, Comparison of the
spontaneous (top) and odor-evoked (middle) whole-cell currents (holding potential was �70 mV) recorded from another bORN. Superposition of seven current traces (responses, d, middle) is
shown. Blue bars mark odor application. Average response (n � 7, light blue: SD area) and spontaneous current trace were aligned relative current peak time and baseline current level (d, bottom).
Note that the patterns of spontaneous (gray) and odor-evoked currents are similar.
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probability, small errors in estimating q(�) induce high variability in the
decoding. To avoid the extreme variability, six cells with q(�)’s �0.1 or
�0.9 were excluded from the analysis.

Results
As discussed earlier, intermittency estimation is likely a key com-
ponent in olfactory scene analysis. Our aim is to show that a
population of bORNs encode arbitrary odor intermittency (de-
fined as the most recent interval between odor encounters), and
moreover show that its instantaneous population activity can be
linearly decoded. First, we describe the properties of bORNs via
electrophysiology to show that (1) they are noisy oscillators with
stereotypical burst patterns, and (2) they respond to odor in a
phase-dependent manner. Based on the neurophysiology, we
build a mathematical model that captures those two key observa-
tions. From the model, we found that the bursting response is
tuned to the interval between odor stimulations. We demonstrate
that a heterogeneous population of bORNs can flexibly encode
a wide range of intermittencies, and propose a simple linear
decoding scheme. Finally, we test the computational modeling
by decoding intermittency from two sets of experimental data.

Physiological characterization of bORN activity
As mentioned above, this study is based on a recent finding that
the lobster olfactory organ contains at least two different sub-
populations of ORNs (Bobkov and Ache, 2007; Ukhanov et al.,
2011; Bobkov et al., 2012). Each subpopulation shows a different
pattern of spontaneous activity and stimulus responsiveness. One
subpopulation, heretofore unrecognized, shows spontaneous quasi-
rhythmic bursts of action potentials (Fig. 1a). Using extracellular
spike recording, we first characterized the spontaneous activity of

rhythmically active ORNs (bORN). As shown for five bORNs, each
cell has its own spontaneous rhythm of activity (burst frequency; Fig.
1a,c) and can be characterized by a specific burst pattern (Fig. 1b).
The bursting parameters were largely consistent for any given cell
over the time course of an experiment (Fig. 1b,c). Overall spontane-
ous burst frequency distribution (Fig. 1d) estimated from 187 re-
corded bORNs shows a wide range, well fit by a Weibull distribution.

Odor-evoked activity of bORNs
To study the odor-evoked activity, the cells were stimulated by brief
stimulus pulses of the same intensity (Fig. 2a; experimental trials for
one bORN). The odor pulses trigger evoked bursts (Fig. 2c, middle)
that are structurally similar to spontaneous bursts (Fig. 2c, top). Un-
der whole-cell, voltage-clamp conditions (Fig. 2d), some bORNs
were also able to generate both spontaneous (Fig. 2d, top) and odor-
activated (Fig. 2d, middle) excitatory inward currents. As with the
activity patterns recorded extracellularly, the burst-induced current
patterns were similar (Fig. 2d, bottom).

We estimated the phase dependence of the evoked burst prob-
ability (Fig. 2b, blue symbols and line) as the ratio between the
number of bursts occurring after stimulus presentation and the
total number of stimulus presentations (usually 40 –250 presen-
tations per each ORN recorded extracellularly; Fig. 2b). For ex-
ample, as shown for one bORN (Fig. 2b), the probability that the
cell would generate a burst of action potentials upon stimulation
�3 s after the last burst is 50% and almost 100% at a 6 s interval
of quiescence. The spontaneous burst probability distributions (in-
terburst interval histograms; Fig. 1c) can be expressed as cumulative
distributions for comparison (Fig. 2b, red solid line). The interaction
between the two sigmoidal curves determines the response charac-
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teristics of a specific bORN where an inter-
mediate range of odor intermittency gives
rise to the most reliable burst. Intuitively, a
burst response is likely when stimulated
during a longer quiescence, but at the same
time, spontaneous bursts prevent such long
inter burst intervals. Thus, discharge of the
bursting cells is linked to the phase of burst-
ing cycle relative to when the odor arrives,
conferring the cell population with the po-
tential to specifically encode the temporal
structure of the odor stimulus.

Computational modeling of bORNs
Because the functional hypotheses we ad-
dress in this study involve the ensemble be-
havior of a population of bORNs rather
than a single bORN activity, we used com-
putational modeling and analysis to charac-
terize it. Our primary goal is to derive the
population-encoding model for temporal
pattern of odor encounter and show that it is
appropriately tuned to encode odor inter-
mittency. Here we derive the conditional
probability of the population-firing pattern
given the temporal structure of the preced-
ing odor encounter.

There are two major approaches to
modeling pacemaker-like neuronal be-
havior: dynamical neuron modeling and
point process modeling. Because the
bORNs behave as stochastic oscillators and we are interested in
the coding characteristics of a virtually independent ensemble
(Bobkov et al., 2012), but not in the detailed mechanisms of
bursting per se, a stochastic point process modeling approach is
pursued. Specifically, we use a renewal process model where each
burst generated by the bORN is considered as a unitary event, and
the interval between the burst events is modeled as an indepen-
dent draw from a distribution. Therefore each burst in the mod-
eling illustrations (Fig. 2) is depicted as a symbol.

Let F be the common (cumulative) distribution from which
the spontaneous interburst intervals are drawn for a specific
bORN (Figs. 2b, 3b, red solid lines). If F is tightly concentrated
around its mean, then the bORN is more regular (i.e., quasiperi-
odic), whereas a dispersed F will result in less predictable spon-
taneous interburst interval pattern. We model F as a truncated
Gaussian distribution fitted from the data (Figs. 1c, 3b), because
the time intervals are strictly positive. The other important quan-
tity in our model is Pe(�), the probability of odor-evoked burst-
ing given that the last burst occurred � seconds before the odor
presentation. Due to refractoriness, Pe(�) is generally a mono-
tonically increasing function and we parameterize its shape as a
sigmoid function. Our bORN model for each cell is completely
described by F(�) and Pe(�) (Fig. 3b).

To model the stimulus-evoked burst generation, we modified
the standard renewal model such that when stimulus is pre-
sented, with probability Pe(�) it would burst and reset the phase.
That is to say, the time interval in which the stimulus occurred
becomes equal to the phase � with probability Pe(�) (Figs. 2b, 3b,
blue lines). From the sigmoidal shape of the conditional response
probability Pe(�), one might expect that the neuron is more re-
sponsive to longer stimulus intervals. However, if the stimulus
interval is long, a spontaneous burst is likely to happen in be-

tween, resulting in a small �, and in turn, less responsiveness.
Indeed, the interaction between Pe(�) and F(�) determines the
tuning property of the bORN model to stimulus intermittency
(Fig. 3c).

Theoretical tuning properties of bORNs
To investigate the change in response to odor depending on the
intermittency, we derive the probability of response given a stimulus
interval. The probability of response to a stimulus shortly after ob-
serving a burst � seconds ago is approximately the probability of
having no spontaneous activity for � seconds and evoking a burst
when the phase is �, that is, Pe(�) (1 � F(�)). This approximation is
only valid for small intervals because it ignores the possibility of
having spontaneous bursts in the interval, and still responding to the
stimulus. A better approximation is given by:

q��� � p�1 � p� � pPe����1 � F���� (6)

� p �
k � 1

� �
0

�

Pe �� � ���1 � F�� � ���dFk���,

where Fk is the distribution of the k�th burst which is a k-fold

convolution of F, and p � �
0

�Pe���dF���� is the probability of

evoking a response in the asymptotic state (details in Materials
and Methods). The infinite summation accounts for the possible
number of spontaneous bursts within the � interval. Here, we
assumed that if the bORN did not respond to the first stimulation, it
remains in the asymptotic state, which is only true for large�. Hence,
there is a slight mismatch in the probability for short stimulation
intervals (Fig. 3c). Note that lim�3�q��� � p, because the distri-
bution of � approaches F�.
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Figure 4. Frequency selective synchrony of bORN responses. Two sets of homogeneous uncoupled populations with parameters
same as Figure 3 are stimulated with epochs of periodic odor encounter matching their maximum tuning (17.4 and 4.3 s, respec-
tively, for population 1 and 2, marked with triangles). Raster plot (top) and average firing rate (bottom) of each subpopulation for
stimulation illustrates the synchronization selectivity. Dotted line shows the response level in the asymptotic state. Note that
population 1 has reduced synchronization for shorter stimulus intervals, whereas population 2 amplifies the degree of synchrony.
For longer stimulus intervals, population 1 enhances, whereas population 2 maintains the same level of synchrony. Subsample of
30 neurons are plotted for the raster, and 1000 neurons were used for estimating the population rate.
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From this analysis we can see that the bORN has a specific
tuning characteristic for stimulus interval �. When q(�) is larger
than p, the bORN response is amplified, and when it is smaller,
the bORN response is reduced (Fig. 3c). The peaks of q(�) above
p are analogous to natural resonance periods.

Differential response to periodic stimulation
In natural environment, odor plumes produce a highly irregular
temporal pattern of stimuli. However, to intuitively understand how
bORNs respond to temporal patterns of stimulation, we demon-
strated the response to an artificial periodic pattern of stimuli. A pair
of subpopulations with identical spontaneous parameters, but with
different Pe’s are set up; the difference in resulting tuning character-
istic q(�) can induce frequency selective partial synchronization
(Fig. 4). The two homogeneous subpopulations in the absence of
odor stimulus produce random and uncorrelated population activ-
ity. When an odor stimulus is presented, the population synchronize
differentially and desynchronize over time due to their variability
across intervals. Figure 4 shows subpopulation 1 amplifying for
more sparse odor intermittency, whereas subpopulation 2 amplify-
ing for the fast stimuli, which is also observable from the firing rate
evolution over time. Note that due to the probabilistic nature of the
response, even if all bORNs had the same period, they would not be
perfectly entrained to the periodic stimulation. This clearly shows
that the response of bORNs contains information regarding the his-
tory of input but in a probabilistic manner. In the next section, we
show that a plausible heterogeneous population of bORNs reliably
encodes the irregular temporal information of the stimulus.

Decoding the stimulus interval from a heterogeneous
population of bORNs
Heterogeneous populations of oscillators have been proposed to
form a time basis in the brain (Miall, 1989; Matell and Meck,
2004). Miall (1989) showed that after full population synchrony,
a subpopulation synchrony occurs when the least common mul-
tiple of periods is reached, and hence proposed beat (interference
between frequencies that modulates amplitude) as a mechanism
to form a set of oscillators with desired period from a smaller set
of pacemaker neurons. However, this idea is not directly applica-
ble to the population of bORNs, because two key assumptions are
violated: (1) neurons are not perfect oscillators, and (2) full syn-
chrony is not induced when the stimulus is given. Therefore, we
extend this framework by relaxing these assumptions and pro-
posing a probabilistic model for population coding of the tem-

poral structure of the sensory input. From the population model,
we will show that the instantaneous population response en-
codes sufficient information to infer the temporal structure of
olfactory stimulus. Moreover, we also show that a simple max-
imum likelihood approach can reliably decode the stimulus
time interval.

Although bORNs can be sharply tuned to stimulus intervals, each
bORN has limited information content due to the uncertainty in
both spontaneous and evoked bursting. Hence, a population is re-
quired to reliably encode the full spectrum of stimulus intervals.
Suppose we have N independent bORNs each characterized by a
unique pair of F and Pe. In addition, as can be seen from Figure 3c,
there are multiple stimulus intervals that correspond to the same
probability of bursting. Therefore, decoding will be ambiguous for a
homogeneous population; for unambiguous representation and de-
coding, a heterogeneous population is necessary.

Given the conditional probability of bursting qi(�) for each
bORN (indexed by i), we define the population likelihood spec-
trum for decoding:

L��� � �
i�A

qi ��� �
j�A�

�1 � qj����, (7)

where A (and A�) is the set of indices for the bORNs that responded to
the current stimulation (or not). Therefore, estimation of an unknown
� given the population response can be achieved by maximum likeli-
hood (ML) estimation, that is, by finding the maximizing � in the log-
likelihood function given by the following:

log L��� � �
i�A

log qi��� � �
j�A�

log �1 � qj���� (8)

� c��� � �
i

si �log qi��� � log �1 � qi�����, (9)

where si � 1, if neuron i bursted, or si � 0 otherwise, and
c��� � �

i
log �1 � qi���� does not depend on the response. We

can design a neurally plausible decoding population that per-
forms ML decoding where each neuron has a preferred intermit-
tency �j. Each decoding neuron receives a linear projection from
the bORN population, and is laterally inhibited to implement a
winner-take-all strategy. Because ML decoding first linearly proj-
ects the population response vector s � [si] to a set of weights
w��j� � 	log �qi��� � log �1 � qi����
, and then takes the
maximum of the projections adjusted by a bias c(�j).
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Figure 5. Extrapolation and distributions of population model parameters from electrophysiology data. Details are described in Materials and Methods. The gray dots corresponds to N � 2000 samples
generated from the joint distribution used for the simulation study. a, Mean IBI� to SD � regression and distribution fitting. Blue circles correspond to the 28 data points. The red dotted lines correspond to the
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We tested ML decoding on a simulated
population for a random stimulation tim-
ing pattern (see Fig. 6). To model the
bORN ensemble behavior, we con-
structed an artificial population of bORNs
based on experimentally obtained param-
eters (Fig. 5). The functional relation be-
tween the model parameters were
extrapolated and used to construct an ar-
tificial population of bursting ORN mod-
els (see Materials and Methods). The
population size was chosen to be N �
2000 based on a coarse estimate (�2%) of
the bORN population in a single lobster
antennule.

Population-wise partial synchrony
(which is not maintained due to heteroge-
neity) occurs as a response to each odor
stimulus (Fig. 6a,b), and it can in turn be
used to form the log-likelihood spectrum
for decoding (Fig. 6c). The decoding recovers the stimulation inter-
val with small error. Further analysis shows that the error systemat-
ically increases as the stimulation interval gets longer due to the
broader peak in the likelihood function (Figs. 6c, 7). The results of
the analysis suggest a coding scheme based on the ensemble of rhyth-
mically active neurons that potentially provides a simple neural
mechanism for instantaneous neuronal memory about the time
since the last sensory event encountered by the ensemble.

Decoding intermittency in vivo
To experimentally confirm the population coding, we recon-
structed two virtual populations of cells recorded via either elec-
trophysiology or calcium imaging.

In the electrophysiologically obtained population, we have
aggregated data from different single-cell recordings to mimic
a simultaneously observed population. Specifically, we probed 11
bORNs multiple times with a fixed timing pattern of two odor
stimuli. From the burst time series, a realistic population response
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was constructed by considering individual trials as a simultaneous
observation from different neurons. We used 10–40 sweeps of 1 min
trials, consisting of stimulation at 11.0 s and 31.7 s resulting in 210
trials (Fig. 8a). We stack those 210 trials to mimic a population
response from 210 bORNs. From the observation of the second
stimulation, a window of 0.5–2 s was selected, and all the bursts in the
window were considered as the response to the stimulus. We com-
pute the population log-likelihood spectrum, and the ML decoding
result yields 23.2 s, compared with the true value of 20.7 s (Fig. 8b).
The mismatch is within the range of expectation because decoding
from a simulated bORNs with the same conditions gave similar re-
sults (19.1 � 6.7), with the larger confidence interval presumably
reflecting limited heterogeneity and small population size.

In the calcium imaging-based population, we have identified
oscillating cells and simultaneously recorded their activity up to

six neurons at a time. Using a similar pro-
cedure of stacking single trials and aggre-
gating over recording sessions, we
constructed a virtual population of 400
bORNs from 59 original neurons (Fig.
9a,b). Although we assumed indepen-
dence when aggregating different trials
and sessions, within each session the cells
are not necessarily independent. The ML
decoding resulted in 21.2 s, compared
with the true interval of 20 s (Fig. 9c).

Discussion
Using electrophysiological, calcium imag-
ing, and computational modeling ap-
proaches, we identified a functional
neural model with the potential to capture
signal intermittency. The proposed neural
code is based on a rhythmically active sub-
set of ORNs referred to as bORNs that
have the interesting capacity to encode the
temporal properties of intermittent odor
signals. These neurons appear to function
independently (Bobkov et al., 2012), with
correlated activity induced by common
sensory input. Based on the differences in
the bORNs’ inherent rate of bursting dis-
charge and the phase dependency of
their response to odor stimulation, each
neuron selectivity modulates responses
to a relatively narrow range of stimulus
intervals.

Along with this finding, a more general
hypothesis emerged from the computa-
tional analysis of bORN ensemble activity,
which is that the instantaneous state of the
heterogeneous population can reliably
encode the time since the last stimulus.
Although neuronal mechanisms for en-
coding and processing time intervals are
still largely unknown, particularly in the
seconds-to-minutes range as in the pres-
ent study (Miall, 1989; Sumbre et al.,
2008; Simen et al., 2011; Allman and
Meck, 2012), the idea of using sensory
modality-specific timing mechanisms in-
stead of a centralized clock has been pro-
posed for other systems (Miall, 1989;
Buhusi and Meck, 2005; for review, see

Bueti, 2011).
An alternative encoding scheme for interval timing would be

to directly use the information provided by the tonically active
ORNs. Because the information is contained in the temporal pro-
file of these cells, a memory mechanism is needed to transform it
to an instantaneously accessible form. One popular method is to
implement it through network dynamics; a recurrent network of
a set of reliable neurons with short time constant forms a high-
dimensional response with a wide range of time constants (Maass
et al., 2002; Ganguli et al., 2008; Goldman, 2009; Laje and Buono-
mano, 2013). However, such implementations are complex and
require more biological resources, either in terms of the number
of neurons and synapses (Maass et al., 2002), or maintaining
precise fine tuning of high SNR (signal-to-noise ratio) neurons
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(Ganguli et al., 2008; Laje and Buono-
mano, 2013). In contrast, our proposed
encoding scheme is highly efficient, be-
cause it requires no connectivity, and uses
a small number of noisy sensory neurons.

One of the most robustly observed
properties of interval timing across spe-
cies is the scalar property (Matell and
Meck, 2004; Buhusi and Meck, 2005;
Jazayeri, 2008). If interval timing is inter-
nally kept by counting the cycles of a noisy
internal oscillator, the variance of the tim-
ing error linearly increase as the target
time interval gets longer. However, vari-
ous experimental paradigms show that
the SD linearly increases (known as the
scalar property) which means that the
timing procedure is not likely to be based
on counting. The scalar property has been
verified not only in behavior but also in
fMRI studies (Buhusi and Meck, 2005).
Interestingly, the scalar property can
emerge naturally from the bORN popula-
tion code. We observed that the SD of the
interburst interval distribution has a linear relation to the mean
(Fig. 5a). This gives the main likelihood peak a width that is
proportional to the mean, at least to a first order approximation.
Therefore, we suggest that such a population of uncoupled oscil-
lators as represented by bORNs could be a source of the scalar
property. This is observable from Figure 7. However, a detailed
analysis of this possibility awaits future study.

For any sensory input to be meaningful, it needs to be inter-
preted in a way that ultimately produces meaningful behavior.
Although understanding the downstream target(s) and behav-
ioral consequence(s) of bORN input is well beyond the scope of
the present study, we can hypothesize that the decoding principle
of the bORN population is combinatorial in that, if there were no
noise, the population phase distribution of the neurons would be
unique up to the least common multiple of the periods, as first
noted by Miall (1989). A strikingly similar principle is also ob-
served in the grid cell population in rats (Hafting et al., 2005; Fiete
et al., 2008; Sreenivasan and Fiete, 2011), where each grid cell
responds in a periodic manner to the relative position of the
animal. Then, the downstream neurons (the place cells in hip-
pocampus) decode this combinatorial code and represent the
position as a spatial map (for review, see Giocomo et al., 2011).
Although the assumption of near perfect periodicity of the code
does not hold for the population of bORNs, we suggest that the
noise (irregularity of IBIs) inherent to each bORN can be consid-
erably attenuated by encoding the information over the larger
population of bORNs, and could be retrieved by an appropriate
readout mechanism.

Although the exact downstream neuronal targets (and hence
the readout mechanism) of bORNs are unknown, the maximum
likelihood (Eq. 8), or maximum a posteriori given a prior distri-
bution of interval distribution of interest, decoding could be im-
plemented within a single projection layer with lateral inhibition
implementing a winner-take-all strategy. This possibility is con-
sistent with our understanding of the neural organization of the
first synaptic relay in the lobster olfactory brain, the olfactory
lobe (OL), thereby providing a neural substrate where decoding
potentially could occur. The ORNs project to the OL where they
synapse with projection neurons that have extensive lateral inhib-

itory interactions mediated by local interneurons (Wachowiak et
al., 2002). If so, the resulting representation in the decoding layer
presumably would be sparse, because only a small population of
active neurons represents each time interval. It is biologically
plausible, however, that the animal does not directly represent
the time interval but rather computes a function of the interval
that is most related to a reward signal, with projection weights
learned via reward-based synaptic plasticity. Understanding of
the readout mechanism, however, awaits future experimenta-
tion. Also not addressed by the study is the question of the po-
tential odor specificity of bORNs. Because we used a complex
odor mixture to maximize the incidence of bORN responsive-
ness, we have yet to determine whether bORNs are broadly or
narrowly tuned. To the extent that they are narrowly tuned, sub-
populations of bORNs could have the added potential of sepa-
rately encoding the temporal structure of particular odorants.
However, one might argue that quality coding could be better
done by the much larger population of (more traditionally stud-
ied) tonically active ORNs, and bORNs would be more broadly
tuned to maximize the probability of stimulus detection for spa-
tiotemporal analysis of the odor plume itself.

In this paper, we have not explicitly modeled possible concen-
tration dependency. We showed earlier (Fig. 4b; Bobkov and
Ache, 2007) that changes in concentration translates Pe(�). In
our bORN model, this would induce a translation in q(�) from
Eq. 6 to q(� � 	), where 	 is the shift in Pe(�). That means the
naive decoder without knowledge of the concentration would
shorten (for higher concentrations) or lengthen (for lower concen-
trations) the estimated intermittency. However, this is not necessar-
ily an inherent confound because presumably local concentration
can be estimated from other input, for example, via tonically active
ORNs.

The ensemble coding strategy we report here appears to be
specifically adapted to longer stimulus intervals. For most ani-
mals, including lobsters, the physiologically meaningful odor sig-
nal intermittency ranges from fractions of second to many tens of
seconds (Murlis et al., 1992; Vickers et al., 2001; Webster and
Weissburg, 2001; Gardiner and Atema, 2010; Reidenbach and
Koehl, 2011). It could well be that faster time scales, i.e., fractional
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seconds, are processed by a different strategy than the bORN
ensemble coding strategy we report here, because such short time
scale signals match or approach the time scale of typical neuronal
dynamics.

Most animals, including lobsters, actively sample their odor
environment through a reflex known as sniffing (called flicking in
lobsters; Wachowiak, 2011) that in the case of lobsters intermit-
tently moves the olfactory organ through the environment
(Koehl et al., 2001) and in the case of vertebrates intermittently
flushes the environment past the olfactory organ. Flicking en-
hances the detection of an odor pulse (Schmitt and Ache, 1979)
such that it might be expected to work in concert with the bORN-
mediated intermittency. Indeed, this prediction is supported by a
recent study of odor plume structure (Reidenbach and Koehl,
2011) showing that the intermittent structure of the odor land-
scape can be enhanced by flicking, making the relation between
the odor encounter interval and the distance to the source rela-
tion stronger. Given this sharpening effect, one can envision sam-
pling intermittency (flicking) and the detection of stimulus
intermittency evolved to complement each other and strengthen
olfactory scene analysis.

The present study represents only a first step toward under-
standing the roles of rhythmically active uncoupled sensory neu-
rons in information processing. It will be instructive, for
example, to compare the activity of bORNs to that of tonically
active ORNs, and the response of bORNs to more realistic stim-
ulus intensity profiles to gain deeper insight into the detailed
functionality of bORN ensembles. It is also unclear whether dif-
ferent animal species evolved a similar strategy to deal with the
temporal characteristics of olfactory signals, such that our find-
ings would have general applicability. As mentioned in the Intro-
duction, both intrinsically and conditional rhythmically active
ORNs occur in amphibians and mammals (Sicard, 1986; Frings
and Lindemann, 1988; Reisert and Matthews, 2001a,b; Ukhanov,
personal communication), and mammalian vomeronasal recep-
tor cells are rhythmically active (Holy et al., 2000; Arnson and
Holy, 2011), suggesting the involvement of rhythmically active
uncoupled sensory neurons in olfactory processing is not unique
to the lobster model and is likely to be a fundamental aspect of
olfaction.
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