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Abstract
Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a
Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9
dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-
terminal tail (residues 96–114) are employed to evaluate the contributions of this region, which
houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from
analytical size-exclusion chromatography, Mn(II) competition titrations, and electron
paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity
Mn(II) coordination by native CP in solution. The studies indicate that His103 and His105 (HXH
motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented
biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure
reported recently (PNAS 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained
when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103–
105 to 104–106, and when the human tail is substituted by the C-terminal tail of murine S100A9.
Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native
disposition of His residues is important for conferring growth inhibition against Escherichia coli
and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is
essential for providing high-affinity Mn(II) binding; the S100A7ox, S100A9(C3S), S100A12, and
S100B homodimers do not exhibit such Mn(II)-binding capacity.

Introduction
Manganese in microbial pathogenesis is a topic of substantial current interest.1–21 Human
pathogens such as Borrelia burdgorferi,6,7 Neisseria gonorrhoeae,9,10 Staphylococcus
aureus,11,12 and Streptococcus pneumoniae13–17 import manganese and employ this metal
ion in the oxidative stress response and other processes that include primary metabolism and
signal transduction. Recent investigations indicate that Mn(II) acquisition by invading
microbial pathogens contributes to virulence and successful colonization in the host.1

Indeed, a number of bacterial manganese importers (e.g., PsaA, MntH, etc.) are implicated
in pathogenesis.1,17,19,20,22 In the battle against infection, the mammalian host employs
diverse defense tactics to prevent microbial replication, one of which is metal-ion
withholding.23–25 The goal of this physiological mechanism is to prevent microbial
acquisition of essential nutrient metals that include manganese, iron, and zinc. The
antimicrobial host-defense protein calprotectin (CP), the focus of this work, has emerged as
a player in the competition between host and pathogen for the transition metal nutrients
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Mn(II) and Zn(II).11,26–31 We seek to decipher the molecular-level details of metal-ion
sequestration by CP and thereby acquire a more sophisticated understanding of its
contributions to the biology of transition metal ions in multiple contexts, including the host/
pathogen interaction.

CP is a member of the S100 protein family.32–34 S100 family members are ca. 10-kDa
Ca(II)-binding polypeptides that form homo- and heterooligomers. Human CP is a
heterooligomer of S100A8 (10.8 kDa, α subunit) and S100A9 (13.2 kDa, β subunit), and it
exists as a heterodimer (αβ, 24 kDa) or tetramer (α2β2, 48 kDa) (Figure 1A).35–38 Each S100
subunit contains two Ca(II)-binding EF-hand domains,39,40 and Ca(II) binding to these sites
induces oligomerization of human CP from the dimeric to tetrameric form.37 Neutrophils,
white blood cells that are in circulation and rapidly recruited to sites of infection, express CP
in a constitutive manner. At sites of infection, CP is released from neutrophils into the
extracelluar space where its concentrations are reported to reach >500 μg/mL.41 The ability
of CP to inhibit microbial growth was first discovered several decades ago,42–44 and
subsequent investigations established that CP exhibits broad-range growth inhibitory action
against multiple bacterial and fungal species, the former of which include Escherichia coli,
Enterococcus aerogenes, Staphylococcus aureus, Borrelia burgdorferi, Streptococcus
pneumoniae, Salmonella, and Acinetobacter baumannii amongst others.11,29,45–47 The
antimicrobial action of CP has been attributed to its ability to sequester Zn(II), an essential
nutrient for all organisms, in the extracellular space and at sites of infection following
cellular release (Figure 1B).25 More recently, a role for CP in Mn(II) deprivation was
highlighted through studies of Staphylococcus aureus infection and susceptibility to
oxidative killing by neutrophils.11,48 These seminal investigations demonstrated that CP
provided protection against Mn(II) toxicity for a S. aureus mutant deficient in the
manganese transport regulator MntR and exhibited enhanced antibacterial activity against a
mutant lacking the Mn(II) transport proteins MntAB.11 CP is also proposed to inhibit
bacterial invasion of epithelial cells, constituting another host-defense mechanism.49–51 In
addition to infectious disease, CP has been implicated in a range of pathophysiological
phenomena that include autoimmunity,52 inflammation,53–57 cancer,58,59 and cardiovascular
disease;60,61 however, the precise details of its contributions to human health and disease,
and whether metal ions play a role, are oftentimes unclear.

In support of the metal-chelation-based working model for antimicrobial action, CP houses
two transition metal-ion binding sites at the S100A8/S100A9 interface (Figure 1C–F) that
have been the subject of several investigations.38,45,46,48,62 We define sites 1 and 2 as the
His3Asp and His4/His6 motifs, respectively.46 The His3Asp motif is comprised of
(A8)His83, (A8)His87, (A9)His20, and (A9)Asp30, and the interfacial His4 site arises from
(A8)His17, (A8)His27, (A9)His91, and (A9)His95. In prior investigations, we established
that sites 1 and 2 each coordinate first-row transition metal ions.46,62 In particular, both of
these sites bind Zn(II) with high affinity and in a Ca(II)-dependent manner.46 Subsequently,
we reported that CP binds only one equivalent of Mn(II) with high affinity at site 2.62 The
Mn(II) affinity of CP is also Ca(II)-dependent, and the Mn(II) dissociation constant (Kd)
value of site 2 shifts from the low-micromolar to nanomolar range following Ca(II)
complexation (Kd1 = 4.9 ± 1.0 μM, -Ca(II); Kd1 = 194 ± 203 nM, +Ca(II); determined by
RT-EPR).62 The nanomolar-range Mn(II) Kd value of CP in the presence of Ca(II)
determined by RT-EPR was verified through competition experiments with the fluorescent
sensor ZP1 (vide infra).62 The data also suggest that site 1 of Ca(II)-bound CP coordinates
Mn(II) with micromolar affinity (Kd2 = 21 ± 5 μM, RT-EPR).62 Because Ca(II) ions
modulate the transition metal-ion affinities, we proposed a model whereby CP morphs into
its high-affinity form when it encounters millimolar concentrations of Ca(II) in the
extracellular space.46 The in vitro antibacterial activity of CP is Ca(II)-dependent,
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suggesting that the high-affinity heterotetramer is required for potent growth inhibition of
both Gram-negative and –positive organisms.46

Site 2, defined by four His residues, is an unusual protein-based metal-binding site; the
Protein Data Bank (PDB) contains very few examples of native His4 motifs.63,64,72,73

Moreover, Mn(II) binding to the histidine-rich site rather than the His3Asp site is striking
given the abundance of coordination environments of known Mn(II)-binding proteins
exhibiting mixed N/O donor sets (Table 1). Our reported low-temperature EPR
spectroscopic investigations of Mn(II) bound to site 2 are consistent with a nearly-idealized
octahedral Mn(II) coordination sphere provided by the four His ligands and two additional
ligands of unknown identity.62 We proposed that the unidentified ligands may be derived
from the protein backbone, the C-terminal tail of S100A9 in particular, or solvent molecules.
The tail region is disordered in the crystal structure of the CP heterotetramer,38 and it houses
a HHH motif at positions 103–105 and a glutamate at position 111 (Figure 1G).
Subsequently, X-ray crystallographic characterization of a Mn(II)-CP complex revealed that
the Mn(II) ion coordinated at site 2 is housed in a remarkable octahedral coordination sphere
comprised of (A8)His17, (A8)His27, (A9)His91, (A9)His95, (A9)His103, and (A9)His105
(Figure 1F).45 The latter two residues are located in the S100A9 C-terminal tail. This
crystallographic His6 Mn(II)-binding site is unprecedented in biological systems and
suggests an important role for the S100A9 C-terminal tail in metal-ion acquisition and host-
defense function. Nevertheless, many details about this unusual Mn(II)-binding site and how
the C-terminal tail contributes to the coordination sphere in solution require further
elucidation. Herein we present the results of extensive solution-based biochemical and
spectroscopic investigations designed to probe this site. Our studies provide critical new
insights into site 2, including an evaluation of flexibility in the tail region and how the C-
terminal tail contributes to Mn(II) chelation and antibacterial activity. Moreover, we probe
the Mn(II)-binding capacities of four other human S100 family members reported to chelate
other transition metals (e.g. Zn(II), Cu(II)) and these studies confirm that the S100A8/
S100A9 heterooligomer is essential for providing a high-affinity Mn(II) site.

Results and Discussion
Design and Preparation of the Human S100A9 Mutant Family

The C-terminal region of human S100A9 houses four acidic residues (E96, D98, E99, E111)
and three His residues (H103, H104, H105). We designed a 16-member S100A9 mutant
family to evaluate the contributions of these residues to high-affinity Mn(II) coordination at
site 2, which is defined by the interfacial His4 motif (Table 2). These mutant proteins are
based on CP-Ser, which is a heterodimer or –tetramer of S100A8(C42S) and S100A9(C3S)
that we have previously employed in metal-binding and antibacterial activity studies.45,62

The mutant family includes the single mutants E96A, D98A, E99A, H103A, H104A,
H105A, K106A, and E111A. The K106A mutant was prepared to probe the consequence of
mutating a non-coordinating amino acid in the tail region on Mn(II) complexation. A series
of mutants harboring multiple mutations in the C-terminal tail were also designed. CP-Ser-
AHA and CP-Ser-AAA allow for further investigation of the contributions of the native
HXH motif to Mn(II) coordination. The C-terminal tail of S100A9 contains several glycine
residues and is expected to be flexible, and thus CP-Ser-AAA(K106H), CP-Ser-
AHA(K106H), and CP-Ser-AAA(L109H)(E111H) were designed to evaluate the importance
of His positioning to Mn(II) binding (vide infra). CP-Ser-AAE was prepared to probe the
consequences of a N→Ox (x=1,2) donor substitution on Mn(II) complexation. CP-Ser-Δ101
is a truncation lacking residues 102–114 of S100A9. Lastly, CP-Ser-mT is a chimera of
human and mouse S100A9 where the C-terminal 19 residues of human S100A9 are
substituted by the C-terminal 17 residues of the mouse congener. The “mouse tail” harbors
two HXH motifs at positions 102–104 and 104–106, and a single Cys residue at position 110
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(Table 2). Two CP mutant proteins with modifications to the S100A9 C-terminus were
reported recently45 and are analogs of the Δ101 and AAA mutants presented in this work
(vide infra).

The S100A9 mutant genes were obtained either by site-directed mutagenesis starting from
the pET41a-S100A9(C3S) template46 or as synthetic genes from DNA2.0 (Tables S3–S4).
The corresponding polypeptides were overexpressed in E. coli BL21(DE3) as described
previously.46 Each mutant S100A9 polypeptide was combined with S100A8(C42S) to
afford the corresponding heterodimeric CP mutants following purification.46 Each mutant
protein was characterized by SDS-PAGE, mass spectrometry, analytical size-exclusion
chromatography (SEC), and circular dichroism (CD) spectroscopy (Figures S1–S27). SDS-
PAGE revealed that each CP mutant was obtained in high purity (Figure S1), and mass
spectrometry confirmed subunit identity (Table S5). Mass spectrometry revealed that CP-
Ser-mT was isolated as the β-mercaptoethanol (BME) adduct that results from disulfide
bond formation between (A9)Cys110 and BME (hereafter CP-Ser-mT-BME), the latter of
which was employed during the purification to prevent the formation of intermolecular
cross-links via (A9)Cys110. A tris(2-carboxyethyl)phosphine (TCEP) reduction protocol
was therefore employed to obtain CP-Ser-mT with a free cysteine residue (Experimental
Section), and both forms were characterized. The CD spectra of each mutant in the absence
and presence of Ca(II) exhibit minima at ca. 208 and 222 nm, establishing that each CP
mutant has the expected α-helical fold (Figures S2–S9).35 Analytical SEC confirmed that
each C-terminal tail mutant protein was isolated in the heterodimeric form, and
oligomerization to the α2β2 heterotetramers occurred when 2 mM Ca(II) was added to the
running buffer as previously observed for CP-Ser (Figures S11–S26, Table S6).46 In total,
biochemical characterization of all members of this mutant family confirms the expected
protein behavior and integrity based on prior characterization of CP and metal-binding-site
mutants.46

The C-Terminal Tail Contributes to Ca(II)-Dependent Oligomerization
Although analytical SEC revealed that CP-Ser-Δ101 (100 μM) and CP-Ser-AAA (100 μM)
completely oligomerized to the α2β2 forms when 2 mM of Ca(II) was included in the SEC
running buffer, defective Ca(II)-dependent oligomerization was observed when Ca(II) was
excluded from the running buffer and each protein (100 μM) was pre-incubated with ≤ 8.0
equiv of Ca(II) (Figure S27). In particular, both CP-Ser-Δ101 and CP-Ser-AAA exhibit
defective tetramerization under these conditions relative to CP-Ser.46 At 8.0 equiv (800 μM)
of Ca(II), the SEC traces for Δ101 and AAA exhibit a broad feature comprised of two
prominent peaks that roughly correspond to a 1:1 ratio of heterodimer and tetramer eluting
from the SEC column. In contrast, CP-Ser exhibits almost complete conversion to the α2β2
heterotetramer when pre-incubated with 8.0 equiv of Ca(II).46 These observations indicate
that deletion or mutation of the S100A9 C-terminal tail impacts the ability of CP to undergo
Ca(II)-dependent tetramerization. This point is important from the perspective of employing
C-terminal tail truncation or mutant proteins in metal-binding studies because (i) Ca(II)
concentrations may affect speciation of mutants differently than for the wild-type protein
and (ii) the Mn(II)/Zn(II) affinity of CP is Ca(II) dependent.46,62

To ascertain whether truncation or mutation of the C-terminal tail influences the thermal
stability of the peptide fold, we employed CD spectroscopy to determine the Tm values for
Δ101 and AAA in the absence and presence of 2 mM Ca(II) (Table S7, Figure S10). CP-Ser
has a Tm value of ~59 °C that shifts to ~79 °C following Ca(II) binding.62 CP-Ser-Δ101 and
AAA exhibit comparable Tm values under both sets of conditions, indicating that deletion of
the tail or mutation of the three His residues has negligible impact on the thermal stability of
the heterodimeric and heterotetrameric forms.
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Analytical SEC and Thermal Denaturation Studies Support Contribution of the C-Terminal
Tail and HHH Motif to Mn(II) Coordination in Solution

We previously reported that Mn(II) coordination to CP (αβ) results in an analytical SEC
peak shift to lower elution volume relative to that of the apo heterodimer.62 CP-Ser αβ elutes
at ~11.4 mL (~35.5 kDa), and this peak shifts to ~10.6 mL (~49.5 kDa) following Ca(II)-
induced tetramerization whereas Mn(II) coordination to CP-Ser (αβ) affords a SEC peak
with an elution volume of ~11.0 mL. We reasoned that the SEC elution volumes of the C-
terminal tail mutants (αβ) pre-incubated with excess Mn(II) would provide insight into
whether each mutant coordinated Mn(II) and whether Mn(II) remained protein-bound over
the course of the elution (Figures 2, S28–S30). The elution behavior of the Mn(II)-treated
mutants may be classified into one of three groups. The first group contains mutants that
exhibit behavior comparable to that of CP-Ser: E96A, D98A, E99A, H103A, H104A,
H105A, K106A, E111A, mT. Each of these mutants exhibits a single, new Mn(II)-
dependent peak in the analytical SEC chromatogram characterized by an elution volume that
falls between those of the αβ and α2β2 oligomers. We conclude that these mutants all
coordinate Mn(II) and, like CP-Ser, retain Mn(II) over the course of the elution. The second
group contains mutants that afford chromatograms with broad features defined by two
overlapping peaks. These features are observed when the mutants are injected onto the SEC
column immediately after Mn(II) addition and following a 2 or 18 h pre-incubation with
Mn(II) (Figures S29–S30). The elution volumes of these peaks are within the αβ – α2β2
range, and the peak ratios vary to some degree depending on the mutant. The Δ101, AAA,
AAE, AAA(K106H), and AAA(L109H)(E111H) mutants fall into this category, and the
chromatograms reveal Mn(II)-dependent formation of new species. We speculate that the
two-peak behavior may indicate diminished capacity of these mutants to bind and retain
Mn(II) over the course of the SEC elution. The AHA and AHA(K106H) mutants define the
third group. The chromatographic behavior of these three mutants is a hybrid of the group 1
and 2 members. A Mn(II)-induced peak shift occurs, but this peak exhibits a prominent tail
at higher elution volumes. Again, we reason that these mutants bind Mn(II), but that
coordination is perturbed relative to CP-Ser. These SEC experiments were conducted in the
absence of Ca(II), and the results report on the ability of CP-Ser (αβ) to bind and retain
Mn(II). In prior work, we reported that the Ca(II)-binding EF-hand domains of CP do not
coordinate Mn(II) to any appreciable degree and that CP-Ser (αβ) coordinates Mn(II) with
low-micromolar affinity.62 We therefore conclude that the changes in elution volume
observed for all CP-Ser tail mutants incubated with Mn(II) indicate that each of these
mutants has the capacity to coordinate Mn(II) at site 2 albeit to varying degrees.

To elaborate upon these results, we ascertained whether the presence of Mn(II) perturbs the
Tm values for three mutants, Δ101, AAA, and AHA (Table S7, Figure S10). Mn(II)
coordination by CP-Ser increases the Tm value for both the αβ and α2β2 oligomers.62

Because Mn(II) binds at the S100A8/S100A9 interface, we attribute the increased Tm values
to Mn(II)-induced stabilization of the heterooligomer. Although an increase in Tm occurs
following Mn(II) addition to Δ101, AAA, and AHA, the magnitude of change is small
relative to that observed for CP-Ser (Table S7). The Tm value for the Δ101 and AAA
heterodimers increases to 65 °C whereas CP-Ser exhibits a Tm of 87 °C in the presence of
Mn(II). Likewise, the mutants have Tm values of 88 °C in the presence of both Ca(II) and
Mn(II) compared to >95 °C for CP-Ser. Although deletion of the tail or mutation of its three
His residues has no impact on the thermal stability of the apo and Ca(II)-bound scaffolds,
the Mn(II)-bound mutants exhibit reduced thermal stability relative to CP-Ser. This trend
further supports the notion that the C-terminal tail and HHH motif are important for Mn(II)
complexation.
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Mn(II)-Binding Titrations by ZP1 Competition and RT-EPR Confirm a Role for the C-
Terminal Tail

With support for Mn(II) complexation by the C-terminal tail mutants from SEC, we
evaluated the relative Mn(II) affinities through a series of Mn(II) competition titrations
employing the fluorescent metal-ion sensor ZP1. ZP1 is a calcium-insensitive turn-on Zn(II)
sensor with relatively high background fluorescence (Φ = 0.38 at pH 7.0).74 ZP1 also
coordinates Mn(II) (Kd1 = 550 nM, Kd2 = 2.2 μM),75 and this metal ion quenches ZP1
emission. In prior work, we took advantage of the Ca(II) insensitivity and Mn(II)-induced
turn-off of ZP1 to probe the Mn(II) affinities of CP-Ser and the metal-binding site mutants
CP-Ser ΔHis3Asp, ΔHis4, and ΔΔ (Table S1).62 Although we were unable to obtain
quantitative Kd values from the CP-Ser/ZP1 competitions because ZP1 outcompeted CP-Ser
αβ (low Mn(II) affinity form) and CP-Ser α2β2 (high Mn(II) affinity form) outcompeted ZP1
under the experimental conditions, these titrations provide a reliable readout of relative
Mn(II) affinities. Thus, we performed Mn(II) competition assays with ZP1 and the C-
terminal tail mutant proteins in the presence of 50-fold excess Ca(II), which we expect to
provide full conversion of CP to the heterotetrameric form. In addition to providing a
relative measure of Mn(II) affinities, the results also facilitate identification of the protein-
based residues required for high-affinity Mn(II) coordination in solution.

Figure 3 exhibits the Mn(II) competition results for CP-Ser and a selection of C-terminal tail
mutant proteins, and individual plots for all mutants are provided as Supporting Information
(Figures S31–S36). In this assay, enhanced competition between ZP1 and a CP mutant
protein (α2β2) relative to CP-Ser (α2β2) indicates that the mutant exhibits reduced Mn(II)
affinity. The Mn(II) competition trends establish a number of important facets related to
Mn(II) coordination by CP: (i) the E96A, D98A, E99A, K106A and E111A mutants exhibit
behavior comparable to CP-Ser (α2β2) and outcompete ZP1 for Mn(II). None of the acidic
residues in the C-terminal region of S100A9 are essential for high-affinity Mn(II) chelation
by CP-Ser, as suggested by analytical SEC. (ii) CP-Ser-Δ101 and AAA afford the greatest
competition with ZP1 for Mn(II). The titration curves for these mutants are similar to those
reported for CP-Ser(H91A), CP-Ser(H95A) and CP-Ser(H27D),62 and indicate that deletion
of the C-terminal tail or removal of the HHH motif decreases the Mn(II) affinity but does
not completely preclude Mn(II) binding. (iii) The titration curves for the H103A, H104A,
H105A, and AHA mutants fall between those of CP-Ser and CP-Ser-AAA and provide a
relative Mn(II) affinity ordering of CP-Ser ~ H104A > H103A ~ H105A > AHA > AAA.
The H104A and CP-Ser titration curves are virtually superimposable up to 0.75 equiv of
Mn(II)/CP added. (iv) Movement of the HXH motif from positions 103–105 to 104–106 and
109–111 allows ZP1 to more readily compete for Mn(II) and indicates a Mn(II) affinity
ordering of CP-Ser > CP-Ser-AHA(K106H) > CP-Ser-AAA(L109H)(E111H). Likewise, the
AAE mutant readily competes with ZP1 for Mn(II); its titration curve is most similar to
those of Δ101 and AAA. In total, the ZP1 competition experiments support the necessity of
the HXH motif and specifically H103 and H105 as key contributors for high-affinity Mn(II)
binding at site 2. These studies also indicate that flexibility in the C-terminal tail allows for
H104 or non-native His residues to contribute to Mn(II) binding in the absence of the native
HXH motif. In particular, the titrations suggest that H104 participates in the absence of
H103 and H105, and that His residues placed at distant locales (i.e. ≥ position 106) can
modulate the Mn(II) affinity relative to Δ101 and AAA.

Both the analytical SEC and ZP1 competition experiments indicate that Δ101 and AAA
coordinate Mn(II) with relatively weak affinity at site 2 in both the absence (SEC
experiments) and presence (ZP1 experiments) of Ca(II). These results are in disagreement
with a recent ITC study where negligible enthalpy change was observed following titration
of either HN Tail (AAA analog, His→Asn mutations) or ΔTail (Δ101 analog) with Mn(II)

Brophy et al. Page 6

J Am Chem Soc. Author manuscript; available in PMC 2014 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and was attributed to no binding (Kd = NB).45 To further probe the Mn(II) binding ability of
these mutants, we performed room-temperature EPR titrations to determine whether Mn(II)
addition to CP-Ser-Δ101 and AAA affords an attenuated free Mn(II) signal. The EPR
spectrum of free Mn(II) (e.g. [Mn(H2O)6]2+) exhibits a six-line pattern at g = 2 (a = 8.9 mT)
at room temperature that results from hyperfine splitting (I = 5/2) of the allowed EPR
transition (Δms = 1, ΔmI = 0) in high-spin S = 5/2 55Mn(II) systems.76,77 In contrast, protein-
bound Mn(II) is EPR silent at room temperature because the zero-field splittings broaden the
signal beyond detection.78,79 For both CP-Ser-Δ101 and AAA, plots of [Mnfree] / CP versus
[Mntotal] / CP provided slopes in the 0.7–0.8 range, indicating an attenuation in the free
Mn(II) signal that results from Mn(II) binding (Table S8, Figure S37). In prior work, we
obtained similar slopes RT-EPR titrations of CP-Ser (αβ) mutants lacking one His residue at
the His4 site.62 Based on the analytical SEC, ZP1 and RT-EPR experiments, we conclude
that Δ101 and AAA are able to coordinate Mn(II) at site 2 in both the absence and presence
of Ca(II), albeit with lower affinity than CP-Ser. The precise origins for the discrepancy
between these investigations and the conclusions drawn from ITC titrations are unclear;
however, ITC directly measures the enthalpic contribution to binding equilibria and entropy
driven metal-binding events are not detectable by this method.80 Moreover, the Ca(II) ion
concentration employed in the ITC studies was described as stoichiometric,45 and the
speciation of CP/mutant (αβ versus α2β2) in these studies is ambiguous. We previously
reported that an excess of Ca(II) (>20 equiv) is required for CP-Ser to fully sequester Mn(II)
from ZP162 and we report defective Ca(II)-induced tetramerization for the Δ101 and AAA
mutants in this work.

Low-Temperature EPR Spectroscopy Supports the Contribution of the HXH Motif
Simulation of the low-temperature EPR spectrum obtained for CP-Ser (α2β2) in the presence
of substoichiometric Mn(II) afforded zero-field splitting parameters consistent with a nearly
idealized octahedral coordination environment (D = 270 MHz, E/D = 0.30).62 To further
probe the Mn(II) coordination sphere, we determined whether this Mn(II) EPR signal is
retained for the C-terminal tail mutants. We acquired the EPR spectra for samples
containing 100-μM mutant protein in the presence of 0.3 equiv Mn(II) and in the absence or
presence of 10 equiv of Ca(II) (Figure 4, S38–S40). Figure 4A displays the low-temperature
Mn(II) EPR spectra for the Ca(II)-bound forms of CP-Ser, E96A, D98A, E99A, E111A, and
Δ101. The EPR signals for E96A, D98A, E99A, and E111A are characterized by a six-line
pattern centered at g = 2, and the features and intensities are comparable to those of CP-Ser
(α2β2). In contrast, a dramatic loss of signal intensity and definition at g = 2 occurs for Δ101.
This signal is comparable to the Mn(II) signals previously reported for the His4 single
mutants (A8)H17A, (A8)H27A, (A9)H91A, and (A9)H95A.62 Moreover, the spectra for
CP-Ser-AAA and CP-Ser-AHA closely resemble that of Δ101, as do the spectra for the
H103A and H105A single mutants (Figure 4B). In contrast, the Mn(II) EPR signal of
H104A is indistinguishable from that of CP-Ser. These data further demonstrate that CP
utilizes the S100A9 C-terminal tail to coordinate Mn(II) in solution, and demonstrate the
importance of H103 and H105 for Mn(II) binding. In total, the results of our biochemical
and spectroscopic investigations support an octahedral coordination sphere comprised of
(A8)His17, (A8)His27, (A9)His91, (A9)His95, (A9)His103, and (A9)His105. This
assignment is in agreement with a recent X-ray crystal structure of the Mn(II)-CP complex
(Figures 1,5)45 and indicates that CP employs a hexahistidine coordination sphere for Mn(II)
at site 2 in both solution and the solid state. Thermodynamic and spectroscopic solution
studies such as the ones presented in this work are essential for elucidating whether a
coordination mode identified by X-ray crystallography also occurs in solution and hence
under more physiologically-relevant conditions.
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Comparisons of the Mn(II) EPR signatures obtained for the mutant proteins E96A, D98A,
E99A, H104A, K106H, and E111A in the absence and presence of Ca(II) reveal increases in
the intensities of the Mn(II)-CP EPR signals and sharpening of both the allowed and semi-
forbidden transitions in the presence of excess Ca(II) (Figures S38–S40). Ca(II)-induced
sharpening of the transitions is also observed for CP-Ser-AHA(K106H) and CP-Ser-
AAA(L109H)(E111H), and the human-mouse chimera (vide infra). This behavior was
previously reported for CP-Ser and was attributed to formation of higher-affinity Mn(II)
complexes in the Ca(II)-bound forms.62

The Mn(II) competition experiments (vide supra) indicate that the H103A and H105A
heterotetramers coordinate Mn(II) with sufficient affinity to outcompete ZP1 for the metal
ion (Figure 3); however, mutation of either H103 or H105 results in loss of the six-
coordinate Mn(II) EPR signal characteristic of CP-Ser (Figure 4). One possible explanation
for these observations is that the H103A and H105A mutants form high-affinity five-
coordinate Mn(II) species that are not observable by low-temperature EPR at the sample
concentrations employed in this study. Further spectroscopic and structural studies are
required to address this notion.

The S100A9 HXH Motif Is Conserved
Amino acid sequence alignment of human S100A9 with S100A9s from other organisms
reveals a conserved HXH motif in the C-terminal tail region (Figure 6). Whereas bovine and
rabbit S100A9 exhibit a single HXH motif, murine and rat S100A9s contain two adjacent
HXH motifs (i.e. HXHXH). To probe whether CP variants harboring S100A9 chimeras
retain high-affinity Mn(II) coordination, we prepared and characterized CP-Ser-mT (Table 1
and Supporting Information). This mutant is a chimera of human and mouse S100A9 where
the C-terminal 19 residues of human S100A9 are substituted by the C-terminal 17 residues
of the mouse congener. CP-Ser-mT contains a single Cys at position 110 and it was isolated
as a Cys110-BME adduct. This adduct was reduced with TCEP and the resulting protein was
buffer exchanged into argon- or nitrogen-purged buffer to remove the BME adduct and
prevent undesirable cysteine-based oligomerization. The Mn(II)-binding properties of both
CP-Ser-mT and CP-Ser-mT-BME were investigated. The chimeras coordinate Mn(II) with
high affinity (Figure S36), and we observed no evidence for participation of Cys110.
Moreover, the low-temperature EPR signal of 100 μM CP-Ser-mT incubated with 30 μM
Mn(II) exhibit features that are identical to those of CP-Ser (α2β2) both in the absence and
presence of Ca(II) (Figure S40). It is noteworthy that the Mn(II) signal for CP-Ser-mT (αβ)
exhibits considerably greater intensity and definition compared to that of CP-Ser (αβ), but is
less intense than for CP-Ser-mT (α2β2). One possible explanation for these subtle
differences is that CP-Ser-mT (αβ) coordinates a larger proportion of Mn(II) in a six-
coordinate manner compared to CP-Ser (αβ). Alternatively, the CP-Ser-mT sample may
contain less free Mn(II) in solution, and thus the signal resulting from six-coordinate Mn(II)-
bound CP-Ser-mT is undistorted. In total, biochemical and spectroscopic studies of CP-Ser-
mT support the notion that His residues within the mouse tail are necessary for high-affinity
Mn(II) coordination. Because the mouse tail harbors two adjacent HXH motifs, the identities
of the His residues presumed to contribute to Mn(II) binding at site 2 are currently unclear.
Moreover, the fact that CP-Ser-mT (α2β2) retains the ability to coordinate Mn(II) with high
affinity, and exhibits a CP-Ser-like EPR spectroscopic signature, indicates that the precise
amino acid sequence of the tail region is dispensable at least to some degree. Nevertheless,
the amino acid sequence of the tail region may have as-yet unappreciated contributions to
metal-ion coordination at site 2, as evidenced by the EPR signatures of CP-Ser-mT, and the
heterooligomeric properties of calprotectin homologs, which are largely unexplored, may
also influence metal-ion coordination. Further biophysical and structural investigations are
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required to evaluate the contributions of tail composition and oligomerization state to the
coordination sphere and metal-ion affinity at site 2 for various CP congeners.

Magnesium(II) Does Not Confer CP Tetramerization or High-Affinity Mn(II) Binding
EF-hand domains can coordinate Mg(II) in addition to Ca(II), and various physiological
roles for Mg(II) binding have been proposed.39 In this regard, EF-hand domains may be
classified as “calcium-specific” or “calcium/magnesium” sites depending on the Mg(II)
affinities.39 To the best of our knowledge, no studies supporting Mg(II) complexation by CP
have been reported to date. We questioned whether Mg(II) modulates the Mn(II) affinity of
human CP as does Ca(II). Thus, we investigated the oligomerization and Mn(II)-binding
ability of CP-Ser (αβ) in the presence of excess Mg(II) (Figures S41–S43). Analytical SEC
revealed no change in the elution volume of CP-Ser (αβ) when either 2 or 10 mM Mg(II)
was included in the running buffer, demonstrating that excess Mg(II) does not promote
tetramerization of CP-Ser. We confirmed that the Mn(II) turn-off response of ZP1 is Mg(II)-
insensitive, and Mn(II) competition experiments established that ZP1 outcompetes CP-Ser
for Mn(II) in the presence of 2 or 10 mM Mg(II). Overnight incubations of ZP1, CP-Ser,
Mn(II), and Mg(II) provided the same result. We conclude that the Ca(II)-induced
tetramerization and modulation of Mn(II)-binding affinity is Ca(II)-specific and not
generalizable to Mg(II) and likely other alkaline earth metals.

Contributions of Site 2 and the C-Terminal Tail to Antibacterial Action
The broad-range antibacterial and antifungal activities of CP are well established.11,29,45–47

We previously reported that wild-type CP and CP-Ser exhibit indistinguishable and Ca(II)-
dependent antibacterial activity against several Gram-negative and –positive species, and
that only one metal-binding site is necessary for bacterial growth inhibition on a short
timescale (t = 8 h).46 In contrast, we observed that the CP-Ser ΔHis4 mutant exhibited
attenuated activity against both E. coli and S. aureus relative to CP-Ser and CP-Ser
ΔHis3Asp (t = 20 h). We reasoned that this behavior may either point to an important role of
the His4 site in host defense or arise from comprised protein integrity of the mutant.46

Subsequently, attenuated growth inhibitory activity of a ΔHis4 mutant was observed for
additional bacterial species including the human pathogens Acinetobacter baumannii,
Pseudomonas aeruginosa, and Staphylococcus spp.45

Thus, we first sought an independent method to probe the ramifications of blocking site 2 on
antimicrobial action. We pre-incubated CP-Ser (α2β2) or ΔHis3Asp (α2β2) with 1.0 equiv of
Mn(II) to occupy site 2 and employed the resulting Mn(II)-bound forms in antibacterial
activity assays (Figure 7). Whereas apo ΔHis3Asp exhibited antibacterial activity similar to
that of CP-Ser, Mn(II)-bound ΔHis3Asp was inactive against both E. coli ATCC 25922 and
S. aureus ATCC 25923. Moreover, Mn(II)-bound CP-Ser and ΔHis4 displayed comparable
growth inhibitory activity. In both cases, this activity is attenuated relative to CP-Ser and ca.
50% growth inhibition is observed in the presence of 1.0 mg/mL CP. The observation that
Mn(II)-bound CP-Ser exhibits the same activity profile as ΔHis4 suggests that the attenuated
activity observed by this mutant does not result from mutation of the CP sequence
compromising protein integrity.

We next aimed to probe how mutations in the S100A9 C-terminal tail influence antibacterial
activity and we evaluated the growth inhibitory capacity of select C-terminal tail mutants,
H104A, E111A, AAA, AHA, and AHA(K106H), against both E. coli and S. aureus (Figure
7). We selected these mutants to probe the consequences of (i) deleting the native Mn(II)
ligands (AAA, AHA), (ii) including other His residues that provide high-affinity Mn(II)
complexation judging by the ZP1 competitions (AHA, AHA(K106H), and (iii) alterations to
non-coordinating residues of the tail region (H104A, E111A). The H104A and E111A
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single-point mutants exhibited antibacterial activity comparable to that of CP-Ser,
demonstrating that mutation of a non-coordinating His or Glu residue in the tail does not
perturb the ability of CP-Ser to inhibit bacterial growth under these assay conditions. In
contrast, antibacterial activity was attenuated for AAA, AHA, and AHA(K106H) relative to
CP-Ser. These mutants retain the ability to coordinate Mn(II), albeit with lower affinity, and
exhibited activity profiles comparable to those of ΔHis4 and Mn(II)-bound CP-Ser. The
AAA result is in general agreement with a recent study of the HN Tail mutant.45 In total,
these investigations demonstrate that both metal-binding sites contribute to the antibacterial
activity of CP; however, the contributions of each site differ, and these in vitro assays
suggest that the contributions of each site are not synergistic. Perturbation of site 2 has much
more pronounced impact on growth inhibition than complete loss of site 1.

Other Human S100 Proteins Do Not Coordinate Mn(II) with High Affinity
The human S100 protein family contains 21 polypeptides, and a number of the members
coordinate first-row transition metal ions at interfacial sites (e.g. CP, A7, A12, B) 38,72,81,82

or at undefined locales (e.g., murine A9)83 (Figures S45–S48). CP is unique amongst the
transition-metal-binding S100s because it is a heterooligomer, and this composition gives
rise to two different metal-binding sites. Site 2 is unusual amongst S100s because it is
comprised of four His residues as a result of His27 of S100A8. This residue aligns with Asp
residues in other S100 proteins (Figure 1). S100B provides one other example of a His4 site,
which was identified following crystallization of Zn(II)2:S100B at pH 9.72 Moreover,
S100A9 is the only polypeptide of this class to exhibit a C-terminal extension, making CP
and the S100A9 homodimer the only two family members to exhibit C-terminal tails.

To the best of our knowledge, no other S100 protein has been reported to bind Mn(II) and
participate in Mn(II) homeostasis. One ITC study of S100A12 afforded negligible enthalpy
change with Mn(II) addition, but no other solution-based metal-binding studies were
performed to ascertain whether this result indicates a lack of Mn(II) complexation.45 The
remarkable structural features of CP that make it stand alone in the S100 family are key
contributors to the Mn(II)-binding site, which indicates that high-affinity Mn(II) chelation
may be a property unique to CP. To test this notion, case-by-case analysis of the metal-
binding properties other S100 family members is required, and we overexpressed and
purified the human forms of S100A7ox, S100A9(C3S), S100A12, and S100B (Figures S49–
S52). In the apo forms, these S100s are antiparallel homodimers. S100A7, S100A12, and
S100B each exhibit two metal-chelating His3Asp (S100A7, S100A12), His3Glu (S100B), or
His4 (S100B) sites at the dimer interface (Figures S45, S47, and S48). The crystal structure
of human S100A9 reveals no well-defined metal-binding sites at the homodimer interface
(Figure S46);84 however, 65Zn-labeling studies indicated that murine S100A9 binds Zn(II),
and that a mutant lacking the C-terminal tail retained less radiolabel compared to wild-
type.83 We evaluated Mn(II)-binding ability of each S100 protein by analytical SEC, ZP1
competition titrations, and EPR spectroscopy in both the absence and presence of excess
Ca(II) (Figures S53–S55). We found no evidence for high-affinity Mn(II) coordination by
S100A7ox, S100A9(C3S), S100A12, or S100B. S100A7ox may bind manganese with weak
affinity. Although S100A7ox did not compete with ZP1 for Mn(II), the analytical SEC
chromatogram of S100A7ox pre-incubated with 10 equiv of Mn(II) exhibited a peak with a
pronounced tail (Figure S53) and the low-temperature EPR spectrum of S100A7ox in the
presence of 0.3 equiv of Mn(II) revealed a Mn(II) signal with extremely weak intensity
(Figure S55). We attempted to further probe Mn(II)-binding by S100A7ox using room-
temperature EPR and observed a distorted Mn(II) signal of lower intensity than the Mn(II)
atomic absorption standard at substoichiometric equivalents of Mn(II). Although it is
unlikely that S100A7 binds Mn(II) with sufficient affinity to sequester the metal in a
biological context, further studies of this metal/protein interaction are warranted. To confirm
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that the purified homodimers were isolated in the apo forms, and that the lack of observable
Mn(II) complexation did not result from other metal ions (i.e. zinc) blocking the binding
sites, the metal/S100 ratios were quantified by either inductively-coupled plasma mass
spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry and
these ratios provided no evidence for significant metal-ion contamination (Table S11).
Based on these investigations, we conclude that the high-affinity Mn(II)-binding capacity of
CP is unique and a consequence of its heterooligomeric structure.

Summary and Perspectives
CP provides a remarkable strategy for how to sequester labile Mn(II) in biological systems.
In this work, we employ biochemical and spectroscopic techniques to interrogate the
unusual histidine-rich Mn(II)-coordination site of human CP, in addition to Mn(II) binding
by related S100 proteins. Our solution studies are in excellent agreement with recent
crystallographic studies of a Mn(II)-CP complex (Figure 1D and 1F).45 Moreover,
investigations of the H103A, H104A, H105A, and AHA mutants provide fundamental
insights into the contributions of the native HHH motif to Mn(II) binding and antibacterial
action, and other tail mutants such as AHA(K106H), AAA(L109H)(E111H), and the
human-mouse chimera allow evaluation of the importance of His positioning within the
flexible tail region. In addition to revealing the hexahistidine motif for Mn(II) chelation at
site 2 in the solid state, the crystallographic coordinates deposited in the PDB (PDB 4GGF)
indicate 50% occupancy of site 1 with Mn(II) in three of the four heterodimers in the
asymmetric unit (Figure 1D). The fourth heterodimer exhibits no electron density
corresponding to a Mn(II) ion in site 1 and (A9)Asp30 is rotated away from the metal-
binding site. The Mn(II) ion housed in site 1 is five coordinate with (A8)His83, (A8)H9s87,
(A9)His20 and bidentate (A9)Asp30 providing a N3O2 motif. Although the Mn(II) ion
housed in the unprecedented His6 motif has received the most attention,45 the partial
occupancy of Mn(II) in site 1 is noteworthy and consistent with Mn(II)-binding titrations of
CP-Ser conducted by room-temperature EPR.62 In this study, a second binding event (Kd2 =
21 ± 5 μM) was required to fit the RT-EPR titration curve when the sample included excess
Ca(II), and we tentatively assigned Kd2 to weak Mn(II) complexation to the His3Asp site.62

Thus, given this crystallographic insight, it will be informative to identify spectroscopic
signals for Mn(II) coordinated to the His3Asp site in future work. The Mn(II)-CP X-ray
crystal structure also reveals a hydrogen-bonding interaction between His95 and Asp98
(Figure S56). It is possible that this hydrogen-bonding interaction affords an imidizolate-like
ligand at His95 and creates a site with a formal charge of 1+ and thereby contributes to the
high Mn(II) affinity in addition to providing a mechanism of charge neutralization. Asp98,
however, is not conserved (Figure 6), and characterization of the D98A mutant did not
reveal a diminished affinity for Mn(II), at least by the methods employed in this work. We
also note that substitution of H27 or H105 with anionic ligands (e.g. H27D62, AAE) does
not afford high-affinity Mn(II) binding. Why CP employs six neutral ligands to coordinate
Mn(II) and the mechanism for balancing the charge conferred by the Mn(II) ion are
currently unclear and require further investigation.

Both the Ca(II)-modulated Mn(II) affinities and hexahistidine Mn(II) coordination motif
exhibited by CP are unprecedented in known biological systems. Other characterized
manganese-binding proteins, including enzymes and transporters, employ mixed oxygen-
and nitrogen-donor atoms for chelating this metal ion (Table 1). Hexaimidazole coordination
motifs are also rare in small-molecule Mn(II) coordination chemistry. Of greater than
640,000 small-molecule structures deposited in the Cambridge Structural Database (CSD),85

there are ca. 330 structures of mononuclear complexes containing Mn(II) coordinated by six
nitrogen-donor ligands. Of these structures, we identified six compounds with
hexaimidazole motifs.86–91 These complexes exhibit Mn(II) ligated by either unsubstituted
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or N-substituted imidazoles, and the Mn—N bond lengths span the 2.16 to 2.37 Å range. For
example, hexakis(imidazole) manganese(II) dichloride tetrahydrate,
{[Mn(C3H4N2)6]Cl2•4H2O},86 exhibits Mn—N bond lengths of ca. 2.27 Å, and the Mn(II)
complex {[Mn(TMIMA)2](PF6)2} (TMIMA, tris[1-methyl-2-imidazolyl)methyl]amine) has
Mn(II)–N bond distances ranging from 2.307 to 2.366 Å.89 The CSD also includes
multinuclear Mn(II) complexes defined by hexaimidazole motifs,92,93 including a trinuclear
complex with imidazolyl ligands bridging octahedral and tetrahedral Mn(II) centers
displaying Mn(II)–N bond distances of 2.246 to 2.313 Å at the octahedral site.93 For Mn(II)-
CP, the Mn(II)–N bond distances of site 2 vary from 2.18 to 2.37 Å, which is within the
range defined by such small-molecule analogs.

The C-terminal region of S100A9 has been implicated in a potpourri of biophysical and
biological phenomena. Yeast two-hybrid studies of S100A8/S100A9 interactions indicated a
role for the S100A9 C-terminal tail in heterooligomerization.94 Subsequently, CP lacking
the S100A9 C-terminal tail was observed to exhibit slightly attenuated antifungal activity
against Candida albicans, leading to the proposal that the tail may contribute to CP-
mediated Zn(II) sequestration.95,96 Investigations of homodimeric murine S100A9 revealed
retention of 65Zn(II) that was dependent on the presence of the C-terminal region.82 The tail
region has also been implicated in arachidonic acid binding by CP,97 which is reported to be
zinc-reversible,98 and as a modulator of adherent peritoneal cell function (murine
S100A9).99,100 In accord with recent crystallographic studies,45 the current work supports
an additional role for the C-terminal tail in Mn(II) complexation and its contributions to
antimicrobial activity.

Like CP, several other proteins, and predominantly those used for metal-ion transport,
employ flexible regions for metal-ion coordination. The extracellular N-terminal region of
the eukaryotic copper transporter Ctr1 contains metal-binding residues that are utilized to
coordinate bioavailable copper. In vitro studies with synthetic model peptides indicated that
human Ctr1 employs a combination of Met and His residues to bind Cu(I) and Cu(II) with
high affinities whereas yeast Crt1 utilizes a series of MXXXM and MXM motifs to bind
Cu(I).101–103 The bacterial Zn(II) transporter ZnuA contains one N3O1 site for high-affinity
Zn(II) coordination.104 ZnuA also contains a flexible region that is rich in His, Glu, and Asp
residues; this region contributes to the formation of a low-affinity Zn(II) binding site of
unknown function.104,105 The nickel metallochaperones UreE and SlyD contain C-terminal
histidine-rich motifs that coordinate Ni(II) in vitro.106–108 To the best of our knowledge, CP
provides a unique example of a Mn(II)-binding protein harboring a flexible tail that
encapsulates the metal ion. Indeed, coordination of Mn(II) by the two histidine residues in
the C-terminal tail allows CP to trap labile Mn(II) in the biological milieu. It will be
important to determine whether the C-terminal tail also contributes to Zn(II) coordination at
site 2.

The antibacterial activity assays presented in this work reveal that H103 and H105 are
essential for CP to provide its full in vitro growth-inhibitory ability against select Gram-
negative and –positive organisms (Figure 7). Site 1 and 2 thus contribute to this biological
function differently. Previous evaluation of the antibacterial activity of a ΔHis4 mutant
against a range of bacterial species, in addition to studies of the activities of ΔTail and HN
Tail mutants against S. aureus, also demonstrated that site 2 has a greater contribution to
growth-inhibitory function than site 1, and this outcome was attributed to Mn(II) deprivation
for all organisms.45 The possibility of a general Mn(II)-dependent mechanism of CP action
is intriguing; however, CP is multifaceted and understanding the precise molecular-level
origins for the site-dependent antimicrobial activity of CP will require further investigations
at the molecular and organismal levels. In particular, elucidating M(II)-CP speciation in a
variety of biological contexts is necessary as well as considering the mechanism of CP
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action against susceptible microorganisms on a case-by-case basis. Calprotectin coordinates
both Zn(II) and Mn(II) with high affinity, and microbial deprivation of either metal ion has
deleterious consequences. From the standpoint of Zn(II) homeostasis, the antibacterial
activity assay results for the ΔHis4 and C-terminal tail mutants are striking because site 1
binds Zn(II) with picomolar affinity in both CP and the ΔHis4 mutant.46 Various studies
have suggested a role for Zn(II) chelation by CP in the host/pathogen interaction,25–31,96 and
we expect Zn(II) deprivation to be deleterious for laboratory strains (e.g. E. coli ATCC
25922). From the perspective of Mn(II) and the work described here, CP-Ser-AHA and
AHA(K106H) (α2β2) both outcompete ZP1 for Mn(II), which supports formation of high-
affinity Mn(II) complexes, yet the antibacterial activity of each mutant is attenuated relative
to CP-Ser. This observation implies that high-affinity Mn(II) coordination does not directly
correlate with growth inhibition; however, we note that these mutants may not coordinate
Mn(II) with sufficiently high affinity to outcompete bacterial Mn(II) transporters and the
metal-binding equilibria established in the ZP1 competitions and in a bacterial growth assay
differ substantially. Moreover, the relative rates of metal-ion dissociation from CP must also
be considered in the context of the working model (Figure 1B). Our prior studies revealed a
relatively slow rate of Mn(II) dissociation from site 2.62 It is possible that Mn(II) dissociates
from CP more readily in the absence of the native HXH motif and, by corollary, Zn(II) may
also dissociate more readily if the HXH motif is also involved in Zn(II) coordination or if
deletion/mutation of the tail perturbs Zn(II) binding at site 2 in another manner. A greater
rate of M(II) dissociation means that the metal ion is not effectively sequestered and thus
may confer attenuated growth inhibitory action because the dissociated metal ion can be
acquired by microbial transport machinery.

Manganese is important for the virulence of many pathogens, and yet little is known about
how the host transports and stores manganese in addition to how it prevents manganese
uptake by pathogens at both the physiological and molecular levels. Biochemical and
spectroscopic studies of CP provide essential new insights into this phenomenon and inform
biological work. The results presented here support a model in which the S100A9 C-
terminal tail of CP encapsulates Mn(II), providing a high-affinity binding site and
preventing its release. This mechanism of metal-ion capture is consistent with the proposed
physiological function of CP as a metal-sequestering protein that inhibits microbial
acquisition of these essential nutrients, and provides a working model for how CP captures
labile Mn(II) in the biological milieu.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structural features of human CP and proposed mechanism of antimicrobial activity. (A)
Model of the CP αβ heterodimer, which is taken from the structure of the Ca(II)-bound
tetramer (PDB: 1XK4) (ref 38). S100A8 is shown in green, and S100A9 is shown in blue.
The Ca(II) ions are depicted as yellow spheres, and transition metal-ion binding residues are
presented as orange sticks. No structure of the Ca(II)-free heterodimer is available. (B)
Proposed mechanism of antimicrobial action. CP is stored in cells primarily as the apo αβ
heterodimer. CP is released at sites of infection where it undergoes Ca(II)-dependent
oligomerization to the α2β2 tetramer and competes with pathogens for Mn(II) and Zn(II). (C)
Site 1, the His3Asp motif, is formed at the dimer interface by (A8)His83, (A8)His87,
(A9)His20, and (A9)Asp30 PDB: 1XK4). (D) The Mn(II)-His3Asp site of human CP. The
Mn(II) ion, depicted as a magenta sphere, was refined with an occupancy of 0.5 (PDB:
4GGF). (E) Site 2, the His4 motif, is formed at the dimer interface by (A8)His17,
(A8)His27, (A9)His91, and (A9)His95 (PDB: 1XK4). (F) The Mn(II)-His6 site; the Mn(II)
coordination sphere at site 2 is completed by (A9)His103 and (A9)His105. The Mn(II) ion is
depicted as a magenta sphere (PDB: 4GGF) (ref 45). (G) Sequence alignment of S100A8
and S100A9 with S100A7, S100A12, and S100B. The secondary structural elements of
S100A8 and S100A9 are color-coded and shown above the alignment. Cysteine residues
mutated to serine for metal-binding studies are red, and transition metal-binding residues are
orange. The C-terminal tail of S100A9 is underlined.
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Figure 2.
Analytical SEC of CP-Ser and mutant proteins in the absence and presence of 10 equiv of
Mn(II) (75 mM HEPES, 100 mM NaCl, pH 7.5). The proteins were pre-incubated with 10
equiv of Mn(II) (solid red line). The chromatograms for each protein in the absence (dashed
line, αβ) and presence (dotted line, α2β2) of 2 mM Ca(II) in the SEC running buffer are
provided as standards. The protein concentrations were 200 μM with Mn(II) and 100 μM
with and without Ca(II). The chromatograms were normalized to maximum peak absorbance
values of 1. Additional Mn(II) SEC chromatograms are provided in Figures S28–S30.
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Figure 3.
Select S100A9 C-terminal tail mutants compete with ZP1 for Mn(II) (75 mM HEPES, 100
mM NaCl, pH 7.0). (A) Δ101 and AAA compete with ZP1 for Mn(II), whereas the D98A
and E111A exhibit behavior similar to CP-Ser. (B) Mutants of the HHH sequence compete
with ZP1 for Mn(II). In panels A and B, one representative titration for ZP1 only and CP-
Ser are shown. (C) Integrated ZP1 emission in the presence of 4 μM CP and 200 μM Ca(II)
with 3 (light gray, 0.75 equiv) or 4 (dark gray, 1.0 equiv) μM Mn(II). ZP1 is the no-protein
control. The data are normalized to apo ZP1 emission. All error bars represent the standard
deviation from the mean (n = 3). Additional Mn(II) competition titrations are provided in
Figures S31–S36.
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Figure 4.
Low-temperature EPR spectra of CP C-terminal tail mutants (75 mM HEPES, 100 mM
NaCl, pH 7.5). (A) Low-temperature EPR signals of CP-Ser, E96A, D98A, E99A, E111A,
and Δ101. The Δ101 spectrum is scaled by 10×. (B) Low-temperature EPR spectra of CP-
Ser, H104A, H103A, H105A, AHA, and AAA. The H103A, H105A, AHA, and AAA
spectra are all scaled by 10×. All samples contain 100 μM protein, 1 mM Ca(II), and 30 μM
Mn(II). Instrument conditions: temperature, 20 K; microwaves, 0.2 mW at 9.4 GHz;
modulation amplitude, 0.5 mT. Additional EPR spectra are provided in Figures S38–S40.
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Figure 5.
The Mn(II) coordination sphere at site 2 of human CP, as supported by crystallographic45

and solution studies. Mn(II) is coordinated in an octahedral manner by (A8)His17,
(A8)His27, (A9)His91, (A9)His95, (A9)His103 and (A9)His105.
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Figure 6.
Sequence alignment of the C-terminal regions of various S100A9 homologs. The C-terminal
HXH motif (underlined) is conserved among S100A9 proteins from multiple species. The
alignment of the full protein sequences is provided in Figure S44.
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Figure 7.
Antimicrobial activity of CP-Ser and metal-binding-site mutants against E. coli ATCC
25922 (A and C) and S. aureus ATCC 25923 (B and D). Bacterial cultures were treated with
CP-Ser (1, ●), CP-Ser pre-incubated with 1.0 equiv Mn(II) (2, ■), ΔHis3Asp (3, ▲),
ΔHis3Asp pre-incubated with 1.0 equiv Mn(II) (4, ▼), ΔHis4 (5, ◆), (H104A) (6, ▽),
(E111A) (7, ◣), AAA (8, ○), AHA (9, □), and AHA(K106H) (10, △). Control experiments
with untreated buffer only (11) and buffer with a 42-μM Mn(II) supplement (12) were also
performed. (A and B) The OD600 values were recorded at t = 20 h (mean ± SEM, n = 6). For
clarity, the metal-binding-site mutant and Mn(II) pre-incubation assay results are shown in
the left panels, and the C-terminal tail mutant assay results are shown in the right panels. (C
and D) The cultures were incubated with 1.0 mg/mL protein, and OD600 values were
recorded at t = 8 and 20 h (mean ± SEM, n = 6).
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Table 2

Amino Acid Sequences of the C-terminal Tail of CP-Ser and Mutants.a

Proteinb Sequencec,d,e

CP-Ser A9(1-90)-HEKMHEGDEG PGHHHKPGLG EGTP

CP-Ser-Δ101 A9(1-90)-HEKMHEGDEG P

CP-Ser-mT A9(1-90)-HEKMHENNPR GHGHSHGKGC GK

CP-Ser(E96A)

CP-Ser(D98A)

CP-Ser(E99A)

CP-Ser(H103A)

CP-Ser(H104A)

CP-Ser(H105A)

CP-Ser(K106A)

CP-Ser(E111A)

CP-Ser-AHA

CP-Ser-AAA

CP-Ser-AAE

CP-Ser-AAA(K106H)

CP-Ser-AHA(K106H)

CP-Ser-AAA(L109H)(E111H)

a
See Table S1 (Supporting Information) for protein nomenclature and Table S2 for protein molecular weights and extinction coefficients.

b
The “CP-Ser” is routinely omitted in the text for mutants.

c
Amino acid residues derived from the sequence of murine S100A9 are italicized.

d
Mutated amino acids are colored red.

e
HXH motifs are underlined.
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