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Summary

Multiple sclerosis (MS) is the most common demyelinating disease of the
central nervous system. It is an autoimmune disorder in which activated T
cells cross the blood–brain barrier (BBB) to initiate an inflammatory
response that leads to demyelination and axonal damage. The key mecha-
nisms responsible for disease initiation are still unknown. We addressed this
issue in experimental autoimmune encephalomyelitis (EAE), the animal
model of MS. It is widely known that EAE manifests only in certain strains
when immunized with myelin proteins or peptides. We studied the differen-
tial immune responses induced in two mouse strains that are susceptible or
resistant to EAE induction when they are immunized with the 139–151
peptide of proteolipid protein, an encephalitogenic peptide capable of induc-
ing EAE in the susceptible strain. The adequate combination of major histo-
compatibility complex alleles and myelin peptides triggered in susceptible
mice a T helper type 17 (Th17) response capable of inducing the production
of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were
not detected in resistant mice, despite immunization with the encephalito-
genic peptide in junction with complete Freund’s adjuvant and pertussis
toxin, which mediate BBB disruption. These data show the pivotal role of
Th17 responses and of high-affinity anti-myelin antibodies in EAE induction
and that mechanisms that prevent their appearance can contribute to resist-
ance to EAE.
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Introduction

Multiple sclerosis (MS) is a heterogeneous, chronic inflam-
matory disease of the central nervous system (CNS) that
can induce severe disability. MS has been described as an
autoimmune disorder because it is known that activated T
cells cross the blood–brain barrier (BBB) to initiate an
inflammatory response in the CNS that leads to
demyelination and axonal damage. Of the different leuco-
cyte subsets, T helper type 1 (Th1) and Th17 cells have been
found to be important players in MS pathogenesis [1–8].
Moreover, the Th1/Th17 ratio is believed to be a key factor
that may contribute to the heterogeneity of clinical forms of
MS [8]. In addition, CD8+ T cells have been identified in the

active lesions of MS patients [4] and B cells also play a role
in the disease by contributing to intrathecal T cell activation
[9] and by intrathecal synthesis of antibodies that associate
with disease activity. The majority of MS patients present
immunoglobulin (Ig)G oligoclonal bands (OCBs) in the
cerebrospinal fluid (CSF) as a result of intrathecal IgG syn-
thesis within the CNS [10], and a number of them also
show IgM OCBs, which associate with a poor MS outcome
[11].

The key mechanisms responsible for the initiation of MS
are still unknown. It exhibits a complex physiopathology,
which consists of interplay of genetic and environmental
factors. Much evidence supports that certain major histo-
compatibility complex (MHC) antigens and exposure
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different infectious agents play a role in the breakdown of
tolerance that conducts to MS, but the precise mechanisms
determining susceptibility to the disease have not been
ascertained fully.

To obtain further insights in disease susceptibility we
used experimental autoimmune encephalomyelitis (EAE)
model, which reproduces the clinical and histopathological
features of multiple sclerosis [12]. EAE is induced only in
certain strains of mice immunized with certain myelin pro-
teins or peptides. We aimed to compare the differential
immune responses induced in EAE-susceptible and
resistant strains. We demonstrate here that susceptible mice
developing EAE show a characteristic profile with induction
of a helper Th17 response, and high affinity anti-
proteolipidic protein (PLP) serum IgG antibodies. Further
studies will demonstrate the role played by each of them in
EAE and MS onset.

Material and methods

Mice

Eight-week-old female BALB/c (resistant strain) and SJL/
J@RJ (susceptible strain) mice were purchased from Charles
River (Barcelona, Spain). The mice were housed under
standardized light- and climate-controlled conditions and
were fed standard chow and water ad libitum. The experi-
ments were performed according to the European Union
(EU) regulations and were approved by our institutional
Ethics Committee on Animal Experimentation (CEEA
07/10).

EAE induction and clinical follow-up

Mice from the susceptible (SJL/J@RJ, H-2s) and resistant
(BALB/c, H-2d) strains were immunized under anaesthesia
by subcutaneous injections of phosphate-buffered saline
(PBS) containing 50 μg of the 139-151 PLP peptide
(PLP139–151) emulsified in complete Freund’s adjuvant (CFA)
(Sigma, St Louis, MO, USA) containing 4 mg/ml of Myco-
bacterium tuberculosis H37RA (Difco Laboratories, Detroit,
MI, USA). On days 0 and 2 post-immunization (p.i.), the
mice received 200 ng of pertussis toxin (Sigma) intrave-
nously. The PLP139–151 peptide was obtained from the
Proteomics section of Universitat Pompeu Fabra in Barce-
lona, Spain. All the animals were weighed and examined
daily in a blind manner for neurological signs using a
six-point scale [13].

Splenocyte proliferative activity and
cytokine production

The splenocytes that were obtained from eight mice per
group from two independent experiments, which were
euthanized on day 12 p.i., were seeded in 96-well plates at a

cell density of 2 × 105 cells/well in Iscove’s modified
Dulbecco’s medium (IMDM; PAA Laboratories GmbH,
Pasching, Austria) supplemented with 10% HyClone
®FetalClone I (Thermo Fisher Scientific, Waltham, MA,
USA), 50 μmol/l of 2-mercaptoethanol (Sigma), 2 mmol/l
of glutamine, 50 U/ml of penicillin and 50 mg/ml of strep-
tomycin; the last three chemicals were obtained from Gibco
BRL (Paisley, UK). For splenocyte activation, we used
5 μg/ml of PLP139–151 or 5 μg/ml of phytohaemagglutinin
(PHA; Sigma). Cells that were cultured without any stimu-
lus were used as baseline controls.

The supernatants (50 μl/well) were harvested after 48 h
and stored at −80°C to further assess cytokine release. Then,
1 μCi/well of [3H]-thymidine (PerkinElmer Inc., Alameda,
CA, USA) was added to the cells. The cultures were main-
tained under the same conditions for an additional 18 h,
and the levels of incorporated radioactivity were deter-
mined using a beta-scintillation counter (Wallac, Turku,
Finland). The stimulation index (SI) was expressed as the
mean of the counts per minute (cpm) of five replicates from
each mouse and culture condition divided by the mean cpm
of the baseline control replicates. The results are expressed
as the mean value [standard deviation (s.d.)] of the SI per
group of mice.

The cytokine secretion pattern of three mice per group
was determined in the supernatants by flow cytometry
using the FlowCytomix Th1/Th2/Th17 10-plexkit (Bender
MedSystems Inc., Burlingame, CA, USA), according to the
manufacturer’s instructions.

Immunophenotyping

The different subsets of lymphocytes in the splenocytes of
13 mice from three independent experiments were evalu-
ated by flow cytometry. Anti-CD45-peridinin chlorophyll
(PerCP)/cyanin 5·5 (Cy5·5), anti-CD8-phycoerythrin (PE),
anti-CD4-fluorescein isothiocyanate (FITC) and anti-
CD25-allophycocyanin (APC) antibodies were used to
analyse the T cell subpopulations and anti-CD45-PerCP/
Cy5·5, anti-CD45R/B220-FITC, anti-CD1d-PE and anti-
CD5-APC were used to study the B cell subsets. The
frequencies of CD4+ and CD8+ regulatory T cells were
analysed in five mice using anti-CD4-FITC, anti-CD8-
PE, anti-CD25-PE/Cy7 and anti-forkhead box protein 3
(FoxP3)-APC. All the antibodies and their corresponding
isotype controls were purchased from BD Pharmingen (San
Jose, CA, USA). The anti-mouse FoxP3 Staining Set
(eBioscience Ltd, Dublin, Ireland) was used to study the
regulatory T subsets.

The percentages of T and B cell subpopulations were ref-
erenced to the total lymphocyte population (based on the
CD45+ and SSC-A parameters). The frequency of regulatory
B cells was defined as the percentage of CD5+CD1d+ cells
within the B220+ cell population. The CD4+ and CD8+ regu-
latory T cell subsets were defined as the percentages of
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FoxP3+ cells within the CD4+CD25+ and CD8+CD25+ T cell
populations, respectively. The data were analysed with a
FacsCanto cytometer (BD) using FacsDiva software (BD
Pharmingen).

Determination of anti-PLP139–151 antibody levels

At day 12 p.i., the mice were deeply anaesthetized. When the
animals were unresponsive to plantar reflex stimulation in
response to pressing the sole of the foot, a blood sample was
obtained by cardiac puncture and collected in tubes without
anti-coagulant to allow blood clot formation. The serum
was obtained after centrifugation at 900 g for 15 min. Serum
was stored at −80°C until assayed. The levels of anti-PLP139–

151 IgG and IgM antibodies in the serum samples diluted
1/100 were measured by enzyme-linked immunosorbent
assay (ELISA), as described previously [14]. The results are
expressed as the numbers of units of optical density (OD) at
a wavelength of 492 nm.

Statistical analysis

Student’s t-test was performed to compare the mean values
of two groups [15]. When required, equality of the vari-
ances was not assumed. Differences were considered statisti-
cally significant if P < 0·05. The data are expressed as the
mean values (s.d.).

Results

Cellular responses

T cell responses. We explored differences between suscepti-
ble and resistant mice 12 days after immunization, when the
immune response against the encephalitogenic antigen was
established. Susceptible mice exhibited significantly higher
amounts of naive (CD4+CD25−, P = 0·026), activated
(CD4+CD25+, P < 0·001) and regulatory CD4+ T cells
(CD4+CD25+FoxP3+, P = 0·026) (Fig. 1, Table 1). Con-
versely, we found no differences in the numbers of naive
(CD8+CD25−), activated (CD8+CD25+) or regulatory CD8+

T cells (CD8+CD25+FoxP3+) (Table 1).
We tested the proliferative capacity of splenocytes. Sus-

ceptible strain showed higher proliferative capacity upon
non-specific (PHA) stimulation [stimulation index (SI):
20·1 (11·6)] compared with the resistant strain [SI:
9·5 (7·0)] (P = 0·045). PLP139–151-specific proliferation was
detected only in susceptible mice [SI: 12·3 (9·6)], and not
in resistant ones [SI: 1·9 (1·4)] (P = 0·018, Fig. 2a). This
finding indicates the incapacity of resistant mice to develop
a proper T cell response against the encephalitogenic
peptide.

We next attempted to identify the specific T cell response
that is induced in susceptible mice immunized with
PLP139–151 by quantifying Th1, Th2 and Th17 cytokines. The
studied cytokines were detected in the susceptible mice,

with the only exception of interleukin (IL)-10 (Fig. 3). In
contrast, resistant mice did not release IL-1α, IL-2, IL-5,
IL-6, tumour necrosis factor (TNF)-α and granulocyte–
macrophage colony-stimulating factor (GM-CSF), and only
low levels of interferon (IFN)-γ and IL-17 were detected
(Fig. 3), although we found significant differences only for
IL-17 [123·6 (37·6) versus 7·0 (12·0) pg/ml, respectively;
P = 0·007].

B cell subsets. We did not appreciate differences in
the percentages of regulatory (B220+CD5+CD1d+) and
T-independent B cells (B1; B220+CD5+) between susceptible
and resistant mice (Table 1). However, the percentage of
T-dependent B cells (B2; B220+CD5−) was increased signifi-
cantly in susceptible mice immunized with PLP139–151

(P = 0·024, Fig. 1, Table 1).

Humoral responses. We then assayed the levels of anti-
PLP139-151 IgG and IgM antibodies in serum. Both susceptible
and resistant mice developed anti-PLP IgM antibodies upon
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Fig. 1. Differential expression of T and B cell subsets in susceptible

and resistant mice immunized with the proteolipid protein (PLP)139–151

peptide. The frequencies of different T and B cell subsets were

determined by flow cytometry. Susceptible mice (open circles) exhibit

a higher percentage of naive CD4+ T cells (defined as

CD45+CD4+CD25−), activated CD4+ T cells (CD45+CD4+CD25+),

regulatory CD4+ T cells [CD4+CD25+forkhead box protein 3 (FoxP3)+]

and T-dependent B cells (B2; CD45+B220+CD5−) compared with

resistant mice (black circles). The percentages of naive and activated T

cells and T-dependent B cells were defined as the frequencies of

CD4+CD25−, CD4+CD25+ and B220+CD5− cells, respectively, within

the total lymphocyte population (gated on CD45+ cells). The

percentage of regulatory CD4+ T cells refers to the frequency of

FoxP3+ cells within the CD4+CD25+ population.
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immunization with PLP139–151, although the levels were
higher in susceptible mice (P = 0·028). However, only sus-
ceptible mice were capable of producing anti-PLP139–151 IgG
antibodies (Fig. 4). Despite immunization with the
encephalitogenic peptide and with complete Freund’s adju-
vant, resistant mice did not show IgG antibodies anti-PLP.

Discussion

EAE studies have yielded substantial progress towards
understanding the pathogenesis of MS. However, the
precise mechanisms implied in disease onset have not yet
been identified. A direct role of MHC alleles in MS has been
demonstrated recently by studying the relationship between

EAE susceptibility and peptide presentation in transgenic
mice expressing different human leucocyte antigen (HLA)
class II molecules [16]. The mouse strains used in this study
exhibit different susceptibilities to EAE induction and dif-
ferent MHC haplotypes. SJL/J mice (H-2s) are susceptible,
while BALB/c mice (H-2d) are resistant to EAE induction
with the PLP139–151 peptide. The differences in the H-2
haplotype conditioned a lack of proliferation of BALB/c

Table 1. T and B cell subpopulations in proteolipid protein (PLP)139–

151-immunized susceptible and resistant mouse strains.

Cell population

Number

of mice

Resistant

strain (%)

Susceptible

strain (%)

CD4+ naive T cells 13 14·2 (3·5) 20·1 (8·0)*

CD4+ activated T cells 13 2·9 (1·1) 4·8 (1·3)**

CD4+ regulatory T cells 5 29·6 (6·8) 49·9 (15·1)*

CD8+ naive T cells 13 6·1 (2·7) 7·7 (3·5)

CD8+ activated T cells 13 0·2 (0·2) 0·2 (0·1)

CD8+ regulatory T cells 5 1·3 (2·4) 4·1 (2·5)

B2 cells 13 41·1 (8·8) 49·6 (9·2)*

B1 cells 13 2·6 (1·2) 2·7 (0·8)

Regulatory B cells 13 3·5 (1·8) 3·2 (1·3)

The data are expressed as the mean values ± standard deviation.

The percentages of regulatory CD4+ and CD8+ T cells refer to the fre-

quencies of forkhead box protein 3 (FoxP3)+ cells within the

CD4+CD25+ and CD8+CD25+ populations, respectively. The frequency

of regulatory B cells refers to the percentage of CD5+CD1d+ events

within the B220+ population. The frequencies of the remaining T and B

cell subsets are in reference to the total lymphocyte population.

*P < 0·05 and **P < 0·01.
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lymphocytes against the encephalitogenic peptide, con-
firming the functional implications of MHC on EAE
susceptibility.

We aimed to identify the immune mechanisms expanded
differentially in resistant or susceptible mice in response to
immunization with the encephalitogenic peptide. No differ-
ences were found in regulatory B cells or in CD8+ subsets,
despite the effects they can have in MS and EAE [4,17–20].
This may be due to the time-point at which we made the
study. It has been described recently that CD8+ T cells are
involved in EAE initiation, being necessary to induce CD4+

Th17 cells [21] which seem to play an important role in
EAE pathogenesis. We studied immune responses at a later
disease stage, when CD4 T cell responses were already estab-
lished. Our results suggest that the role of activated CD8+ T
cells may be not so crucial at this point. By contrast, upon
immunization with the PLP139–151 peptide, SJL susceptible
mice showed a significant increase in the amount of acti-
vated CD4+ T cells, thus confirming a role for these cells in
EAE susceptibility. To characterize this response further, we
analysed cytokine secretion in splenocyte cultures. We
found a significant increase of IL-17 in susceptible mice. It
has been suggested that the Th17 subset is involved in CNS
inflammatory events that lead ultimately to demyelination,
including BBB disruption and the activation of microglia
[5,6]. It has also been proposed that they have a key role in
inducing autoantibody production [22]. We next evaluated
the role of B cells and antibodies in EAE induction. We
observed that only EAE mice were capable of producing
anti-PLP139–151 IgG antibodies, which were associated previ-
ously with a severe EAE course [23]. Resistant mice, which
failed to establish PLP-specific T helper responses, did not
show anti-PLP IgG antibodies. Ineffective presentation of
PLP peptide by MHC-II molecules of resistant mice may
result in the lack of T–B cell co-operation and thus in an
inhibition of isotype switch [24], and of anti-PLP IgG anti-
body production. Because T–B cell interaction is not so
crucial for the primary antibody response, the synthesis of
anti-PLP IgM was not abolished.

These data suggest strongly that IL-17 plays a pivotal role
in the induction of relapsing EAE in SJL mice and that,
directly or indirectly, it induces the production of high-
affinity anti-myelin IgG antibodies. Future studies will
demonstrate if they have a role in EAE/MS onset.
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