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Abstract

We report the enantiospecific total synthesis of N-methylwelwitindolinone D isonitrile. Our route
features a double C-H functionalization event involving a keto oxindole substrate to introduce the
tetrahydrofuran ring of the natural product.
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The welwitindolinone family of natural products (e.g., 1–2, Scheme 1) has attracted
tremendous attention from the synthetic community over the past two decades.[1,2,3,4,5]

Interest in these compounds stems from their promising biological profiles, in addition to
their compact, yet daunting structures. Synthetic efforts toward the welwitindolinones have
led to at least ten methods for building the bicyclo[4.3.1] core that is common to most of
these natural products.[1,4] However, the sheer difficulty associated with late-stage
manipulations has plagued most synthetic routes and only a few completed syntheses have
been reported in recent years.[5]

One exceptionally challenging synthetic target is N-methylwelwitindolinone D isonitrile
(2).[6, 7] The compound possesses five stereocenters, two quaternary carbons, and a heavily
substituted cyclohexyl ring. Compared to other related family members, 2 also possesses an
ether linkage between C3 and C14. Thus, a successful synthesis of 2 would not only have to
assemble the congested oxindole-fused bicyclo[4.3.1] framework, but would also have to
allow for introduction of the ethereal linkage on the sterically congested face of the bicycle.
Highlights of synthetic efforts toward 2 include the Wood group’s assembly of the
spirocyclic oxindole[8] and Rawal’s elegant total synthesis of (±)-2 in 2011.[5a] Herein, we
report our synthetic forays toward 2, which culminate in an enantiospecific synthesis.
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Our retrosynthetic plan for the synthesis of 2 is presented in Scheme 2. The natural product
would be accessed from 3 via late-stage manipulations. In a key disconnection, the
tetrahydrofuran ring would be installed from keto-oxindole derivative 4. Of note, the ability
to elaborate 4 to 3 would hinge on our ability to perform chemoselective and
diastereoselective manipulations adjacent to the two carbonyls. The cyclic carbamate was
thought to be accessible using an intramolecular nitrene insertion reaction[9] involving
oxindole substrate 5. Substrate 5 would be derived from ketone 6, which in turn can be
readily prepared from known carvone derivative 7[10] in just four steps using our previously
established procedure involving an indolyne cyclization.[5b,11]

Our approach toward implementing the retrosynthetic plan is highlighted in Scheme 3.
Indole 6 was converted to oxindole 8 using a one-pot oxidation/hydrolysis sequence. As the
acidic conditions led to desilylation, reprotection of the alcohol was necessary to provide 9.
Deuteride reduction and carbamoylation proceeded without event to furnish 5 in quantitative
yield. To our delight, exposure of 5 to Ag-promoted nitrene insertion conditions[12,5e]

furnished 10 in 70% yield. It should be noted that attempts to use the proteo analog of 5
gave only 44% yield of the corresponding insertion product, along with 19% of recovered
ketone 9. Thus, consistent with our previous findings on an alternate substrate,[5e] the
strategic use of deuterium minimizes an undesirable competitive reaction, thus giving
synthetically useful yields of the desired insertion product 10. From 10, a standard
deprotection/oxidation sequence delivered key intermediate 4.

Many attempts to introduce the tetrahydrofuran ring from 4 were put forth. Unfortunately,
efforts toward site-selective functionalization of one carbonyl over the other via enol ethers
were unsuccessful. After considerable experimentation, it was found that the keto carbonyl
could be α-functionalized first upon treatment of 4 with CuBr2 in THF at ambient
temperature to yield 11 as a single diastereomer (Scheme 4). It was hoped that C3-oxidation
would provide an alcohol intermediate that would cyclize to give the necessary
tetrahydrofuran ring. However, upon treatment of 11 with C3 oxidation conditions,[5b] the
desired oxidation and cyclization did not occur. Instead, we unexpectedly obtained
cyclobutane 13 in high yield, presumably via direct cyclization of the oxindole enolate (see
transition structure 12).[13] X-ray analysis of a single crystal of 13 validated our structural
assignment.[14,7]

As a workaround, we opted to introduce a protected hydroxyl group directly onto C3 of
substrate 11. Mn(OAc)3 was deemed a potential reagent for selective C3-acetoxylation,
based on its use in benzylic acetoxylation reactions.[15] As shown in Table 1, treatment of
oxindole 11 with Mn(OAc)3 in AcOH at 80 °C provided acetoxylated product 14 (entry 1).
Interestingly, when the corresponding reaction was conducted at 150 °C, we obtained a 53%
yield of 3, which possesses the desired tetrahydrofuran ring. Alternatively, 3 could also be
prepared in one-pot by performing the acetoxylation at 80 °C, removing the volatiles, and
exposing the crude intermediate to K2CO3 in MeOH and H2O at 70 °C.

We also explored the feasibility of directly converting keto oxindole 4 to 3 (Scheme 5). Of
note, the Wood group was able to elegantly install a tetrahydrofuran ring from a keto
oxindole substrate using basic conditions and O2.[8] Despite the modest yield, this key
precedent laid the groundwork for additional experimentation. To our delight, we found that
simple exposure of 4 to tetrabutylammonium fluoride in acetonitrile in the presence of air
efficiently delivered 3.[16] In previous studies, we[17] and others[18] have found that TBAF/
air can facilitate C3 oxidation of oxindoles containing the welwitindolinone scaffold, but the
use of TBAF/air to build an ethereal linkage via double C-H functionalization was unknown.
It should be noted that the use of other bases in place of TBAF, such as K2CO3 and Cs2CO3,
also promoted the formation of 3, albeit in lower yields. It is likely that this efficient method
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for introducing the tetrahydrofuran ring proceeds by initial diastereoselective C3 oxidation,
followed by cyclization.[19] Related C3-peroxy compounds have been observed in our
studies[20] and in Wood’s.[8]

To complete the total synthesis, it remained to elaborate the cyclic carbamate to the ketone
and isonitrile functional groups present in 2 (Scheme 6). Unexpectedly, attempted hydrolysis
of 3 led to cyclohexyl ring fragmentation, a process that was attributed to the reactivity of
the ketone. To circumvent this, ketone 3 was reduced to alcohol 15 with LiAlH4.
Fortunately, upon exposure of 15 to hydrolysis conditions, cyclohexyl ring fragmentation
was not observed. Hydrolysis gave the desired diol intermediate, which was oxidized with
IBX to provide diketone 16. Finally, formylation provided 17, which was directly exposed
to standard dehydration conditions to deliver (+)-2.

In summary, we have completed the enantiospecific total synthesis of N-
methylwelwitindolinone D isonitrile. Several unexpected hurdles, including the formation of
the unusual cyclobutane-containing compound 13 were overcome en route to the natural
product. Our total synthesis features a double C-H functionalization event of keto oxindole 4
to introduce the tetrahydrofuran ring of 2 and is achieved in 17 steps from readily available
carvone derivative 7.
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Scheme 1.
Welwitindolinones 1 and 2.
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Scheme 2.
Retrosynthetic analysis of 2.
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Scheme 3.
Elaboration of 6 to keto oxindole 4; TBS=tert-butyldimethylsilyl, NBS=N-
bromosuccinimide, DMAP=4-dimethylaminopyridine, DMF=dimethylformamide,
THF=tetrahydrofuran, Tf=trifluoromethanesulfonyl, OAc=acetate,
bathophenanthroline=4,7-diphenyl-1,10-phenanthroline, Dess–Martin=1,1,1-triacetoxy-1,1-
dihydro-1,2-benziodoxol-3(1H)-one.
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Scheme 4.
Unexpected formation of cyclobutane 13; THF = tetrahydrofuran.
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Scheme 5.
Double C-H functionalization of substrate 4 to install the tetrahydrofuran ring.
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Scheme 6.
Completion of (+)-2; THF=tetrahydrofuran, dioxane=1,4-dioxane, IBX=2-iodoxybenzoic
acid, TFA=trifluoroacetic acid, DMSO=dimethylsulfoxide, Burgess reagent=methyl N-
(triethylammoniumsulfonyl)carbamate.
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Table 1

Conversion of 11 to acetate 14 and cyclized product 3.

entry conditions conversion to products 14 and 3

1 Mn(OAc)3 (4.0 equiv), AcOH, 80 °C 74 0

2 Mn(OAc)3 (4.0 equiv), AcOH, 150 °C 2 53

3 Mn(OAc)3 (4.0 equiv), AcOH, 80 °C; K2CO3, MeOH, H2O, 70 °C 0 56
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