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Abstract
MR parameter mapping (e.g., T1 mapping, T2 mapping, or  mapping) is a valuable tool for
tissue characterization. However, its practical utility has been limited due to long data acquisition
time. This paper addresses this problem with a new model-based parameter mapping method,
which utilizes an explicit signal model and imposes a sparsity constraint on the parameter values.
The proposed method enables direct estimation of the parameters of interest from highly
undersampled, noisy k-space data. An algorithm is presented to solve the underlying parameter
estimation problem. Its performance is analyzed using estimation-theoretic bounds. Some
representative results from T2 brain mapping are also presented to illustrate the performance of the
proposed method for accelerating parameter mapping.
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1. INTRODUCTION
MR parameter mapping (e.g., T1 mapping, T2 mapping, and  mapping) often involves
collecting a sequence of images {Im (x) } with variable parameter-weightings. The
parameter-weighted images Im(x) are related to the measured k-space data by

(1)

where nm(k) denotes complex white Gaussian noise. Conventional parameter mapping
methods sample k-space at the Nyquist rate in the acquisition of each dm(k) from which the
Im(x) are reconstructed, which are followed by parameter estimation from Im(x). One major
practical limitation of these parameter mapping methods is long data acquisition time. To
alleviate this problem, a number of methods have been proposed to enable parameter
mapping from undersampled data. One approach to parameter mapping with sparse
sampling is to reconstruct Im(x) from undersampled data using various constraints (e.g.,
sparsity constraint [1] or partial separability constraint (PS) [2]), which is followed by
parameter estimation from Im(x). Several successful examples of this approach are described
in [3–7]. Another approach is to directly estimate the parameter map from the undersampled
k-space data, bypassing the image reconstruction step completely [8–10]. This approach
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formulates the parameter mapping problem as a statistical parameter estimation problem,
which allows for easier performance characterization. Our proposed method uses this
approach but also allows sparsity constraint to be effectively used for improved parameter
estimation. The advantages of using the sparsity constraint in this context are analyzed
theoretically and demonstrated empirically in this paper.

The rest of paper is organized as follows: Section 2 describes the proposed method in detail,
including problem formulation, optimization algorithm, and estimation-theoretic
characterization; Section 3.1 illustrates the potential benefits of applying sparsity constraint
directly to the parameter domain with an example of T2 brain mapping; Section 4 contains
the conclusion of the paper.

2. PROPOSED METHOD
We assume that the parameter-weighted image sequence consists of M image frames, for
each of which, a finite number of measurements, denoted as dm ∈ ℂ Pm, are collected. For
convenience, we use a discrete image model, in which Im is an N × 1 vector. In this setting,
the imaging equation (1) can be written as

(2)

m = 1, … , M, where Fm ∈ ℂPm×N denotes the Fourier encoding matrix, and nm ∈ ℂPm

denotes the complex white Gaussian noise with variance σ2.

2.1. Problem Formulation
2.1.1. Signal model—In parameter mapping, the parameter-weighted images Im(x) can be
written as [8–10]

(3)

where ρ(x) represents the spin density distribution, θ(x) is the desired parameter map (e.g.,
T1-map, T2-map, or -map), and γm contains the user-specified parameters for a given data
acquisition sequence (e.g., echo time TE, repetition time TR, flip angle α, etc.). The exact
mathematical form of (3) is known for a chosen parameter mapping experiment. For
example, for a variable flip angle T1-mapping experiment, (3) can be written as

(4)

where T1(x) is the parameter map of interest, αm and TR are pre-selected data acquisition
parameters. We can, therefore, assume that ϕ is a known function in (3). After discretization,
it can be written as

(5)

where Φm ∈ ℂN × N is a diagonal matrix with [Φm]n,n = ϕ(θn, γm), θn denotes the parameter
value at the nth voxel, and ρ ∈ ℂN × 1 contains the spin density values. Note that in (5), Im
linearly depends on ρ, but nonlinearly depends on θ.

Substituting (5) into (2) yields the following observation model

(6)
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We can determine θ and ρ from the measured data, {dm}, directly based on (6) without
reconstructing {Im(x)}. Under the assumption that nm are white Gaussian noise, the
maximum likelihood (ML) estimate of ρ and θ is given by [8–10]

(7)

This is a standard nonlinear least squares problem, which can be solved using a number of
numerical algorithms [11], although it may have multiple local minima.

2.1.2. Sparsity constraint—It is well known that in parameter mapping, the values of θ
are tissue-dependent. Since the number of tissue types is relatively small compared to the
number of voxels, we can apply a sparsity constraint to θ with an appropriate sparsifying
transform. Incorporating the sparsity constraint into the ML estimation framework in (7)
yields:

(8)

where W is a chosen sparsifying transform (e.g., wavelet transform), ∥·∥0 represents the ℓ0
pseudo norm, and K is a given sparsity level. For simplicity, we assume that W is an
orthonormal transform in this paper. Under this assumption, we can solve the following
equivalent formulation:

(9)

where c = W θ contains the transform domain coefficients.

2.2. Optimization Algorithm
We present a practical and efficient algorithm to solve (9). Note that (9) is a nonlinear
optimization problem with a smooth, non-convex cost function and an explicit sparsity
constraint. A number of greedy pursuit algorithms have recently been developed to address
this type of problems (e.g., [12–14]). These algorithms are mostly generalizations of greedy
algorithms for compressive sensing with linear measurements. Here we adapt one efficient
algorithm, the Gradient Support Pursuit (GraSP) algorithm [14], to solve (9).

GraSP is an iterative algorithm that utilizes the gradient of the cost function to identify the
candidate support of the sparse coefficients, and then solves the nonlinear optimization
problem constrained to the identified support. Specifically, the procedure for solving (9) can
be summarized in Algorithm 1. We denote the cost function in (9) as Ψ(c, ρ), and the
solution at the nth iteration as
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Algorithm 1

The Gra SP Algorithm for Solving (9).

{ ĉ(n),ρ̂(n)}. At the (n+1)th iteration, we first compute the partial derivative of Ψ with respect
to c at { ĉ(n),ρ̂(n)}:

(10)

where  is a diagonal matrix with  Secondly, we identify a
support set Ƶ associated with the 2K largest entries of z, i.e., Ƶ = supp(z2K) (Intuitively,
minimization over Ƶ would lead to the most effective reduction in the cost function value).
Then we merge Ƶ with supp(ĉ(n)) to form a combined support set Ƭ , over which we
minimize Ψ. Finally, after obtaining the solution c̃, we only keep its largest K entries and set
other entries to zero, i.e., ĉ(n+1) = c̃K. The above procedure is repeated until the relative
change between two consecutive iterations is smaller than some pre-specified threshold.

The algorithm is computationally efficient: at each iteration it only involves gradient
evaluation and the solution of a support constrained problem. For the support-constrained
optimization problem, its computational complexity is much smaller than (7) due to the
reduced number of unknowns. It has been shown in [14] that under certain theoretical
conditions (the generalization of restricted isometry property in linear measurement model),
GraSP has guaranteed convergence. However, note that verifying these theoretical
conditions for a specific problem is typically NP-hard. In solving (9), we estimate the initial
solution {c(0), ρ(0)} from a low-resolution image sequence, which have consistently yielded
good empirical results.

2.3. Estimation-Theoretic Characterization
The formulation (8) or (9) performs parameter estimation with sparsity constraint. In this
subsection, we derive the sparsity-constrained Cramer-Rao lower bound (CRLB) [15,16] on
θ, which provides useful insights into the benefits of incorporating the sparsity constraint
into the parameter estimation problem. Furthermore, it can also be used as a benchmark to
evaluate our solution algorithm.

We first derive the sparsity-constrained CRLB on c, from which we can obtain a bound on θ.
Assume that c is K-sparse, i.e., c ∈Ω = {c ∈ ℝN supp(c) ≤ K} and K is given. Based on (6)
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and c = Wθ, the sparsity constrained CRLB for any locally unbiased estimator ĉ can be
expressed as

(11)

where

(12)

J ∈ ℝ2N × 2N is the Fisher information matrix (FIM), , EN is the N × N
identity matrix, ẼK is an N × K sub-matrix of EN whose columns are selected based on the
support of c. We can simplify the expression of Zs in (12). Let the partitioned FIM be

 where

 and G22 = Jρ ρ. Using the pseudo-inverse of the
partitioned Hermitian matrix [17], it can be shown that1

(13)

where 

With θ̂ = WH ĉ, the bound on θ̂ can be written as

(14)

Taking the diagonal entries of the covariance matrix, we can obtain the bound on the
variance of θ̂ at each voxel as

(15)

Under the assumption that θ̂sML is locally unbiased in (8), the righthand side of (14) also
provides a lower bound on Cov(θ̂sML). Note that this assumption can approximately hold
with a finite number of measurements and a reasonable signal-to-noise ratio.

Excluding the sparsity constraint, we can calculate the unconstrained CRLB as follows:

(16)

where  and  It has been shown in [15,
16] that WHZW ≥ WHZsW. Therefore, incorporating sparsity constraint can be theoretically
demonstrated to be beneficial. In the next section, we will calculate the above bounds in a
numerical brain phantom to illustrate the potential benefits of using the sparsity constraint in
(8).

1The formula here has already taken into account the case that the FIM is singular. This happens when the null signal intensity appear
in the background.
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3. RESULTS
In this section, we use a T2 mapping example with a numerical brain phantom [18] to
illustrate the estimation-theoretic bounds and empirical performance of the proposed
method. In this example, ϕ(θ, γm) = exp(−γmR2), where R2 is the relaxation rate (i.e., the
reciprocal of T2), and γm = TE,m is the echo time. The R2 map of the brain phantom is
illustrated in Fig. 1. We used a multi-echo spin echo acquisition with a total number of 16
echoes and 10 ms echo spacing. We define the acceleration factor (AF) as

 and the signal to noise ratio (SNR) as the ratio of the signal intensity (in
a region of the white matter) to the noise standard deviation.

3.1. Performance Bounds
We compute the estimation-theoretic bounds in (14) and (16) to analyze the potential
benefits of incorporating the sparsity constraint. Specifically, we take the diagonal entries of
the covariance matrix to extract the bounds on the variances for each voxel. We simulated a
data set that has 1) a mono-exponential signal model, and 2) a R2 map that is sparse in the
wavelet domain2. Data acquisition was performed at AF = 4 and SNR = 28dB. To reduce
the memory burden, we resized the original brain phantom to a smaller scale.

In addition to evaluating the performance bounds, we also performed a Monte Carlo study
(with 300 trials) to compute the empirical MSE of the ML estimator in (7) and the proposed
estimator in (9), respectively. The true sparsity level was used to set the parameter K for (9).
Furthermore, we considered an oracle ML estimator that assumes complete knowledge of
the exact sparse support of the R2 map. The MSE of the proposed estimator in (8) should be
bounded below by that of the oracle estimator.

The performance bound and empirical MSE3 are shown in Fig.2. As can be seen, the CRLB
varies with respect to different brain tissues. With the wavelet domain sparsity constraint,
the constrained CRLB is significantly lower than the CRLB and it becomes much less
tissue-dependent. The theoretical prediction matches well with the simulation results. The
proposed method yields much lower MSE than the ML estimator, demonstrating again the
benefits of introducing the sparsity constraint for improving parameter estimation. Note that
the performance of the proposed method is very close to that of the oracle estimator, which
matches well with the constrained CRLB.

3.2. Empirical performance
To demonstrate the empirical performance of the proposed method, we simulated the
phantom in a way that both signal model mismatch (multi-exponential model caused by
partial volume effect) and sparsity model mismatch (wavelet coefficients are approximately
sparse) exist. We acquired two sets of k-space measurements at AF = 2.67 and 4, both of
which had SNR = 24dB. Here, we manually chose the sparsity level K = 0.2N for the
proposed method. Note that selecting K in a more principled way is worth of further study.

We compared the proposed method with a dictionary learning-based compressed sensing
reconstruction [3] (referred to as CS), which only takes into account the temporal relaxation
process. The reconstructed R2 maps are shown in Fig.3, along with the normalized root-
mean-square-error (NRMSE) listed below the reconstructions. As can be seen, when AF = 4,
the CS reconstruction shows several artifacts (marked by arrows), although these artifacts

2We kept 20% of the largest wavelet coefficients (of the Haar wavelet transform) of the original R2 map.
3For the three estimators, we observed empirically that the bias is much smaller than the variance so that the MSE is dominated by the
variance.
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were significantly reduced at the lower AF. In contrast, the proposed method produced
higher-quality parameter maps at both high and low acceleration levels. The observations
are consistent with the values of NRMSE.

4. CONCLUSION
This paper presented a new method to directly reconstruct parameter maps from highly
undersampled, noisy k-space data, utilizing an explicit signal model while imposing a
sparsity constraint on the parameter values. A greedy pursuit algorithm was described to
solve the underlying optimization problem. The benefit of incorporating sparsity constraint
is analyzed theoretically using estimation-theoretic bounds and also illustrated empirically in
a T2 mapping example. The proposed method should prove useful for fast MR parameter
mapping with sparse sampling.
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Fig. 1.
The R2 map of the numerical brain phantom.
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Fig. 2.
Estimation-theoretic bounds and empirical MSE of the ML, oracle ML, and proposed
estimators. Note that the background, skull, and the scalp are are not region of interest for
our study, and thus they were set to zero.
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Fig. 3.
(a)–(b) Reconstructed R2 maps at AF = 4; (c)–(d) Reconstructed R2 maps at AF = 2.67.
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