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In 2000, investigators discovered Tribbles, a Drosophila protein that coordinates morphogenesis by inhibiting mitosis. Further
work has delineated Xenopus (Xtrb2), Nematode (Nipi-3), and mammalian homologs of Drosophila tribbles, which include TRB1,
TRB2, and TRB3.The sequences of tribbles homologs are highly conserved, and despite their protein kinase structure, to date they
have not been shown to have kinase activity. TRB family members play a role in the differentiation of macrophages, lymphocytes,
muscle cells, adipocytes, and osteoblasts. TRB isoforms also coordinate a number of critical cellular processes including glucose and
lipid metabolism, inflammation, cellular stress, survival, apoptosis, and tumorigenesis. TRB family members modulate multiple
complex signaling networks including mitogen activated protein kinase cascades, protein kinase B/AKT signaling, mammalian
target of rapamycin, and inflammatory pathways. The following review will discuss metazoan homologs of Drosophila tribbles,
their structure, expression patterns, and functions. In particular, we will focus on TRB3 function in the kidney in podocytes. This
review will also discuss the key signaling pathways with which tribbles proteins interact and provide a rationale for developing
novel therapeutics that exploit these interactions to provide better treatment options for both acute and chronic kidney disease.

1. Introduction

In the age of personalized and targeted medical therapies
[1], the treatment of both acute and chronic kidney dis-
ease (CKD) remains a formidable challenge. Our treat-
ment options in these diseases are limited and often rely
on basic immunosuppression with corticosteroids, steroid-
sparing medications, and supportive measures. Both acute
kidney injury [2–4] and chronic kidney disease [5–9] are
associated with the activation of multiple signaling pathways,
which can contribute to persistent organ injury. It is likely
that therapeutics that regulate these signaling cascades can be
developed to provide more effective and specific approaches
for treating diverse kidney diseases. Work over the last
decade has elucidated a number of novel signaling molecules
that dampen the activation of potentially harmful signaling
cascades. One such protein, tribbles may function at the

intersection of multiple stress-activated pathways including
the mammalian target of rapamycin (mTOR), endoplasmic
reticulum (ER) stress, andmacro-autophagy pathways. In the
following review, we will first discuss metazoan homologs of
Drosophila tribbles, their structure, expression patterns, and
functions. We will also review the key signaling pathways
with which tribbles proteins interact and provide a rationale
for developing novel therapeutics that exploit these interac-
tions to provide better treatment options for both acute and
chronic kidney disease.

2. TRB Family Members

Tribbles was first described in 2000 as a Drosophila (fruit
fly) protein that coordinates morphogenesis by inhibiting
mitosis [10–12]. The moniker was based on observations
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Figure 1: The basic protein structure of TRB isoforms. There is significant sequence divergence in the N-terminal domain among tribbles
homologs.The pseudokinase domain has what is believed to be a kinase-dead catalytic loop [26], and theC-terminal domain hasMEK1 (binds
MAPKK, [44]) and COP1 (binds ubiquitin ligases) binding motifs. The pseudokinase domain is important for protein-protein interactions
between transcription factors.

that tribbles mutants (knockdown of tribbles) enter mito-
sis early, and have over-proliferation of mesodermal cells,
and resemble the highly proliferating Tribbles organisms
encountered on the science fiction Star Trek television show
[10, 13]. Tribbles arrests cells in the G2 phase of the cell
cycle, by binding to and inducing proteasome-mediated
degradation of String and Twine, cyclin-dependent kinase
25 (CDC25) phosphatases [11]. In the ovary, Tribbles targets
migration of the slow border cells (Slbo), (CAAT enhancer
binding protein, C/EBP homolog), for rapid degradation via
the ubiquitin-proteasome pathway [14, 15]. These early fly
studies demonstrated that Tribbles was important in syn-
chronizing sequential cytoskeletal arrangements necessary
for coordinating cell division, fate, and morphogenesis [16,
17]. Follow up work in Drosophila has demonstrated that
tribbles plays a role in fly memory, central nervous system
(CNS) development, and bristle formation (bundles of actin
filaments) [18, 19]. Tribbles also reduces Notch signaling
during bristle patterning [17].

In Xenopus (African clawed frog), investigators discov-
ered a tribbles homolog Xtrb2, which plays a significant role
in development. They discovered two alternatively spliced
cDNA sequences, a short and long Xtrb2, which are dif-
ferentially expressed. Surprisingly, depletion of Xtrb2 delays
cell division and induces abnormalities in somite and eye
development. These studies suggested that Xtrb2 plays a
role in the progression of mitosis and proper formation of
the nervous system [20]. Interestingly, GFP-tagged Xtrb2
was transiently associated with mitotic spindles during cell
division [20]. In Caenorhabditis elegans (nematode), inves-
tigators identified nipi-3, a tribbles-like protein. Nipi-3 is
upregulated in response to fungal infection and may play a
role in the innate immune response [21]. Follow-up studies
have suggested that nipi-3 functions upstream of a glu-
cose regulated protein 78/binding immunoglobulin protein
(GRP78/BiP) homolog to induce expression of antimicrobial
peptides in a mitogen-activated protein kinase (MAPK)-
dependentmanner [22, 23].Thus, these early studies in prim-
itive metazoans demonstrated that tribbles both promotes
and blocks cell division, is involved in cytoskeletal dynamics,
interacts with the ubiquitin-proteasome degradation system,
and regulates innate immunity. The diversity of function is
quite remarkable.

In mammalian cells, prior to the discovery of trib-
bles, investigators identified proteins that were subsequently
shown to be homologs of Drosophila tribbles. In 1997,
Wilkin and colleagues described c5fw (clone 5 Françoise
Wilkin) and c8fw, proteins upregulated in dog thyroid cells
chronically treated with thyroid stimulating hormone [24,
25]. In neuronal cells, a homologous protein, novel kinase-
like gene induced during cell death (NIPK), increased in

neurons deprived of neuronal growth factor and treated with
the calcium ionophore, A23187 [26]. The same protein, p65
interacting inhibitor of nuclear factor kappa light chain-
enhancer of activated B cells (NF-𝜅B, SINK), was shown
to inhibit p65 phosphorylation by Protein Kinase A (PKA,
cAMP-dependent kinase) and sensitize cells to tumor necro-
sis factor (TNF)-induced apoptosis [27]. SKIP3, another
homolog, was discovered in human lung, colon, esophageal,
and breast tumors [28]. Further work has delineated three
mammalian homologs of Drosophila tribbles, which include
TRB1 (Trib1, c8fw, SKIP1), TRB2 (Trib2, c5fw, SKIP2), and
TRB3 (Trib3, NIPK, SINK, or SKIP3) [24, 26–29]. Notably,
human andmouse TRBs share significant amino acid homol-
ogy and the high evolutionarily conserved sequences support
their importance as critical regulators of cellular processes.
Among the human TRB proteins, TRB1 and TRB2 share 71%
homology, TRB1 and TRB3, 53%, and TRB2 and TRB3 share
54% homology [30].

3. Structure

Early work on TRBs demonstrated that their sequences were
similar to classic serine-threonine protein kinases [24, 26,
31]. TRBs have an N-terminal domain, central kinase-like
domain, and C-terminal protein-binding domain (Figure 1).
However, investigators discovered significant variations in
the amino acids in the ATP binding pocket and the kinase
catalytic core (review in [18, 30, 32]). Early studies suggested
that TRBs could bind to kinase-dependent proteins, but
they lacked kinase activity [24, 26]. Thus, TRBs are classi-
fied as pseudokinases, and belong to a family of proteins
which include Integrin-linked kinase (ILK), Janus tyrosine
kinases (JAKs), ErbB3/HER3, and Erythropoietin-producing
hepatocyte kinases (EphB6) [33]. The mechanisms of action
of TRB homologs remain incompletely understood, though
investigators have hypothesized that tribbles homologs func-
tion as docking kinases [34], scaffolds that balance complex
signaling pathways [35], or allosteric activators of protein
kinases [36]. Interestingly, the WNK (with no (K) Lys)
proteins lack conserved catalytic lysine residues required for
ATP binding [37]. Despite these variations in the catalytic
domains, WNK proteins are active kinases and play a signif-
icant role in kidney ion transport and blood pressure control
[38]. CASK and ErbB3/HER3 were also originally described
as pseudokinases, and later discovered to possess kinase
activity [39, 40]. It is likely that studies investigating TRBs’
three-dimensional structures will be necessary to determine
potential targets and demonstrate kinase activity [41].

There is significant sequence divergence in the N-
terminal domains of TRB family members, but the
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C-terminal domains have two conserved sequences: an
E3 ubiquitin ligase constitutive photomorphogenic protein
1 (COP1) site, which binds an E3 ubiquitin ligase, (also
known as RING finger and WD repeat domain protein
2, RFWD2) [42, 43], and a MEK1 (Mitogen activated
protein kinase kinase, MAPKK) binding site which mediates
interactions with multiple MAPKKs including mixed
lineage kinase 3 (MLK3) [44, 45]. TRB3 has a D-box
destruction motif, which is important for ubiquitin ligase
anaphase-promoting complex/cyclosome APC/CCDC20 and
APC/CCdh1-dependent proteolysis [46]. Additionally, Imajo
and Nishida have shown that TRB1 interacts with retinoic
acid receptor-𝛼 (RAR𝛼) and retinoid X receptor-𝛼 (RXR𝛼)
heterodimers through its pseudokinase domain [47].

4. Expression Patterns

TRB1 is expressed in the liver, kidney, heart, brain, skin, small
intestine, bone marrow (BM), peripheral blood leukocytes
(PBL), especially monocytes, macrophages and B cells, thy-
roid gland,white adipose tissue (WAT), andpancreas [48–51].
TRB2 is expressed in the thymus, heart, brain, kidney, lung,
skin, spleen, PBL (T and B lymphocytes), and WAT [48, 49].
TRB3 is most highly expressed in the liver and hematopoietic
compartments, such as BM, PBL (B cells), spleen, thymus,
prostate, heart, kidney, lung, skin, small intestine, WAT,
neurons, skeletal muscle, and stomach [26–28, 48, 52–54].
When detailed studies using sensitive means of detection
(i.e., real-time PCR) are used, the mRNA of TRB isoforms
is ubiquitously expressed. In developmental studies, investi-
gators have observed the expression of TRB2 in a variety of
organs during gestation, including the kidneys,mesonephros,
testes, heart, eyes, thymus, blood vessels, muscle, bones,
tongue, spinal cord, and ganglions [55, 56]. TRB1 was less
abundantly expressed in embryonic and adult kidneys than
TRB2, and TRB3 was undetectable in embryonic kidneys
[55]. Indeed, TRB isoform expression is highly regulated
and very context-dependent. TRBs function in both the
cytoplasm and nucleus, though investigators have recognized
that TRB1 and TRB3 preferentially localize to the nucleus,
whereas TRB2 is more often detected in the cytoplasm [32].

TRB3 expression is generally regulated at the transcrip-
tional level [27, 52, 57]. Interestingly, in mouse embryonic
stem cells, TRB1 belongs to a subset of mRNA species with
extremely short half lives (<1 hr), the authors suggested that
the mRNA’s half-life was related to its physiological role, that
is, the shorter the half-life, the more critical its role [58].
Studies also suggest that the TRB3 protein is short-lived and
protein levels are regulated by proteasome-dependent degra-
dation by the E3 ubiquitin ligase seven in absentia homolog
1 (SIAH1) [59], ubiquitin ligase anaphase-promoting
complex/cyclosome Cdh1 (APC/Ccdh1

) [46], and cysteine-
dependent aspartate-directed protease 3 (caspase 3) [60].

5. Functions of TRB Isoforms

As previously discussed, tribbles homologs have not yet been
shown to have specific kinase function. However, TRB family

Table 1: Transcription factors that interact with TRB isoforms.

Transcription factor Reference
ATF4, ATF5 [66–68]
C/EBP𝛽, C/EBP𝛼, CHOP [57, 63, 69–71]
NF-𝜅B [27, 50]
FOXO1, FOXO3a, FOXP3 [72–74]
PPAR𝛾, RAR𝛼, RXR𝛼 [47, 64, 75]

members play a role in the differentiation of macrophages
[51], lymphocytes [52], muscle cells [61], adipocytes [62–
64], and osteoblasts [65]. TRBs also coordinate a number
of critical cellular processes including glucose and lipid
metabolism, inflammation, cellular stress, survival, apopto-
sis, and tumorigenesis. Moreover, they regulate and interact
with a number of transcription factors. Table 1 describes these
transcription factors which include: activating transcription
factor 4 (ATF4) [66–68], ATF5, C/EBP𝛽 [63, 69], C/EBP𝛼
[70, 71], C/EBP homologous protein (CHOP) [57], NF-𝜅B
[27, 50] Forkhead box protein/forkhead in rhabdomyosar-
coma O1 (FOXO1) [72], FOXO3a [73], FOXP3 [74], PPAR𝛾
[75], RAR𝛼, and RXR𝛼 [47]. However, the function of TRB
isoforms in the kidney is not completely understood.

5.1. TRB1. The only investigation of TRB1 and its association
with renal disease demonstrated that it is a peripheral blood
biomarker of chronic immune-mediated rejection in kidney
transplant patients [49]. The investigators also observed
higher TRB1 expression in renal biopsies with rejection
and in a rodent model of chronic cardiac vasculopathy,
suggesting that it could be a useful biomarker for other
solid-organ transplants. Notably, in their study, TRB1 was
primarily expressed by antigen-presenting cells and activated
endothelial cells [49]. The transcription factor FOXP3 is a
specificmarker of regulatory T cells (Tregs) and its deficiency
is associated with autoimmune diseases and inflammation
[76]. FOXP3+ Tregs may facilitate graft tolerance and pro-
mote long-term organ transplant survival [77]. Recent work
suggests that TRB1 binds to Foxp3 in Tregs [74]; however, the
significance of this interaction has not yet been fully explored.
TRB1 expression increases in chronically inflamed human
atherosclerotic arteries and reduces vascular smooth muscle
cell proliferation and chemotaxis [35, 78]. TRB1 also regulates
lipoproteinmetabolism [79]. Hepatic-specific overexpression
of TRB1 reduces plasma triglycerides (TG) and cholesterol by
reducing very low-density lipoprotein (VLDL) production,
and TRB1 knockout mice have elevated TG and cholesterol
[79]. Not surprisingly, variations in TRB1 loci in humans
are associated with increased plasma lipoproteins and risk
of coronary artery disease [51, 80, 81]. In white adipose
tissue (WAT) TRB1 expression is upregulated during acute
(lipopolysaccharide, LPS) and chronic inflammation (db/db
mice), and TRB1 heterozygous knockout mice have impaired
cytokine gene expression in white adipose tissue (WAT)
and are protected from weight gain and adiposity when
fed a high fat diet. The investigators further demonstrated
that TRB1 interacts with the NF-𝜅B subunit RelA (p65)
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and affects RelA transcriptional activity via direct physical
interaction upon promoter recruitment. Thus, in adipocytes,
TRB1 is a nuclear transcriptional coactivator for NF-𝜅B,
and induces the expression of pro-inflammatory cytokines
[50]. These studies suggest that in the liver, TRB1 positively
impacts lipoprotein metabolism, but in WAT TRB1 increases
inflammatory cytokine expression, which could ultimately
contribute to organ dysfunction.

A number of studies have confirmed that macrophages
can be differentially activated into different functional sub-
types.M1 cells are classically activatedmacrophageswith pro-
inflammatory functions. In contrast, M2 macrophages are
alternatively activated, exert anti-inflammatory effects, and
are involved in wound healing, tissue repair, and cancer cell
growth [82–84]. Early work suggested that in macrophages,
TRB1 negatively regulates C/EBP𝛽 (nuclear factor of IL-
6, NF-IL6) expression and LPS-stimulated TRB1-deficient
macrophages have higher expression of prostaglandin E
synthase and Lipocalin 2/Neutrophil gelatinase-associated
lipocalin (Lcn2/Ngal) and lower IL-12 expression [85]. TRB1
may also play a role in macrophage migration [86]. Recent
follow up studies demonstrate that TRB1 plays a critical
role in differentiation of tissue-residentM2-likemacrophages
and eosinophils by regulating C/EBP𝛼 expression [51]. Dr.
Akira’s laboratory demonstrated that TRB1 knockout mice
have less adipose tissue and this is associated with augmented
lipolysis. Interestingly, this defect was rescued by supple-
mentation of M2 macrophages, demonstrating that TRB1
and M2 macrophages play a critical role in adipose tissue
maintenance and suppression of metabolic disorders. TRB1
may also inhibit host responses to entamoeba infections [87].
These studies all support the concept that TRB1 plays a central
role in the cross-talk between adipose tissue, the immune
system, and metabolic homeostasis [88, 89].

5.2. TRB2. In the fetal kidney, TRB2 is expressed in
the comma, S-shaped bodies [90], podocytes, and the
mesangium of the developing glomeruli, as well as in the
ureteric bud tips. However, TRB2 mutant mice are func-
tionally and structurally normal. The authors suggested that
TRB2 may play a minimal role during kidney and mouse
development [55]; however, the possibility of redundant
TRB function was not completely explored, nor were the
mice stressed. In murine hematopoietic stem cells, retroviral
expression of TRB2 induces acutemyelogenous leukemia and
degradation of C/EBP𝛼 [70, 71]. TRB2 maintains the onco-
genic properties of melanoma cells, and TRB2 knockdown
reduces cell proliferation, colony formation, and wound
healing [73]. In contrast, in certain cytokine-dependent
hematopoietic cell lines, TRB2 modulates apoptosis, but this
effect is absent in adherent cells, which is possibly related
to survival signals associated with adhesion [91]. TRB2
suppresses adipocyte differentiation by inhibiting AKT and
C/EBP𝛽 [69]. Downregulation of TRB2 potentiates LPS-
induced IL-8 production viaMAPKpathways [92], andTRB2
expression is highly upregulated in human atherosclerotic
plaques. In primary humanmonocyte-derived macrophages,
TRB2 reduces IL-10 mRNA expression, suggesting that TRB2

may play a role in plaque instability [93]. Thus, the functions
of TRB2 are quite diverse, but clearly TRB2 plays a role in
inflammation and cellular differentiation including tumori-
genesis.

5.3. TRB3. To date, TRB3 has been themost intensely studied
mammalian TRB isoform. TRB3 is expressed in the kidney
[28, 48], and our group has observed TRB3 expression in
podocytes and tubular cells [53]. In the kidney, our stud-
ies suggest that TRB3 inhibits inflammatory cytokines and
chemokines, as TRB3 inhibits podocyte expression of mono-
cyte chemokine protein 1 (MCP-1) [53]. Kuo and colleagues
have similar findings, and knockdown of TRB3 in sensitized
mast cells increases expression of IL-6, MCP-1, TNF𝛼, and
IL-4, suggesting again that TRB3 may negatively regulate the
expression of pro-inflammatory cytokines and chemokines
[94]. Early work by Marc Montminy’s group demonstrated
that TRB3 binds to and masks phosphorylation of Protein
Kinase B/AKT at Threonine (Thr)308 and Serine (Ser)473
residues, thereby reducing insulin-stimulated glucose output
in liver cells [95]. Later in this review, we will discuss the
impact of AKT phosphorylation on kidney pathophysiology.
In vivo, TRB3 expression increases in the livers of fasted
mice and functions to increase glucose output [95, 96],
though there has been controversy regarding the ability of
TRB3 to block phosphorylation of AKT [75, 97]. TRB3
also inhibits insulin-induced activation of S6 kinase 1 by
mammalian target of rapamycin [98], and stimulates liver
lipolysis by promoting the degradation of acetyl-Coenzyme
A carboxylase (ACC), the rate-limiting enzyme of fatty acid
synthesis [42]. TRB3 is upregulated in the skeletal muscle
of patients with Type II diabetes and TRB3 over-expression
in muscle cells blocks insulin-stimulated glucose transport
and impairs phosphorylation of AKT, extracellular-signal
regulated kinase (ERK), and insulin receptor substrate-1
(IRS1) [54]. TRB3 impacts glucose uptake and oxidation
oppositely in muscle and fat, and Liu and colleagues have
postulated that TRB3 may function as a sensor of nutrient
availability [99]. Interestingly, recentwork suggests that TRB3
inhibitionmay improve insulin sensitivity in vivo primarily in
a PPAR𝛾-dependentmanner, independent of changes inAKT
activity [75]. These studies demonstrate that TRB3 regulates
insulin sensitivity and lipolysis, and may be an excellent
therapeutic target for insulin resistance [42, 95, 98, 100–102].

6. TRB Knockout Mice

All three TRB isoforms have been successfully knocked-out
in mice and investigators have postulated that the viability
of each knockout, could be related to compensation by
other TRB family members. Though to date, upregulation of
other TRB isoforms in the single TRB2 and TRB3 knockout
mice has not been observed [48, 55]. The development of
double and triple knockout mice should reveal whether TRB
isoforms have redundant function [30, 55]. In 2007, Okamoto
et al. [48] developed a strain of TRB3 knockout mice, and
they did not observe alterations in fasting and postprandial
glucoses, lipids, insulin, leptin, hepatic insulin sensitivity or
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lipid metabolism. They proposed that constitutive loss of
TRB3 was not sufficient to alter the maintenance of glucose
and energy homeostasis, and future challenge studies were
necessary to evaluate TRB3 function [48]. Dr. Shizuo Akira’s
group has developed constitutive knockout of TRB1, TRB2,
and TRB3 mice [51] and each of these mice strains are viable.
Though there are reports of higher perinatal mortality in
TRB1 homozygous knockout mice on the C57BL/6 back-
ground [50], and the female TRB1 knockoutmice are infertile
[85]. As discussed, many studies have suggested that TRB3
can induce insulin-resistance; thus, it will be of interest in
the future to evaluate whether constitutive TRB3 knockout
alters insulin signaling and fasting glucoses inmurinemodels
of Type 1 and 2 diabetes. Örd and colleagues independently
developed another strain of TRB3 knockoutmice and discov-
ered that TRB3 regulatesmast cell survival and function [103].
TRB2 knockout mice also develop normally [55]; however,
investigations of these mice in acute and chronic disease
models have not yet been published.

Recently, two groups have shown that partial TRB3 gene
silencing (by RNAi technology) alleviates diabetic cardiomy-
opathy and diabetic atherosclerosis. In a model of diabetic
atherosclerosis, male apoE/low density lipoprotein (LDL)
receptor double knockout mice were fed a high fat diet and
then treated with low dose STZ. TRB3 knockdown reduced
the extent of atherosclerosis, increased plaque stability, and
reduced macrophage apoptosis and migration [104]. In a
model of diabetic cardiomyopathy, rats were treated with
a high fat diet and STZ. The rats with TRB3 knockdown
had improved insulin resistance and cardiac function [105].
In both studies, the efficiency of TRB3 knockout in the
aorta and heart was about 70%, and serum glucoses were
dramatically improved.Thus, in these studies, improvements
in diabetic cardiomyopathy and atherosclerosis could have
been related to improved metabolic control. In murine
heart tissue, TRB3 expression also increases in experimental
myocardial infarction. Interestingly, transgenic mice with
cardiac-specific overexpression of TRB3 had reduced car-
diac glucose oxidation rates and were sensitized to infarct
expansion and cardiac myocyte apoptosis in the infarct
border zone after myocardial infarction [106]. TRB3 appears
to have both beneficial and deleterious effects in multiple
tissues. Our studies in lymphocytes and the kidney suggest
that TRB3 inhibits inflammation, and we postulate that
augmented expression of TRB3 may improve outcomes in
acute and chronic kidney diseases. Further studies with
TRB3-specific over-expression in the kidney, especially in
podocytes and tubular cells will be of great interest to
identify whether manipulation of TRB3 expression is ther-
apeutically efficacious in both acute and chronic kidney
diseases.

7. TRB3 and Cellular Survival and Apoptosis

Early studies suggested that TRB3 induces apoptosis. In brain
tumor cells, TRB3 is upregulated by cannabinoids and acti-
vates autophagy and caspase-mediated apoptotic pathways
[107]. Interestingly, this effect was limited to transformed cells

and not observed in nontransformed neuronal cells [107].
TRB3 also mediates human monocyte-derived macrophage
apoptosis [108], and knockdown of TRB3 reduces endoplas-
mic reticulum (ER) stress-induced apoptosis [57]. TRB3 pro-
motes apoptosis in pancreatic 𝛽-cells [45] and chondrocytes
[109]. However, in podocytes [53] of the kidney, we have not
observed apoptosis when TRB3 is over-expressed. In fact,
TRB3 does not universally cause cell death. TRB3 is induced
five-fold by erythropoietin and is associatedwith erythroblast
survival [62]. In postmitotic neuronally differentiated PC12
cells, coexpression of TRB3 with ATF4 prevents ATF4-
induced apoptosis [110] and TRB3 can function as a pro-
survival factor in glucose-starved PC-3 prostate cancer cells
[111] and bone marrow-derived mast cells [103].Thus, TRB3’s
effects on survival or apoptosis are likely cell type and
context dependent. Indeed, Shimizu and colleagues postulate
that TRB3 serves as a switch between cellular survival and
apoptosis. Caspases play a central role in the execution-phase
of apoptosis, and they demonstrated that TRB3 prevents the
activation of caspase 3 by nuclear translocation of procaspase
3. However, in conditions of prolonged stress, TRB3 is
cleaved by caspase 3 and no longer inhibits caspase 3-induced
apoptosis [60]. Again, TRB3 function is very context and cell
type-dependent, suggesting that TRB family members may
sense, integrate, and respond to diverse signals to promote
homeostatic function.

8. Cell Cycle

During the development and differentiation of multicellular
organisms, precise control over the timing of cell cycle
progression is critical, as premature cellular divisions can
disrupt morphogenesis [112]. Therefore, cells have developed
a number of mechanisms to prevent premature entry into
the synthesis (S) and mitosis (M) phases of the cell cycle
[113]. The initiation of mitosis is controlled by a catalytic
subunit cyclin-dependent kinase 2 (CDC2), and a regulatory
subunit, Cyclin B. CDC25C dephosphorylates Cyclin B-
CDC2 and triggers entry into mitosis. Early work suggested
that Drosophila tribbles slows cell cycle progression by
inducing the degradation of a CDC25C homolog [10, 11]
and Tribbles overexpression in the Drosophila wing greatly
reduces the number of cells per wing [11]. In mammalian
cells, TRB3 deletion upregulates the expression levels of
CDC20 andCDC25A [46], andTRB3 regulates the stability of
CDC25A, a cell-cycle regulator that is degraded in response
to DNA damage [114, 115]. However, it is not clear whether
TRB3-induced degradation of CDC25A affects cell cycle
progression. In lymphocytes, we have shown that TRB3
blocks cells in the G2 phase of the cell cycle [52], and
transcriptional studies suggest that TRB3 inhibits activation
of the Cyclin B1 promoter [116]. In a similar manner, in
endothelial cells TRB3mediates homocysteine-induced inhi-
bition of cell cycle progression by up-regulating expression
of p27(kip1) [117]. Cell cycle progression requires multiple
levels of regulation and it is likely that TRB3 modulates the
expression of other key cell cycle modulators including p21
and p53.
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9. Inflammation

Early investigations by Kiss-Toth’s group demonstrated that
TRBs interact with MAPK kinases to regulate MAPK [35].
They demonstrated that all TRB isoforms regulate inflam-
matory signaling networks, by binding to c-Jun N-terminal
kinases (JNKs), and p38 to regulate IL-8 production [118].
As previously discussed, TRB1 is a novel binding partner of
FOXP3, a master regulator of regulatory T cells [74]; thus, it
is likely that TRB1 plays a significant role in immune cell func-
tion. Furthermore, TRB1 deficiency impairs cytokine gene
expression in white adipocytes [50], and TRB1 is involved in
cytokine and chemokine expression of mast cells [94] and
polarization of M2 macrophages [51]. Helicobacter pylori is
a bacterial pathogen that causes stomach inflammation and
in gastric epithelial cells TRB3 enhances Toll-like receptor
2 (TLR2)-mediated NF-𝜅B activation and chemokine induc-
tion in response to H. pylori LPS [119]. Our studies have also
demonstrated that TRB3 mediates anti-inflammatory effects
in lymphocytes, podocytes, and renal tubular cells [52, 53,
116]. These studies all support the concept that TRBs play a
significant role in immunity. Similar to their effects on insulin
sensitivity and metabolism, their seemingly contradictory
effects in diverse cell types likely function to control the extent
of the inflammatory response and may provide a means of
balancing cross-talk between solid organs and the immune
system.

10. Regulation of Expression of TRB3

Multiple cellular stressors including nutrient and essential
amino acid deprivation, activation of phosphatidylinositol-3-
kinase (PI3K), ER stress, thapsigargin, free fatty acids, fasting,
cadmium, TNF, phorbol esters, arsenite, nerve growth factor
depletion, hypoxia, insulin, oxidized LDL, ethanol, and IL-
3 augment TRB3 expression [26–28, 53, 57, 66, 67, 72,
95, 103, 108, 111, 120–123]. In contrast, phosphodiesterase
inhibition, dexamethasone, cyclic adenosinemonophosphate
(cAMP), IL-3 deprivation, and activation of FOXO-1 reduce
TRB3 expression [63, 72, 103]. Interestingly, in prostate
cancer cells with constitutively active PI3K signaling, TRB3
expression is down-regulated in response to rapamycin (an
mTOR complex 1, mTORC1 inhibitor) [111]. In neuronal cells,
chronic lithium treatment downregulates TRB3 expression
suggesting that TRB3 could play a role in bipolar affective
disorder [124]. Although, TRB3 has not yet been shown to
directly regulate p53 activity, in human colon cancer cells,
genotoxic stress (chemotherapeutic agents) down-regulates
TRB3 in a p53-dependent and p53-independent manner
[125]. Acetylation of TRB3 may also regulate its activity. Yao
and colleagues demonstrated that TRB3 was upregulated and
hypoacetylated in a rat model of prenatal alcohol exposure
[126]. Thus, the regulation of TRB3 and its other family
members is extremely complex, again related to its function
as a regulator and integrator of many cellular signaling
pathways.

Investigators have characterized 3 tandem 33 base pair
(bp) repeats in the human TRB3 promoter [57, 67]. Each of
these repeats have aC/EBP-ATF composite site that resembles

sequences in the Nutrient Sensing Response Element (NSRE-
1) in the asparagine synthetase promoter and the AminoAcid
Response Element (AARE) in the CHOP promoter [57, 67].
Cellular stress upregulates CHOP and ATF4, which in turn
activate the 33 bp repeats in the human TRB3 promoter
[57, 67]. In our studies in lymphocytes and podocytes, both
C/EBP𝛽 and CHOP bind to the proximal TRB3 promoter
and drive TRB3 transcription [52, 53]. Other investigations
suggest that PPAR𝛼 [96] and FOXO1 also regulate TRB3
promoter activity [72].

11. Mechanism of Action

Before we discuss the effects of TRB3 on AKT phospho-
rylation and function, it is important to provide a frame-
work for understanding AKT, as it plays a central role in
transducing signals that affect cell survival, proliferation,
inflammation, and metabolism. Moreover, AKT regulates
hundreds of downstream targets (review in [127]), many
with opposing functions. AKT is a serine-threonine kinase
and full activation of AKT by growth factors, including
insulin requires phosphorylation of Ser473 residues by the
mTOR complex 2 (mTORC2) and phosphorylation of Thr308
residues by 3-phosphoinositide-dependent protein kinase-1
(PDK1) [128]. Phosphorylation ofAKT atThr450 residuesmay
also impact kinase activity and stability [129].

AKT is activated in the cortices of diabetic mice bymulti-
ple stimulators including Ang II and reactive oxygen species
(ROS) [130–134], and stimulates the formation of extracellu-
lar matrix, including fibronectin [135]. Early work suggested
that lower AKT phosphorylation reduces cellular survival
[136, 137]; however, more recent work suggests that differ-
ential phosphorylation of AKT at Thr308 and Ser473 residues
likely exerts diverse effects. Indeed, rat glomeruli injured
with protamine sulfate have higher albumin permeability
associated with increased phosphorylation of AKTSer473 and
blockade of mTORC2 reduces phosphorylation of AKTSer473

and albumin release [138]. In parallel, high glucose conditions
and advanced glycation endproducts increase phosphoryla-
tion of AKTSer473 in rat podocytes and this is associated with
cleaved caspase 3 and apoptosis [139]. Inflammatory media-
tors such as TNF𝛼 and IL-6 increase phosphorylation of AKT
and reduce nephrin promoter activity in reporter murine
podocytes [140]. Thus, the relevance of differential phos-
phorylation of AKT on Thr308, Ser473, and Thr450 residues
is complex and not completely understood. Recent studies
suggest that downstream substrates may require different
levels of AKT activity, and differential AKT phosphorylation
patterns may provide a mechanism for integrating diverse
cellular stimuli. Moreover, differential phosphorylation of
AKT at Thr308 and Ser473 residues may confer substrate
specificity and facilitate splitting of upstream signals into
discrete outputs [141, 142].

At this time, despite the lack of evidence of kinase
activity, investigators have elucidated a number of functions
of TRB family members, most of which involve direct pro-
tein/protein interactions and degradation of targetmolecules.
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As previously discussed, TRB3 binds to and masks phospho-
rylation of AKT at Thr308 and Ser473 residues. This work has
been confirmed by a number of groups [61, 95, 102, 123, 143,
144] and disputed by others [75, 97]. Indeed in lymphocytes,
we have not observed inhibition of phosphorylation of AKT
at Thr308 residues associated with over-expression of TRB3
[116]. Our recent work in podocytes, tubular cells, and
a murine model of Type 1 diabetes suggests that TRB3
selectively inhibits phosphorylation of AKT at Ser473 residues
[145], and other groups have similar observations [146].These
findings suggest that TRB3 may fine-tune AKT activation
[143] to modulate multiple physiological inputs. To add a
layer of complexity, FOXO1 an AKT-target protein, also
plays an important role in hepatic glucose output [147].
Unphosphorylated FOXO1 localizes in the nucleus and drives
the transcription of genes important in gluconeogenesis and
glycogenolysis. Through AKT, insulin induces the phos-
phorylation of FOXO1, promoting its exclusion from the
nucleus, ubiquitination, and degradation [148–150]. Accili’s
group demonstrated that FoxO1 activates AKT and inhibits
TRB3 expression in hepatocytes [72].Thus, there is significant
cross-regulation among insulin, AKT, FOXO1, and TRB3.
We hypothesize that the complex regulation of TRB3 and its
interaction with multiple metabolic signaling cascades may
provide a mechanism of harmonizing nutrient availability
with complex physiologic programs such as growth, prolif-
eration, and differentiation [143].

TRBs do not have a DNA-binding domain, but they
interact with transcription factors, especially members of the
basic region leucine zipper (bZIP) family and can inhibit their
action by direct binding or by inducing proteolysis. TRB1
and TRB2 induce degradation of C/EBP𝛼, but TRB3 doesn’t
[43, 70, 71, 151]. TRB2 and TRB3 bind to C/EBP𝛽 [63, 69]
and TRB3 binds CHOP [57] and ATF4 and regulates ATF4’s
activity [28, 66, 67]. TRB family members also bind factors
that regulate NF-𝜅B and AP-1 [27, 35, 152], and TRB isoforms
bind nuclear receptors including PPAR𝛾, RAR𝛼, and RXR𝛼
[47, 64].

Besides binding to and/or mediating the proteolysis of
key transcription factors TRB3 also degrades ACC1 [42],
Smad ubiquitin regulatory factors (SMURFs) [65, 153], and
caspase-3 [60]. TRB1 and 3 bind toMAPKKand regulate their
activity [35]. In vascular smooth muscle cells, TRB1 binds to
MKK4 and inhibits JNK activity [35, 78]. TRB3 also interacts
with the mixed lineage kinase 3 (MLK3) and compromises
mitochondrial integrity and suppresses cellular survival [45].
TRB3 binds to the Bone Morphogenic Proteins (BMP) Type
II (BMPRII) receptor and promotes BMP4 signaling [65].
The general theme of these studies is that TRB family
members alter transcriptional and posttranscriptional events
by interacting with transcriptional and signaling regulators
and either block their phosphorylation or target the proteins
for degradation.

12. TRB3 and Cancer

Earlywork demonstrated that TRB3 (SKIP3)was expressed in
human lung, colon, esophageal, and breast tumors [28, 154].

The Notch signaling network is an evolutionarily conserved
intercellular signaling pathway that plays a role in kidney
development and disease [155]. Recent investigations have
demonstrated that TRB3 is a master regulator of Notch
through the MAPK-ERK and Transforming Growth Factor
𝛽 (TGF𝛽) pathways, and is required for the growth of basal-
like breast cancer [156, 157]. Indeed, TRB3 may serve as
a prognostic marker in breast cancer [158–161]. In HepG2
cells, TRB3 plays a role in tumor progression and metastases,
by augmenting TGF𝛽-SMAD3-transcriptional activity and
inducing epithelial-mesenchymal transition (EMT) [65, 153].
TRB3 expression is upregulated in nonsmall cell lung cancer
(NSCLC) and expression correlates with poor survival in
patients [157]. In hepatocellular carcinoma cells and gliomas,
cannabinoids increase TRB3 expression [107, 162]. In human
hepatoma cells, a novel NF-𝜅B inhibitor, dehydroxymethyl-
epoxyquinomicin (DHMEQ) promotes TRB3 mRNA induc-
tion and inhibits cell growth and apoptosis [163]. Investiga-
tors have postulated that TRB3 may facilitate the growth of
cells in nutrient-limiting conditions [28, 111]. TRB3 may also
play a role in cell cycle control, cell survival, DNA repair, and
genome stability by interacting with Ct interacting protein
(CtIP) [154] and polydeoxynucleotide cytidine deaminases
APOBEC3A and APOBEC3C. These interactions inhibit
nuclear DNA editing, suggesting that TRB3 may be an
important guardian of genome integrity [164].

TRB1 is overexpressed in acute myelogenous leukemia
(AML) [165], can induce AML in mice [71, 166], and a TRB1
somatic mutation was observed in a human case of Down
syndrome-related acute megakaryocytic leukemia [167]. In
contrast, TRB2 expression is upregulated in only a subset
of patients with AML [70, 168] and those with T acute
lymphoblastic leukemia [169]. TRB2 may also be involved
in the disease progression of high-risk chronic lymphocytic
leukemia (CLL) patients [170]. The oncogenic potential of
TRB isoforms in acute leukemias has been recently reviewed
and we direct readers to this thoughtful review [171].

TRB1 is over expressed in follicular thyroid carcinoma
[172], ovarian cancers [173], and in JAK2V617F mutation-
negative patients with essential thrombocytosis [174]. TRB2
expression has also been associated with lung cancers [151],
and in melanomas, TRB2 facilitates growth and survival by
down-regulating FOXO3a activity [73]. Recent work suggests
that TRB2’s oncogenic potential is related to its ability
to integrate complex signaling pathways including Wnt/𝛽-
catenin, Hippo/Yes-associated protein (YAP), and C/EBP𝛼
pathways in liver cancer cells [175]. Thus, tribbles family
members play a significant role in cancer development and
progression (review in [30]).

13. Clinical Correlations

In humans, a gain-of-function TRB3 Glu84Arg (arginine
replaces glutamine at position 84) polymorphism is asso-
ciated with insulin resistance, carotid atherosclerosis, and
cardiovascular risk [176–178]. This polymorphism in exon 2
of TRB3 is associated with reduced nitric oxide production in
human endothelial cells [179], and plasma levels of C-peptide



8 Scientifica

in humans. TRB3 reduces insulin secretion from pancreatic
beta cells and mice over-expressing TRB3 Glu84Arg in
beta cells have lower beta cell mass, associated with less
proliferation and enhanced apoptosis [68]. The impact of
this polymorphism in humans has been recently reviewed
[180]. Oberkofler and colleagues evaluated TRB3 levels in
the visceral abdominal fat and the liver in obese humans
and observed aberrant hepatic TRB3 transcript levels. Addi-
tionally, there was a correlation between mRNA levels of
TRB3 and plasma insulin [181]. TRB3 is also upregulated
in the skeletal muscle of patients with Type II diabetes
[54]. Fibrates are ligands of PPAR𝛼 and commonly used to
treat hypertriglyceridemia, and we have previously shown in
lymphocytes that fibrates potently augment TRB3 expression,
independent of PPAR𝛼 expression [52]. In both animal and
human studies, PPAR𝛼 ligands are therapeutically efficacious
in diabetic nephropathy [182–184]. Fibrates reduce C-reactive
protein (CRP) and IL-6 in patientswithRheumatoidArthritis
[185], and we speculate that the beneficial effects of PPAR𝛼
ligands may be related to augmented lymphocyte TRB3
expression [52, 96].

We have already discussed that variations in TRB1 loci
in humans are associated with increased plasma lipoproteins
and risk of coronary artery disease [51, 80, 81]. There are
also associations of TRB1 gene variants with liver enzyme
expression [81], and emerging evidence suggest an associ-
ation between sleep duration and lipid metabolism. Inter-
estingly, investigators observed that TRB1 gene variants
were independently associated with sleep length and lipid
metabolism, and there was a significant increase in TRB1
mRNA expression in the peripheral blood mononuclear cells
of people restricted to 4 hrs of sleep compared to those
with normal sleep duration [186]. Epidemiological studies
demonstrate a strong relationship among shortened sleep
duration, obesity, and abnormal glucose metabolism [187].
Further work should elucidate whether alterations in TRB
isoform expression provide a mechanistic link between sleep
duration and metabolic homeostasis.

Autoimmune uveitis is an inflammatory disorder of the
eye, and in 2005, Zhang and colleagues discovered in humans
that TRB2 is a uveitis-associated autoantigen [188]. Although
follow-up studies in uveitis have not been published, TRB2
auto-antibodies have been detected in patients with nar-
colepsy, a disorder characterized by abnormal daytime sleepi-
ness [189]. Hypocretin (orexin) neurons regulate sleep and
wakefulness, and disturbances of the hypocretin system have
been directly linked to narcolepsy. Investigators discovered
TRB2 auto-antibodies target and lead to the disappearance of
hypocretin neurons [190, 191]. Indeed anti-TRB2 antibodies
were injected intra-cerebro-ventricularly into mice and they
induced narcolepsy-like attacks [192]. Additionally, TRB2 is
expressed in tissues of patients with inflammatory bowel
disease and may regulate Toll-like receptor 5 signaling [193].
Thus, all TRB family members have been associated with and
may modulate diverse human diseases.

The TRB family interacts with and regulates multiple
cellular signaling cascades, including the MAPK, insulin
signaling-AKT, Notch, cell cycle, and transformation path-
ways. Our studies suggest that TRB3 may function at the

nexus of the ER stress, mTOR, and autophagy pathways. We
will first briefly summarize the functions of these pathways
and then their interactions with TRB3.

14. Endoplasmic Reticulum Stress

The endoplasmic reticulum (ER) folds, modifies, and
degrades secretory and transmembrane proteins. Pathophys-
iological stress conditions, including nutrient deprivation,
nutrient excess, altered protein glycosylation, and oxidative
stress interfere with normal protein folding. Accumulation of
misfolded and unfolded proteins induces their aggregation
and subsequent cellular toxicity. Thus, to alleviate the
accumulation of ER proteins, a complex intracellular
signaling pathway known as the Unfolded Protein Response
(UPR) is activated [194–196]. The UPR represses protein
synthesis and increases ER chaperone content to restore
normal ER function, however when these pathways are
overwhelmed by sustained ER stress, the UPR initiates
pro-apoptotic pathways [197–199] and autophagy [7].

In mammalian cells, there are three major arms of the
UPR: (1) inositol requiring protein-1𝛼/X box binding protein-
1 (IRE1𝛼/XBP-1), (2) protein kinase RNA (PKR)-like ER
kinase (PERK), and the (3) activating transcription factor-
6 (ATF6) pathways. The PERK pathway rapidly attenuates
protein translation, whereas the ATF6 and the IRE1𝛼/XBP-
1 cascades transcriptionally upregulate ER chaperone genes
that promote proper folding and degradation of proteins,
allowing the foldingmachinery of the ER to catch up with the
backlog of unfolded proteins. A number of groups, including
ours have documented activation of the ER stress response
in the diabetic kidney [53, 200] and ER stress is activated
in acute kidney injury and other chronic kidney diseases
[201–205]. Moreover, over-expression of ER stress-associated
molecules, including chemical chaperones that improve ER
folding can reduce ER stress and improve outcomes in kidney
disease [205–208].

15. Mammalian Target of Rapamycin (mTOR)

Another key signaling system in the kidney is mTOR, which
is a conserved serine/threonine kinase modulated by growth
factors and cellular energy status [9, 209–212]. Mammalian
TOR forms two distinct molecular complexes known as
mTOR complex 1 (mTORC1) and mTORC2. MTORC1 reg-
ulates growth, autophagy, survival and metabolism, whereas
the role of mTORC2 in cellular biology is incompletely
understood. In podocytes, knockout of mTOR disrupts both
mTORC1 and mTORC2 function and alters autophagy flux
[213]. Both knockdown and overexpression of mTORC1
in podocytes cause proteinuria in animal models, and
human diabetic kidney disease has been associated with
enhanced mTORC1 function [214]. Besides regulating the
phosphorylation of AKT at Ser473 and Thr450, mTORC2
also phosphorylates serum/glucocorticoid-regulated kinase-
1 (SGK-1) and protein kinase C (PKC) to regulate actin
cytoskeletal dynamics, body growth, motility, and survival
[215, 216]. Through SGK-1, mTORC2 increases fibronectin
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Figure 2: TRB3 at the crossroads of ER stress and mTORC function. Acute and chronic kidney disease are associated with activation of
the Endoplasmic Reticulum Stress pathway. During ER stress Protein kinase RNA (PKR)-like ER kinase (PERK) phosphorylates eukaryotic
translation initiation factor 𝛼 (eIF2𝛼) and inhibits protein translation. Additionally, there is selective translation of activating transcription
factor-4 (ATF4), which induces expression of C/EBP homologous protein (CHOP) and drives TRB3 expression. Kidney disease is also
associated with activation of mTORC and inhibition of autophagy flux. We propose that in the kidney, TRB3 binds to Rictor and mTORC2
and inhibits phosphorylation of pAKTSer473. This in turn reduces inflammatory gene expression (IL-6 and MCP-1) and potentially modifies
activation of mTORC1 and autophagy.

expression in high glucose conditions and mTORC2 may
regulate nephromegaly, matrix expansion, and excessive
sodium reabsorption (potentially involving the epithelial
sodium channel ENaC) in diabetic nephropathy [217, 218]. In
stress-associated conditions, podocyte-specific knockout of
rapamycin-insensitive companion of mTOR (Rictor, a com-
ponent of mTORC2) causes proteinuria [214]. In podocytes,
rapamycin reduces Rictor expression and phosphorylation
of AKT at Ser473 and this is associated with a reduction in
expression of nephrin [219]. Recent work suggests that inhi-
bition of mTORC2 function inhibits inflammation in rodent
inflammatory models [220] and reduces IL-6 expression in
stem cells [221]. Indeed, many studies have emphasized the
importance of tight regulation mTORC pathways in renal
pathophysiology.

16. Autophagy

Macroautophagy (referred to as autophagy) preserves home-
ostasis by degrading long-lived proteins and dysfunctional
organelles [222, 223]. Autophagy has both cytoprotective
or cytocidal effects, and dysregulation of autophagy con-
tributes to podocyte dysfunction in diabetic nephropa-
thy [224]. MTORC1 (which is activated by AKT) inhibits
autophagy, and dysregulation of mTORC1 activity disrupts
autophagy flux [213]. Autophagy begins with the formation
of double-membraned, autophagosomes, which sequester

intracellular components. This process is activated by class
3 phosphoinositide-3-kinase and beclin (autophagy-related
gene/Atg 6). Cytosolic LC3-I (microtubule-associated protein
light chain 3) is conjugated to phosphatidylethanolamine to
form LC3-II and recruited to the autophagosomal mem-
brane. Next, autophagosomes fuse with lysosomes to form
autophagolysosomes and the intracellular contents, including
membrane-bound LC3-II are degraded. Interestingly, fibrates
which augment TRB3 expression [52], modify expression of
LC3-II [225].

17. TRB3 at the Crossroads of ER Stress,
mTORC Function, and Autophagy

Recent reviews have focused on interactions between ER
stress, autophagy, and mTORC, as dysregulation of these
pathways can contribute to acute and chronic kidney disease
[7, 226]. We have discussed that in renal tubular cells and
podocytes that TRB3 preferentially blocks the phosphory-
lation of AKT at Ser473, suggesting that TRB3 may inhibit
mTORC2 function. Indeed, our recent unpublished studies
suggest that TRB3 may bind to Rictor, to modulate mTORC2
activity. Thus, TRB3 likely functions at the intersection of
these complex signaling networks (Figure 2). Autophagy
can originate from the ER membrane and be triggered by
ER stress [227, 228]. Studies suggest that the IRE1𝛼/XBP
arm of ER stress activates autophagy, by phosphorylating
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B-cell lymphoma 2 (Bcl-2) and preventing its interaction
with Beclin-1 [229–231]. PERK, another ER stress-associated
sensor, mediates conversion of LC3-I (free form) to LC3-
II (membrane-bound form), a key step in the induction
of autophagy [232]. Additionally, in glioma cells, ER stress
induces TRB3, which modifies induction of autophagy [107].
Investigators have speculated that autophagy may supple-
ment ER-associated degradation to reduce the accumulation
of misfolded proteins and improve cellular viability [7].
Thus, TRB3 an ER stress-associated protein, by its effects
on AKT can modulate mTORC, which in turn activates
autophagy. All of these signaling cascades are dysregulated in
the injured kidney, and TRB3 is situated at the nexus of these
complex pathways. We postulate that manipulation of TRB3
expression is likely to exert significant effects in both acute
and chronic kidney disease.

18. Conclusions

It is clear that TRB family members exert diverse and
somewhat contradictory roles in development, cellular dif-
ferentiation, survival, metabolic homeostasis, inflammation,
and tumorigenesis [233]. TRB isoform knockout mice are
viable without obvious developmental or pathophysiological
abnormalities; however, when the mice are stressed, the
relevance of TRB function becomes more obvious. The
diversity of function is quite remarkable and suggests that
TRB isoforms may not function in a simple manner by
either turning on or off signaling cascades. It is tempting
to speculate that TRB family members dampen or augment
physiologic signaling cascades that impact cross-talk among
diverse tissues including the immune system [234]. This
review has emphasized that tribbles homologs interact with
pathways that have hundreds of downstream targets; thus,
it is likely that they serve as sensors and integrate and fine-
tune molecular responses to diverse stimuli. This sensing
and integration function may be critical for an organism
to survive in an environment of rapidly changing nutrients
and inflammatory signals. Once we attain a more precise
understanding of TRB function in the kidney and other organ
systems, it may be possible to develop novel therapeutics
that function similar to TRB homologs that can specifically
target and modulate signaling cascades, thereby delicately
regulating diverse pathophysiological processes.
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regulated by IL-3 and affects bone marrow-derived mast cell
survival and function,” Cellular Immunology, vol. 280, no. 1, pp.
68–75, 2012.

[104] Z.-H. Wang, Y.-Y. Shang, S. Zhang et al., “Silence of TRIB3
suppresses atherosclerosis and stabilizes plaques in diabetic
ApoE -/- LDL receptor -/-mice,”Diabetes, vol. 61, no. 2, pp. 463–
473, 2012.

[105] Y. Ti, G.-L. Xie, Z.-H. Wang et al., “TRB3 gene silencing
alleviates diabetic cardiomyopathy in a type 2 diabetic rat
model,” Diabetes, vol. 60, no. 11, pp. 2963–2974, 2011.

[106] J. Avery, S. Etzion, B. J. Debosch et al., “TRB3 function in cardiac
endoplasmic reticulum stress,” Circulation Research, vol. 106,
no. 9, pp. 1516–1523, 2010.
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