
IMAGING GENETICS VIA SPARSE CANONICAL CORRELATION
ANALYSIS

Eric C. Chi⋆, Genevera I. Allen*, Hua Zhou‡, Omid Kohannim†, Kenneth Lange⋆, and Paul
M. Thompson†

⋆Department of Human Genetics, UCLA School of Medicine, Los Angeles, CA, USA
*Department of Statistics, Rice University, Houston, TX, USA
‡ Department of Statistics, North Carolina State University, Raleigh, NC, USA
†Imaging Genetics Center, Lab. of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA,
USA

Abstract
The collection of brain images from populations of subjects who have been genotyped with
genome-wide scans makes it feasible to search for genetic effects on the brain. Even so,
multivariate methods are sorely needed that can search both images and the genome for
relationships, making use of the correlation structure of both datasets. Here we investigate the use
of sparse canonical correlation analysis (CCA) to home in on sets of genetic variants that explain
variance in a set of images. We extend recent work on penalized matrix decomposition to account
for the correlations in both datasets. Such methods show promise in imaging genetics as they
exploit the natural covariance in the datasets. They also avoid an astronomically heavy statistical
correction for searching the whole genome and the entire image for promising associations.

Index Terms
Diffusion tensor imaging; Genome wide association; Canonical correlation analysis; sparsity;
lasso

1. INTRODUCTION
The last few years have seen an unprecedented surge in data acquisition in fields ranging
from signal processing to biology and medicine. This ability to acquire massive amounts of
data has opened the door to qualitatively different approaches to science as well, often using
high-dimensional datasets from more than one modality. One example is the convergence of
biomedical imaging and genomics in the nascent field of imaging genetics [1]. The basic
idea is to identify genetic variants that can best capture and explain phenotypic variations in
brain function and structure. To be more concrete, two sets of data are observed, p
genotypes and q neuroimaging phenotypes, on n samples. Both p and q may be small or
large and there has been prior testing for effects in various scenarios. In [2], Joyner et al.
studied a dataset with small q, four brain size measures, and small p, 11 single nucleotide
polymorphisms (SNPs). In [3], Potkin et al. considered small q, the mean BOLD signal from
fMRI, and large p, 317,503 SNPs. Filippini et al. explored the combination of large q,
29,812 voxels, and small p, a single SNP [4]. Finally, Stein et al. in [5] took on the most
challenging scenario of large q, 31,622 voxels, and large p, 448,293 SNPs. Thus, on the
same set of imaged subjects, high-dimensional genetic data is also collected, e.g. hundreds
of thousands of SNP genotypes. In some cases, well defined regions of interest (ROIs) are
already known, but in other cases they are not. Similarly, in some cases, candidate genes
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may or may not be available. In this scenario, one wishes to simultaneously identify ROIs
and a parsimonious set of genetic loci that are associated with each other.

The last case in particular presents not only intriguing possibilities but also computational
and statistical challenges. Indeed, the simplest strategy is to perform pq univariate
regressions between all possible voxels and SNPs [5] and adjust for multiple comparisons.
While such an approach is straightforward, it also completely ignores the correlation
structure among the SNPs and voxels. It also lacks power, as an astronomical correction
must be made for the number of tests performed. Given the correlation structure a
multivariate approach is called for. To address these shortcomings, in this paper we present
a sparse canonical correlation analysis (CCA) method to identify joint signals in a pair of
high-dimensional data sets, namely diffusion tensor images (DTI) and SNP measurements.
The goal in classical CCA is to determine a coordinate system that maximizes the cross-
correlation between two data sets [6]. In other words we seek the linear transformation of
two data sets such that the linear forms are maximally correlated. We anticipate, however,
that relatively few DTI voxels will contain signals that are correlated with again relatively
few SNPs. Despite the fact that both data live in very high dimensional spaces, DTI voxels
number in the tens of thousands and SNPs number in the hundreds of thousands, the relevant
signal often resides in a low dimensional manifold. Indeed penalized methods such as the
LASSO [7] have been very successful in recovering meaningful parsimonious models from
high dimensional data. Building on this idea, Witten et al. introduced a penalized matrix
decomposition (PMD) on the sample cross-covariance matrix in [8] aimed at introducing
sparsity into the linear combinations. In related work, Vounou et al. introduced sparse
Reduced Rank Regression (sRRR) [9, 10] as another multivariate alternative. Indeed, the
PMD is a special case of the sRRR when relevant covariance matrices are taken to be
identity matrices. Nonetheless, despite having a more general framework, the algorithms
presented in [9, 10] make the same simplifying assumptions made in PMD. We also note
that under the diagonal covariance assumption such decompositions are equivalent to a
partial least squares regression [11]. In this work we extend the PMD model to account for
correlation structure in both data sets.

2. METHODS
2.1. Simulation Experiment

Suppose we have 100 subjects for whom 1,000 SNPs have been typed, X ∈ ℝ100×1,000, and
on which a 100 × 100 image has been taken, ∈ ℝ100×100×100 (here we introduce the ideas
for a set of 2D images but they hold in any dimension without loss of generality). Let Y ∈
ℝ100×10,000 denote the matricization of along its first mode. The data sets are generated as
follows. Let β ∈ ℝ1,000 be sparse with

The images are also similarly sparse.

where R denotes the ROI. The ROI for this problem is shown in Figure 1. Finally, we do not
observe but rather a noisy version of it 
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where εijk are i.i.d. standard normal and σ = 10. An example of the observed image data for
a subject is shown in Figure 2.

2.2. Sparse Canonical Correlation Analysis
Let X ∈ ℝn×p denote the SNP data matrix and Y ∈ ℝn×q denote the matrix of vectorized
DTI fractional anisotropy (FA) scores. Classical CCA solves the following optimization
problem

subject to the constraints a⊤X⊤Xa = 1 and b⊤Y⊤Yb = 1. The matrices X⊤Y,X⊤X; and
Y⊤Y are estimates of the cross-covariance and covariance matrices respectively. PMD
introduces a LASSO penalty and assumes the covariance matrices are identity matrices, i.e.,
PMD solves the optimization problem

subject to the constraints a⊤a ≤ 1 and b⊤b ≤ 1. Note that the equality constraints have been
relaxed to inequality constraints to make the feasible sets convex. The parameters λa ≥ 0 and
λb ≥ 0 tune the degree of sparsity in a and b. Since the objective function is biconvex,
namely it is convex in a with b fixed and vice versa, PMD iteratively minimizes with respect
to a holding b fixed, and vice versa until convergence. The update for a is given by

The update for b is similar. To weaken the identity covariance assumption we minimize the
same objective function but alter the constraints to a⊤ Σ̃xa ≤ 1 and b⊤ Σ̃yb ≤ 1, where Σ̃x
and Σ̃y are estimated covariance matrices. Again the problem is amenable to block
relaxation, namely iteratively minimizing with respect to a holding b fixed and vice versa.
Consider optimizing with respect to a first. We can rewrite the problem as

subject a⊤Σ̃xa ≤ 1. A little convex calculus shows that the updates are given by

(1)
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and

(2)

Thus, the update occurs in two stages. We first solve a LASSO penalized regression

problem in (1) where the response variable is  and the design matrix is .
Then if the solution of (1) is non-zero we normalize the solution so that ‖Σ̃xa*‖2 = 1. If the
solution to (1) is zero, the final solution a* is zero. Note that if we take Σ̃x and Σ̃y to be
identity matrices, we recover the algorithm employed in prior work [8, 9, 10].

We note that the choice of covariance estimator is critical. Indeed the sample covariance is
well recognized as a poor estimator of the population covariance in the small n, large p
regime considered here. This problem even plagues the classical CCA problem as well when
p is close to n. This has been addressed by applying a ridge estimate of the covariance
matrices, namely [12, 13]. Ledoit and Wolf introduced a well-conditioned and consistent
linear estimator of the sample covariance in [14] and a considerably more complicated
nonlinear one in [15]. Here we employ Ledoit and Wolf’s simple linear estimator.

where Sx is the sample covariance, mx is the average eigenvalue of Sx, and λ ∈ [0, 1] is a
convex mixing coefficient that shrinks the sample covariance towards mxI as λ approaches
1. Ledoit and Wolf derive a value for λ to ensure that Σ̃x is a consistent estimator of the true
covariance Σx.

We apply both PMD and our extension of it on the simulated data described above. As a
proof of concept - to see if we could recover the generative sparse model - we hand picked
the regularization parameters λa and λb to see if there was a pair of values for which we
could recover the true set of SNPs. In particular, we are interested in how many relevant
SNPs were missed when sufficient regularization was applied to drop all irrelevant SNPs
from the model. In practice, we would choose the regularization parameters with either a
measure of complexity such as the BIC or by a data driven method such as cross-validation.

3. RESULTS
Figures 3 and 4 show the estimated canonical correlation vectors b and a unfolded when the
non-trivial covariance estimate is used. We see that there is a regularization parameter that
recovers the correct support. Figure 5 shows estimated a obtained via PMD using hand
picked regularization parameters. PMD selected the same set of voxels and for space
considerations, the results are not shown. Nonetheless, interestingly, the selected SNPs are
different. Choosing a smaller λa will indeed include the missed SNP, but the cost is that
false positives will also be included.

4. DISCUSSION
In this paper we build on previous penalized multivariate methods for finding sparse
structure in pairs of related data sets by showing how to incorporate correlation information.
Our simulation example shows that our method is capable of recovering true latent sparse
structure and that the solutions obtained when accounting for correlation structure can differ
from multivariate approaches that assume identity covariances. Using non-trivial covariance
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estimates, however, makes the optimization problem harder. To that end we are working on
developing more efficient algorithms that can work with non-trivial covariance matrices.
Additionally, we are currently investigating our methods on real data.
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Fig. 1.
Region of Interest (ROI) for a simulated example problem, with a coherent signal in the
image. Pixels that belong to the ROI have value of 1. Pixels outside the ROI have value of 0.
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Fig. 2.
An example of the observed image data: 1, :, :) which corresponds to the observed image
of the first subject.
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Fig. 3.
With non-trivial covariance estimate: The unfolded vector b that summarizes Y.

Chi et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
With non-trivial covariance estimate: The estimated sparse vector a that summarizes X. The
SNP loci annotated in red denote the loci used to generate the data.
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Fig. 5.
PMD: The estimated sparse vector a that summarizes X. The SNP loci annotated in red
denote the loci used to generate the data.

Chi et al. Page 11

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


