
Proc. Nat. Acad. Sci. USA
Vol. 68, No. 8, pp. 1711-1715, August 1971

On the Theory of Ion Transport Across the Nerve Membrane, II.
Potassium Ion Kinetics and Cooperativity (with x = 4)

(Hodgkin and Huxley/Cole and Moore)

TERRELL L. HILL AND YI-DER CHEN

Division of Natural Sciences, University of California, Santa Cruz, Calif. 95060

Conributed by Terrell L. Hill, May 20, 1971

ABSTRACT We use a tetrahedral model of four inter-
acting protein subunits to represent the K+ channel or
gate in the squid nerve membrane. The kinetic predic-
tions, with varying degrees of cooperativity, are compared
with experimental observations, especially those of Hodg-
kin and Huxley (J. Physiol. 117, 500, 1952) and of Cole and
Moore (Biophys. J. 1, 1, 1960). The tentative conclusion
reached is that if there is any cooperativity present it must
be rather weak. There is no indication here that coopera-
tivity improves the Hodgkin-Huxley assumption of inde-
pendent "subunits". Other related models will be dis-
cussed in Part III. We also find evidence against the sug-
gestion that there is cooperativity between K+ channels
arranged in patches of a two-dimensional lattice.

In our first work in this field (1, 2), we were concerned with
K+ steady-state negative resistance at high external [K+].
We used a model which included cooperativity between K+
channels, and K+ transport across the membrane was pre-
sumed to occur via binding to sites. We now believe that both
of these features are very unlikely, though perhaps not com-
pletely ruled out: both Na+ and K+ channels are apparently
very far apart, on the average, and almost certainly indepen-
dent of each other (3-5); if it is argued that Na+ and K+
channels might occur in widely separated small (cooperative)
patches, then there appear to be serious problems with the K+
kinetics (see below); and transport via binding to sites almost
always leads to nonlinear (6) instantaneous current curves,
whereas approximately linear experimental curves are found
for both Na+ and K+ in the squid membrane under normal
(7) and some other conditions (8).
We turned next (9; see also Biophys. Soc. Abstracts, 1971,

p. 139a) to a model with independent and dispersed Na+ and
K+ channels, but with possible cooperativity within (rather
than between) channels. This seemed a reasonable hypothesis
because: a channel (or the "gate", if there is a distinction)
could very well be a protein complex (9), and such complexes
usually exhibit cooperativity between subunits; and co-
operativity might be an aid in understanding both the steep
Hodgkin-Huxley, or HH (10) n.(V), m,(V), and h&,(V)
curves (V = absolute membrane potential) and also the
familiar (10, 11) initial "induction" behavior observed in
both K+ and Na+ conductance versus time curves on de-
polarization from the rest potential or from hyperpolarizing
potentials.
The model is outlined in much more detail in Part I (9).

Our main object in the present paper and in the forthcoming

Part III is to compare, in a few special cases, the consequences
of cooperativity within a channel (or gate) with the qualitative
features of observed K+ kinetic curves. Our results are perti-
nent also for models with cooperativity between channels
(2, 12). The conclusion we reach (below, and confirmed in
Part III) is that there is probably little, if any, cooperativity
of either kind (for K+)-though this cannot be considered a
rigorous deduction. We have not done enough work on Na+
kinetics yet to be able to make any comment about the Na+
case.
Having at least tentatively abandoned a significant degree

of cooperativity between or within channels (on the basis of
results in this paper and in Part III), our present working
hypothesis is that a K+ channel (or gate) is a protein complex
of essentially independent (w - 0, below) subunits, x in
number. The channel opens or closes by means of a V-de-
pendent subunit conformational change (9). In a formal way,
this is of course identical with the original HH empirical
analysis for K+ (x = 4). In Part IV we will discuss the con-
siderable improvements of the HH K+ early induction fit
which can be obtained simply by lowering the n,(V) curve
near the rest potential (the small steady-state K+ current
thereby "lost" must be accounted for in another way). (We
also consider subunit numbers x other than four.) At the same
time, we will present a model which extends the HH approach
into the hyperpolarization region and accounts for the Cole-
Moore delay time as a function of initial V (13). The basic
idea is that hyperpolarization brings into play a multi-step
(of the order of 4-8 steps) process in each subunit which
strongly reduces the equilibrium constant for the subunit
conformational change (i -- ii, below) necessary for channel
opening. The process might be, for example, binding of a
positive ion to the subunit, desorption of a negative ion or
disaggregation of the subunit. The Cole-Moore delay (on
depolarizing after prior hyperpolarization) may then be at-
tributed to the time required to reverse the above process so
that the usual (HH) conformational change can take place.
Thus the Cole-Moore (13) single-process exponent 25 is in
effect generalized to a two-process 4 (HH) X 4, or 4 X 6, etc.,
with different rate constants in the two processes. This seems
to provide an acceptable physical basis for the large exponents
explored first by Cole and Moore.
We have already done some preliminary work on the theory

of the V-dependence of a protein conformational equilibrium
constant (2, 9), but to proceed further we need first to settle on
a particular experimental n0,(V) curve (in the K+ case). This
depends on conclusions reached in this paper and in Parts III
and IV.
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Abbreviation: HH, Hodgkin-Huxley (ref. 10).
Part I of this series is ref. 9.
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tI
FIG. 1. Scheme 1: fraction of open channelsp4(t'), and3(t'), for

8 1 (HH) and s = 0.7. Solid curves: depolarization o -) +50

mY. Dotted curve po(t') for - X -, +50 mY, 8 = 0.7. Dashed
curves: depolarization to +50 mY from (A) -40 mY, (B) -25
mY, (C) -10 mY, (D) +15 mV (see text). The X's show a first-
order process for comparison with (t') (® chosen on the curve).

COOPERATIVE KINETIC MODEL WITH x = 4
(TETRAHEDRAL)

We shall divide our rather negative report on cooperativity
into two parts: in this paper we consider x = 4 with subunits
arranged tetrahedrally; in Part III we consider x = 4 (square),
models with z > 4, aggregation of subunits as a possible al-
ternative to a conformational change, and related topics.
These systems (except for aggregation) are small kinetic
"Ising" (14) systems; if x is not too large (say x < 10), they
can be treated exactly, as in this paper. For larger x, Monte
Carlo methods may be used (15) to avoid approximations such
as that of Bragg-Williams (BW) (1, 2,12).

Let us suppose that a K+ channel (or gate) contains four
identical protein subunits, arranged in a tetrahedron. Each
subunit can be in one of two conformations, i and ii. There is
room for a K+ ion to pass through the four subunits only if all
are in conformation ii (as in HH). The conformational change
for a hypothetical isolated (i.e., independent) subunit follows
first-order kinetics with intrinsic rate constants a (for i -ii)

tI
FIG. 2. Scheme 1, 8 = 0.5; otherwise as in Fig. 1.
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FIG. 3. Scheme 1,s = 0.3 and 0.1; otherwise as in Fig. 1.

and j3 (for ii i). (We drop the HH subscript n here because
only K+ is being considered.) Let wtl be the interaction energy
(or free energy) between two subunits in state i,W12 between a
i and a ii, etc. There are six pair interactions in the system
(of four subunits). Let Q14 be the (canonical) partition function
for the system in state [0] and Q24 for state [4], where [j]
denotes the state with j subunits in state ii. Then the proba-
bilities (i.e., fractions of channels) pi' of the five states, at
equilibrium, are

PO = Q44-l, pi' = 4U3QB0-1 p2 =
6s4Q2-1, p8 - 4s8Qt', p =I-' (1)

where

t = Q4 + 4s'Q' + 6s4Q2 + 4s'Q + 1

Q = Q1/Q2 = #/a
s = ewl2kT, W = Wil + W22 - 2w12.

The interaction parameter s corresponds to y2 in Part I (9).
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FIG. 4. Scheme 1: p4(t') for various values of 8, with time
scales adjusted so that curves cross at p4( o )/2, t'V/, = 1.8385.
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tI
FIG. 5. Scheme 5, s = 0.7; otherwise as in Fig. 1.

Although a, fl, and Q are functions of V, we assume for sim-
plicity thatw is not. For example, the predominant interaction
might be a simple steric repulsion (poor fit) between a subunit
in state i and another in state ii (w12 > 0). "Cooperativity"
occurs when w < 0,8 <1. The HH case is w = 0, = 1,
Q = n(1-n)/nP4 =n=
Q is the intrinsic i/ii partition function ratio, or equilibrium

constant (for ii :± i). In a depolarization experiment, for
example, we start with an ensemble of these independent
systems (channels) at equilibrium with a given (initial) Q and
observe, via p4(t)-the fraction of open channels-the time
evolution of the ensemble to a final equilibrium at a dif-
ferent (final) Q. Eq. 1 gives initial and final probability distri-
butions.
An indefinite number of kinetic schemes can be consistent

with this equilibrium model. One of the most likely is the
"symmetrical" scheme

4,sa/2 3as1/2 2a1-I/2 8-3/
[0] - [1] 1[2] 4 2 [3] Z" [4] (Scheme 1)

8- '/2 28-1/2 3081/2 4$8 /2

tI
FIG. 6. Scheme 5, s = 0.5; otherwise as in Fig. 1.

redefine Qi and Q2 80 that Eq. 4 becomes

s-12Q4, 4-6Q8 6s-2Q2 4Q, 1

and Eq. 6 becomes
86 O4 $2 1

1 1 1 1

(7)

(Scheme 5) (8)

The kinetic behavior of the ensemble of channels is governed
by a set of five (four independent) linear first-order differential
equations in the pj's which can be solved on a computer by
standard matrix methods. For example, in Scheme 1 we use
for po the dimensionless equation

dpo/dt' = bs-'p - 4as/2po (9)
where
t' = (a +6)t, a = a/(a +8) =

(1 + Q)-1, b = Q(1 + Q)-1. (10)
(2)

which assumes that the activated complex between i and ii
has intermediate interaction properties. An alternative is
(only s factors shown-see Eq. 2)

83 s 1 1

1 1 8 Is
(Scheme 2) (3)

If the predominant interaction is a iui- attraction (w22 < 0),
it is convenient to redefine Qi and Q2 so that the equilibrium
probabilities are proportional to (ordered as in Eq. 1)

Q(4, 4Q(2' 68-2Q', 48-6Q, 8-12. (4)

Then $8Qhere is equal to the Q of Eq. 1. Two possible kinetic
schemes are then

1 '-1 $-2 S-

1 S
$2 $3

1 1 1

1 $2 s4

1

(Scheme 3) (5)

(Scheme 4) (6)

Similarly, if a i-i attraction dominates (wtC < 0), we again

The Q here is of course thefinal Q.
This formalism is also applicable to models with interactions

between K+ channels, as in Adam's work (12). A "system" is
now a patch of x channels and the "ensemble" is a large
collection of independent patches. Conformation i becomes a
closed channel; conformation ii is an open channel. Whereas in
our model (following HH) the fraction of open channels is
P4, in the Adam kind of model it would be 3/4, where 3 =
EiPj.l Weshall note the behavior of3(t) aswell asp4(t), below.
Incidentally, tetrahedrally arranged subunits are identical
topologically (in counting interactions) with a 2 X 2 hex-
agonal patch (of channels) with periodic boundary conditions
(15) (to simulate a larger patch). Each interaction is doubled
in the 2 X 2 case. Adam's work (BW approximation) cor-
responds to Scheme 5. When s = 1, p4(t) = n(t)4 and 3(t) =
4n(t), where n(t) is the HH function. We consider Scheme I
first.

CALCULATIONS
We shall concentrate on Schemes 1 and 5, which represent the
extremes of kinetic symmetry and asymmetry. We are espe-
cially concerned with two experimentally observed properties:
the extremely good superposition of K+-current versus time
depolarization curves with various starting points but the

and
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FIG. 7. Scheme 5, s =0.3 and 0.1; otherwise as in Fig. 1.

same final state (V = ENa), found by Cole and Moore (13);
and the initial K+ induction behavior referred to in the in-
troduction. We consider Scheme 1 first.

Figs. 1 to 3 show simulated Cole-Moore depolarization K+-
current curves in the form of p4(t') or j (t') (Adam), for various
values of s. The final (equilibrium) state in all cases cor-
responds to p4( 0o) = 0.8945, which is the HH value of n". at
V = ENa = + 50 mV. The solid curves all start from po(O) = 1
(saturation hyperpolarization for this model), and hence ex-
hibit the best possible induction behavior (near t' = 0). The
dashed curves start from equilibrium states with p4(0) =
0.2121, 0.4228, 0.5960, and 0.7755, these being the HH n.4
values corresponding to conditioning (t' < 0) potentials V =
-40 mV, -25 mV, -10 mV, and + 15 mV (rest potential =
-65 mV). The dashed curves have been translated along the
time axis to achieve superposition with the solid curves at
large times. The early superposition in the p4(t') curves is
seen to be bad for s = 0.5 and 0.7 (s = 0.4 is worse) but rather
good for s = 0.3. The ^j(t') superposition is always better than
the corresponding p4(t') superposition. Superposition is
mathematically exact (13) for s = 1 (HH) and virtually exact
(on this scale) for s = 0.1. The early induction behavior is
missing for all s in the j curves and for s = 0.1 in p4; the
amount of induction in P4 is inadequate for s = 0.3. The in-
duction behavior for P4 is summarized in Fig. 4, in which the
time scales have been adjusted so that all curves pass through
the point P4 = p4(00 )/2, t'il, = 1.8385 (s = 1 scale). Coopera-
tivity does not enhance the induction, as we had expected;
the major effect (for moderate s) is on the time scale.

Incidentally, s = 0.7 corresponds to w = -0.40 kcal/mol
(at 60C) and s = 0.1 to w = -2.56 kcal/mol. Note that if,
as is likely, w _-2wI2, then -W12 is one-half of the above
values. Hence s = 0.7 represents a rather weak interaction.

Figs. 5-8 show corresponding results for Scheme 5. Note
the more extreme time scales. The s = 1 curves are, of course,
the same as in Fig. 1. Superposition is generally much worse,
but it is again virtually exact for s = 0.1. There is a slight
inflection inj for intermediate s, but no induction.

DISCUSSION
In these examples (and in others in Part III), the model with
interactions between channels does not produce the required

x=4
Scheme 5

s Time Scale Factor
1.0 1.000
0.7 2.830
0.5 12.13
0.3 224.4
0.1 2.588x105

2

FIG. 8. Scheme 5; otherwise as in Fig. 4.

induction behavior in j(t'). Where there is a hint of induction
(i.e., an inflection at small t' for intermediate s values in
Scheme 5), superposition inj is not good. These results bespeak
difficulties for the Adam model, but we reserve further com-
ment until Part III where we can compare several values of x.

Concerning our model with cooperativity within a channel,
the p4(t') curves indicate (and this is confirmed in Part III)
that a moderate amount of cooperativity (s = 0.7, say) leads
to failure of superposition (beyond experimental error) while
more extreme cooperativity (s = 0.1 or 0.3, say) restores
superposition but eliminates all or most of the induction. It
appears, therefore, that if there is cooperativity in this kind
of model, it must be rather weak (additional calculations on
Scheme 1 indicate that s = 0.8, w = -0.25 kcal/mol would
be acceptable). Thus one is led back to the original HH as-
sumption of essentially independent subunits.

It is interesting that Hoyt (16) found that Cole-Moore
superposition argues against Na+-K+ coupled models; we
find that the same data argue against significant cooperativity.
The reason for the failure of superposition (with moderate

cooperativity) is straightforward. Exact superposition will be
a property of any model in which the ensemble, in relaxing
from an initial equilibrium state to a different final equili-
brium state, passes on the way through equilibrium states only.
This occurs in the HH case (s = 1): an equilibrium distribu-
tion of the pj's is a binomial distribution (Eq. 1); the en-
semble starts in a binomial distribution, ends in another
binomial distribution, and passes through intermediate
binomial distributions only (17). An equivalent statement:
initial, final, and intermediate states can all be specified by
the value of a single time-dependent parameter [n(t) in the HH
case, or the "equilibrium constant" Q(t) = (1 - n)/n] (13).
Incidentally, simple BW approximate kinetics (12) will
(incorrectly) predict superposition because only a single
parameter is involved in the rate equation.
However, when cooperativity is included, an examination of

the computed pj(t)'s shows immediately that, in general, al-
though the system starts and finishes with equilibrium sets of
pj's (no longer binomial; Eq. 1), intermediate sets of pj's-
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i.e., at arbitrary times-do not correspond to any equilibrium
distribution. That is, a single parameter Q(t) no longer suffices
to determine all the pj(t)'s and thus to characterize an in-
termediate state of the ensemble: we need to specify the
whole set of p/'s to do this. Thus the solid curves in the figures
are nonequilibrium kinetic "tracks"; each dashed curve
starts at an equilibrium point but itself goes onto a non-
equilibrium track which merges in due course with the solid
track. This behavior of small kinetic Ising systems, treated
exactly, and especially the time dependence of fluctuations
and of the extent of deviation of the pj set from the nearest
equilibrium set, is an interesting statistical mechanical
problem in its own right-and will be reported on separately
by Dr. Edward Paul and one of us (T.L.H.).

Superposition (in P4 and j) is recovered with strong co-
operativity (e.g., s = 0.1) because, in effect, a phase transition
is now involved: pi, P2, and p3 are all very small; po(t') +
p4(t') _ 1; as the ensemble evolves with time, "phase" [O]
is converted into "phase" [4] by slow first-order kinetic
"leakage" through intermediate states, [0] ± [4]; the single
parameter which characterizes the state of the ensemble arid
which "produces" superposition is, say, Po/P4 (analogous to Q
when s = 1). Note in Figs. 3 and 7 (s = 0.1) that j(t')-
4p4(t'). These computed curves are easily verified to be
first-order; their time constants can be independently and
accurately calculated, as a check, from the mean first pas-
sage times (18) for [0] -* [4] and [4] -- [0] using rate con-
stants from Eqs. 2 and 8. A single system of the ensemble has
a "nucleation" delay, or induction period, before the transi-
tion j = 0 j = 4 occurs (mean delay = mean first passage
time, above). But the ensemble average of j is what would be
observed (Adam model), and this exhibits first-order kinetics
(the decay of a radioactive sample is very similar). Much
faster first-order kinetics (i T± ii) are of course obtained for
(t') = 4n(t') when s = 1 (Fig. 1). In Figs. 1-3 and 5-7, the

1 curves for intermediate s depart somewhat from first order
(the X's are first-order points, for comparison, based on
( o ) and a midpoint 0 on the actual curve).
We have supplemented the above with a number of other

calculations on the tetrahedral model, especially repolariza-
tions using Schemes 1, 2 and 5, and depolarization from
-65 - -15 mV using Schemes 1 to 4. We omit details be-
cause no really new features emerge. In the repolarizations,

po and p4 merely exchange roles (compared to depolarizations;
see Fig. 1), as do j and 4 - j. Typically, in a repolarization,
p4(t') decreases following a more or less first-order curve,
while po(t') increases after an early induction period (if po(O)
is at or near zero and s is not too small). In the depolarizations:
Scheme 1 gives results as expected from Fig. 4; Schemes 2 and
3 are very similar to Scheme 1, except for the time scale;
Scheme 4 is somewhat different (it is the "inverse" of Scheme
5).

We are indebted to Drs. Gerold Adam and Max Delbruck for
stimulating discussions. This work was supported in part by
grants from the National Science Foundation and from the
General Medical Sciences Institute of the U.S. Public Health
Service.
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