Skip to main content
. 2013 Dec 12;13(12):17130–17155. doi: 10.3390/s131217130

Table 2.

AUC of the abnormal event detection method based on covariance descriptors constructed by different features F via OC-SVM (Section 3.1), original LS-OC-SVM learning training samples together offline (Section 3.2), online LS-OC-SVM (Section 3.3) and sparse online LS -OC-SVM (Section 3.4). The biggest value of each method is shown in bold.

Features Area under ROC
lawn indoor plaza
offline OC-SVM
F1(6 × 6) 0.9474 0.8381 0.9148
F2(6 × 6) 0.9583 0.8410 0.9192
F3(8 × 8) 0.9656 0.8483 0.9367
F4(12 × 12) 0.9798 0.8744 0.9782
offline LS-OC-SVM
F1(6 × 6) 0.9755 0.8605 0.9422
F2(6 × 6) 0.9738 0.8603 0.9489
F3(8 × 8) 0.9788 0.8662 0.9538
F4(12 × 12) 0.9874 0.8900 0.9800
Online LS-OC-SVM
F1(6 × 6) 0.9755 0.8616 0.9403
F2(6 × 6) 0.9720 0.8730 0.9517
F3(8 × 8) 0.9795 0.8670 0.9563
F4(12 × 12) 0.9874 0.8904 0.9839
Sparse Online LS-OC-SV M
F1(6 × 6) 0.8840 0.8077 0.9245
F2(6 × 6) 0.9435 0.8886 0.9515
F3(8 × 8) 0.9269 0.8266 0.9428
F4(12 × 12) 0.9510 0.8223 0.9501