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Abstract
Objective—Concerns of breast cancer risk in postmenopausal women taking combined estrogen
+progestin therapy have generated interest in the use of selective estrogen receptor modulators
(SERMs) as potential progestin alternatives. Endometrial proliferation and cancer risk are major
concerns, however, for estrogens and certain types of SERMs when given alone. The primary aim
of this study was to evaluate the endometrial profile of bazedoxifene acetate (BZA), a third-
generation SERM, alone and in combination with conjugated equine estrogens (CEE) in a
postmenopausal primate model.

Methods—Ninety-eight ovariectomized cynomolgus monkeys (Macaca fascicularis) were
randomized to receive no hormone treatment (control), BZA 20 mg, CEE 0.45 mg, or the
combination of BZA 20 mg + CEE 0.45 mg once daily for 20 months in a parallel-arm study
design. The primary outcome measure was endometrial epithelial proliferation.
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Results—BZA+CEE and BZA treatment resulted in significantly less endometrial epithelial area
and Ki67 expression compared to CEE (P < 0.001 for all). The prevalence of endometrial
hyperplasia and other estrogen-induced morphologic changes in the BZA+CEE and BZA groups
were not significantly different from control. The addition of BZA to CEE completely inhibited
the expression of ERα-regulated genes (TFF1 and PGR), while BZA alone had no effect. BZA
+CEE and BZA treatment also resulted in lower ERα protein expression in the endometrium
compared to control and CEE (P < 0.05 for all).

Conclusions—BZA given at a clinically relevant dose inhibits estrogen effects on the
endometrium and lacks uterotropic effects when given alone.

Keywords
Estrogens; menopause; hormone therapy; selective estrogen receptor modulator; bazedoxifene
acetate; endometrial cancer

INTRODUCTION
Estrogen-alone therapy (ET) alleviates menopausal symptoms and reduces osteoporosis and
fracture risk in aging women.1-3 However, long-term use of ET has been associated with an
increased risk of endometrial hyperplasia and endometrial cancer, even when given at low
doses.4-7 To date, progestin co-therapy has been the only clinical strategy to effectively
prevent estrogen-induced endometrial proliferation and lower cancer risk.6, 8 Historically,
the most commonly prescribed estrogen + progestin co-therapy (EPT) in the United States
has been conjugated equine estrogens (CEE) given with medroxyprogesterone acetate
(MPA).9 However, primary results from the Women’s Health Initiative (WHI) randomized
clinical trial10 and prior observational studies11 have associated long-term CEE+MPA co-
therapy with an increased risk of breast cancer as well as a higher incidence of
gynecological surgeries (e.g. hysterectomies) due to increased uterine bleeding.12

Consequently, there has been increased interest in new menopausal therapies that provide
comparable efficacy to ET without adverse proliferative effects on the breast and
endometrium.

Recently, selective estrogen receptor modulators (SERMs) have been proposed as an
alternative to the progestin component in EPT.13 As a class of non-steroidal compounds,
SERMs bind to estrogen receptors (ERs) alpha and beta and induce a mixed pattern of ER
agonist and antagonist responses depending on the particular SERM and the target tissue.14

Current SERMs include tamoxifen and raloxifene, which are widely used in the prevention
of breast cancer.15 Similar to ET, most SERMs increase bone mineral density and improve
lipid profiles, but in contrast to ET, current SERMs given alone do not treat menopausal
symptoms and in some cases worsen them.16, 17, 18 The ideal clinical goal of combining a
SERM with ET would be to selectively retain the benefits of both agents while reducing the
adverse effects of either agent alone. The estrogen component of such a combination would
relieve hot flushes, improve urogenital atrophy, and prevent bone loss, while the SERM
would help maintain bone mass and provide anti-estrogenic effects in the breast and
endometrium. Information regarding the uterotropic effects of the SERM component is
critical considering that SERMs such as tamoxifen have been associated with an increased
incidence of endometrial cancer and other adverse morphologic changes such as stromal
fibrosis, cystic change, and polyp formation.16, 19-22

Bazedoxifene acetate (BZA; 20 mg/day) is an indole-based SERM currently under
evaluation for the treatment of osteoporosis and, in combination with CEE (0.45 and 0.625
mg/day), for the reduction of menopausal symptoms and the prevention of osteoporosis.23-26

The purpose of this study was to investigate the endometrial safety profile of BZA alone and
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in combination with CEE in a randomized multisystem nonhuman primate translational trial.
We hypothesized that BZA would antagonize the proliferative and transcriptional effects of
CEE on the endometrium, while BZA would have minimal estrogen agonist effects when
administered alone. Effects on other systems including breast, bone, and the cardiovascular
system will be reported elsewhere.

METHODS
Study design and treatments

This preclinical trial followed a parallel-arm study design in which ninety-eight
ovariectomized adult cynomolgus macaques (Macaca fascicularis) were randomized by
social group to receive one of the following four treatments for 20 months: (i) no treatment
(control (CTL), n=23), (ii) BZA 20 mg (n=24), (iii) CEE 0.45 mg (n=24), or (iv) the
combination of BZA 20 mg + CEE 0.45 mg (n=27). An important feature of this design is
the inclusion of a CEE-alone group as a positive control, which was not feasible in previous
clinical trials since all participating women did not have a prior hysterectomy.26

All monkeys were imported from the Indonesian Primate Center (Pusat Studi Satwa
Primata) at the Institut Pertanian Bogor in Bogor, Indonesia. Following quarantine, all
monkeys were placed in stable social groups consisting of two to five animals; the groups
were approximately equivalent in body weight. Social groups were then randomly assigned
a treatment condition using a simple randomization procedure. To achieve adequate power
for the cardiovascular endpoints (published elsewhere) in this preclinical trial, each group
originally consisted of 25 animals; however 2 animals were added to the BZA and BZA
+CEE groups to account for any exclusions or deaths during the study. Subsequently, 2
animals from the control and 3 animals from the BZA groups were excluded due to elevated
serum ovarian hormone levels indicating the presence of ectopic ovarian tissue (follicles,
luteal tissue, and/or stroma found outside the ovary).27 Another monkey from the CEE
group was euthanized due to an intussusception.

An important rationale for the use of the macaque model in this trial is the high degree of
similarity in pathophysiology28 and responses to hormonal agents29 between the human and
macaque endometrium. All monkeys were considered monoparous or multiparous based on
clinical records from the original breeding colony. Procedures involving these animals were
approved by the Institutional Animal Care and Use Committee of Wake Forest University
and conducted in accordance with federal, state, and institutional guidelines. The facilities
and animal resources program of Wake Forest University are fully accredited by the
Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Hormone treatments were administered in a standard isoflavone-free casein + lactalbumin
control diet and fed once daily for 20 months. The standard control diet was formulated to
model the high cholesterol (0.29 mg/Cal) and high fat (35% of calories from fat) diets
typically consumed by postmenopausal women in the United States. Studies conducted to
determine CEE and BZA doses for female macaques that were equivalent to a woman’s
daily dose of CEE 0.45 mg and BZA 20 mg have been published elsewhere.30 Briefly, drug
doses were determined based on caloric intake to account for differences in metabolic rates
between female monkeys and women as well as plasma concentrations measured in
postmenopausal women receiving BZA 20 mg/day.31 Animals in the CEE-treated groups
were given 0.03 mg/kg body weight/day of CEE while those animals in the BZA-treated
groups received 2.5 mg/kg body weight/day of BZA.
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Circulating estrogen and BZA concentrations
As part of the main study, plasma estrone (E1), 17β-estradiol (E2), and BZA concentrations
were obtained at 4 hours post-prandial and following an overnight fast to confirm adequate
dosing and dietary intake. These results have been reported elsewhere.30 Repeat
measurements of E1 and E2 were also done in a randomly selected subset of animals (n=47)
following an 18 hour fast on the day of necropsy, and these values are reported here. E1 and
E2 concentrations were measured at the Wake Forest University Primate Center (WFUPC)
Clinical Laboratory using commercially available radioimmunoassay kits (Siemens/DPC),
while plasma BZA concentrations were measured at Pfizer using high-performance liquid
chromatography (HPLC) with fluorescence detection. The lower limit of quantification was
2.5 pg/mL for E1 and E2, and 1.0 ng/mL for BZA. Serum used to measure E2
concentrations were first extracted with ethyl ether, and extracts were then dried and
reconstituted with zero-standard serum.

Uterine Area via Uterine Ultrasounds
Trans-abdominal ultrasounds were conducted using a Sonosite MicroMaxx portable
ultrasound machine with a 6.0-MHz linear transducer (Sonosite, Bothell, WA) at baseline (4
weeks after ovariectomy) and following 6, 12, and 20 months of treatment. For each
timepoint, at least 3 static digital images were captured at the maximal transverse cross-
sectional area of the uterus. Measurements of uterine area (cm2) were made using public
domain software (National Institutes of Health ImageJ 1.34, available at http://
rsb.info.nih.gov/ij/upgrade/).32 All sonographic images were obtained and measured by the
same person blinded to the treatment groups.

Histomorphometry and histopathology
At necropsy, uteri were collected, weighed, and prepared for histology.32 Percent epithelial
area and mean endometrial thickness were quantified using hematoxylin and eosin (H&E)
stained slides and morphometry techniques similar to those described previously.22, 33

Briefly, epithelial area was determined by manual tracing of glandular units (minus the
luminal areas) within the superficial and basal endometrium and expressed as a percentage
of the total area examined (Image-Pro Plus software, Media Cybernetics, Silver Spring,
MD). Mean endometrial thickness (superficial + basal) was measured in a similar manner.
H&E-stained slides were also evaluated for evidence of glandular hyperplasia (simple and
complex), stromal hyperplasia, stromal edema, cystic dilation, and other histological lesions
by a board-certified veterinary pathologist (CEW). Stromal edema and cystic dilation are
considered low-risk morphologic changes associated with exogenous estrogen exposure.29

Endometrial stromal fibrosis (collagen content) was quantified from slides stained with
Masson’s trichrome (containing Weigert’s iron hematoxylin, Crocein Scarlet MOO, 5%
aqueous phosphomolybdic acid, and aniline blue; Fisher Scientific and Sigma) using a
selective color-based analysis in the Image Pro-Plus Software.22 Blue-stained areas in the
superficial endometrial stroma represented collagen, while red area represented stromal cell
nuclei and cytoplasm. Area of stromal edema and undefined (pale blue) ground substance
was estimated by subtracting total area examined by the blue and red-strained areas. All
histomorphometry and histopathological evaluations were completed by persons blinded to
the treatment groups.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on fixed endometrial sections using
commercially-available primary monoclonal antibodies for the proliferation marker Ki67
(Ki67SP6; Thermo Scientific, Fremont, CA) and the sex steroid receptors ERα (NCL-
ER-6F11, Novocastra Reagents, Leica Microsystems Inc., Buffalo, NY) and progesterone
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receptor (PGR) (NCL-PGR-312, Novocastra Reagents, Leica Microsystems Inc., Buffalo,
NY) as described previously.30 Nuclear immunolabeling within the superficial and basal
endometrium was quantified using a computer-assisted manual counting technique with a
grid filter to select cells for counting (Image-Pro Plus software, Media Cybernetics, Silver
Spring, MD). An H score was then calculated using the equation (3 x % of strongly stained
nuclei) + (2 x % of moderately stained nuclei) + (% of weakly stained nuclei).34 All IHC
quantification was performed by a technician blinded to the treatment groups.

Quantitative real-time PCR
Expression of genes related to cell proliferation (MKI67, Ki67 antigen) and estrogen
receptor activity (ESR1, ERα; ESR2, ERβ; PGR, progesterone receptor; TFF1, trefoil factor
1 [pS2]) was determined by quantitative real-time reverse transcription-PCR (qRT-PCR)
using techniques described elsewhere.30 Briefly, all qRT-PCR reactions were run with
Applied Biosystems (ABI) Taqman primer-probe sets and performed on an ABI 7500 Fast
Real-Time PCR System (Applied Biosystems, Carlsbad, CA). β-actin was used as the
endogenous control while reference endometrial tissue cDNA was run in parallel for plate-
to-plate calibration.32 The reliability of β-actin as an internal control was evaluated using
analysis of variance, analyses of the standard deviation of Ct, and change of Ct of β-actin
between control and treatment samples. Relative expression of each target gene was
calculated using ABI Relative Quantification 7500 Software v2.0.1.

Statistical analyses
All variables were evaluated for their distribution and equality of variance. Data not
normally distributed were transformed (log10 or square root) to improve normality for
analysis and then reverse transformed to the original scale for display in the results. The
following data violated the Levene’s test for equality of variance and were analyzed using
the nonparametric Kruskal-Wallis and post hoc Wilcoxon (rank sums) tests: uterine weights,
E2 concentrations, (superficial) epithelial area, (superficial) luminal area, all qRT-PCR
assays except for ESR1 and ESR2, and IHC for Ki67 (superficial glands and stroma) and
ERα (superficial glands). Significance levels were then adjusted for multiple pair-wise
comparisons using a Bonferroni correction. Differences in uterine area and body weight
among the treatment groups were determined using a mixed model approach with baseline
values as a covariate. For each variable, this model allowed for a within-group comparison
at each post-treatment time period and a between time point comparison within each group
(e.g. 20 months post-treatment values compared to baseline). A Fisher’s exact test was used
to evaluate treatment group differences in the prevalence of histopathological findings. The
remaining data were assessed using analysis of variance (ANOVA) and the Tukey HSD post
hoc test for multiple pair-wise comparisons. A two-tailed significance level of 0.05 was
selected for all comparisons and all analyses were done using JMP statistical software
(version 9.0.2; SAS Institute, Inc, Cary, NC).

RESULTS
Treatment group characteristics

Treatment group characteristics including age, body weights, and hormone concentrations
are summarized in Table, Supplemental Digital Content 1, http://links.lww.com/MENO/
A44. At baseline, the mean estimated age of all animals was 12.7 (range 9 - 18) years with
no between-group differences (P > 0.1). All groups showed a small increase in body weight
from baseline to 20 months post-treatment. This gain in body weight reached significance
only in the control group (P < 0.001) with a trend towards significance in the BZA group (P
= 0.06). After 20 months of treatment, the BZA+CEE group weighed significantly less than
the control group (P < 0.01); however, no significant differences in body weight and plasma
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estrogen (E1 and E2) concentrations were noted between the BZA+CEE and CEE groups (P
> 0.1 for all).

Uterine area via trans-abdominal ultrasound
Uterine area among CEE-treated animals increased progressively from baseline to 20
months post-treatment (P < 0.0001) and was significantly greater than the control group at 6,
12, and 20 months of treatment (P < 0.0001 for all, Fig. 1). The BZA+CEE and BZA groups
had significantly smaller uterine areas relative to CEE (P < 0.0001 for all) and similar
uterine areas compared to control at each post-treatment time point (Fig. 1).

Endometrial thickness, epithelial area, and proliferation
Following 20 months of treatment, uterine weight and endometrial thickness among the
control, BZA, and BZA+CEE groups were comparable and 2.5 to 3.5-fold lower than the
CEE group (P < 0.0001 for all compared to CEE, Fig. 2A and 2B). Similarly, epithelial area
within the superficial endometrium was not significantly different among the control, BZA,
and BZA+CEE groups and measured 1.5 to 2.0-fold less than the CEE group (P < 0.0001
for all compared to CEE, Fig. 2C). Epithelial area specifically within the basal endometrium
was also significantly less in BZA+CEE and BZA groups compared to the CEE group (P <
0.0001 for both) but 44% higher than control (P < 0.01 for both).

The addition of BZA to CEE significantly inhibited CEE-induced endometrial proliferation,
indicated by lower MKI67 gene expression and Ki67 immunolabeling in the superficial
glands and stroma for BZA+CEE compared to CEE (P < 0.001 for all) (Fig. 3A and 3B).
Proliferation in the superficial glands was also lower for BZA+CEE compared to control (P
< 0.01) (Fig. 3B). Treatment with BZA alone did not induce MKI67 expression (Fig. 3A) or
Ki67 immunolabeling in the superficial or basal endometrial glands (Fig. 3B and 3C) but did
result in 3-fold higher Ki67 immunoreactivity in the basal stroma compared to control (P =
0.04) (Fig. 3C). Representative photomicrographs of Ki67 immunolabeling for BZA, CEE,
BZA+CEE, and no hormone treatment are displayed in Supplemental Digital Content 4,
http://links.lww.com/MENO/A47.

Endometrial morphology
The addition of BZA to CEE also inhibited estrogen-induced changes in endometrial
morphology. The prevalence of simple glandular and stromal hyperplasia was higher in the
CEE group (P < 0.0001 compared to control and BZA+CEE) but not in BZA and BZA
+CEE groups (Table 1). Similarly, the prevalence of stromal edema and cystic dilation in the
endometrial glands was most evident in the CEE group (Table 1). These findings were
confirmed using quantitative morphometric measurements, shown in Figs. 4A and 4B.
Treatment with BZA+CEE and BZA had no significant effect on endometrial collagen
content compared to control, but treatment with CEE resulted in significantly more collagen
compared to the other groups (P < 0.01 for all) (Fig. 4C). Incidental histological findings
included vascular remodeling (adventitial expansion) associated with prior pregnancy. No
evidence of endometrial polyps, complex or atypical hyperplasia, or neoplasia was observed.

ERα expression and transcriptional activation
Treatment with BZA, CEE, and BZA+CEE altered endometrial ERα immunolabeling (Fig.
5A and 5B) but not gene expression (see graph A, Supplemental Digital Content 2, http://
links.lww.com/MENO/A45). Groups treated with BZA+CEE and BZA had significantly
less glandular and stromal ERα immunolabeling in the superficial and basal endometrium
compared to control and CEE groups (P < 0.0001 to P < 0.05 for all compared to control
and CEE). Treatment with CEE resulted in significantly lower ERα immunolabeling in the
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basal stroma compared to control (P < 0.05) but greater ERα immunoreactivity relative to
BZA+CEE (P < 0.05). Unlike ERα gene expression, ERβ mRNA expression was
significantly decreased by CEE treatment (P < 0.0001 compared to control, see graph B,
Supplemental Digital Content 2, http://links.lww.com/MENO/A45).

As expected, CEE treatment significantly induced the expression of the estrogen response
genes TFF1 and PGR compared to control (P < 0.001 for both, Fig. 5C and 5D). The
addition of BZA to CEE significantly attenuated these effects (P < 0.001 for both), while
BZA alone had no effect. Glandular and stromal PGR immunolabeling within the
endometrium showed a similar pattern (see graphs A and B, Supplemental Digital Content 3,
http://links.lww.com/MENO/A46).

DISCUSSION
Traditional hormone therapies are associated with increased cancer risk in the endometrium
(ET) and breast (EPT) in postmenopausal women. Estrogen + SERM co-therapies are
emerging as potential alternatives to these traditional therapies. Endometrial stimulation and
cancer risk are major concerns, however, for both estrogens and certain types of SERMs
when given alone and limited data exist regarding the endometrial safety of estrogen +
SERM co-therapies. In this preclinical trial, we investigated the endometrial risk profile of a
new SERM, BZA, given alone and with CEE, the most widely prescribed ET in the United
States.9 Treatment with CEE increased uterine size, endometrial thickness, epithelial area,
proliferation, and gene markers of ERα activity, while the addition of BZA to CEE
significantly antagonized these effects. Treatment effects of BZA alone were comparable to
control. These findings show for the first time that BZA is a clear estrogen antagonist in the
endometrium at clinically relevant doses.

The full inhibition of CEE effects by BZA shown here supports data from phase III clinical
trials suggesting that BZA+CEE co-therapy does not have tamoxifen-like uterotropic effects
in postmenopausal women.35, 36 In a 2-year study of osteoporotic postmenopausal women
(SMART-1: Selective estrogens, Menopause, And Response to Therapy), endometrial
hyperplasia (evaluated via biopsy) and uterine bleeding incidences with BZA 20 mg
combined with either CEE 0.45 mg or 0.625 mg were not significantly different from
placebo.35, 36 Similarly, preliminary data from another smaller 1-year trial (SMART-5)
reported comparable incidences of endometrial hyperplasia among those women receiving
BZA 20 mg + CEE 0.45 mg (0.3%) and BZA 20 mg + CEE 0.625 mg (0.27%) relative to
MPA 1.5 mg + CEE 0.45 mg (0%), BZA 20 mg monotherapy (0%), and placebo (0%).37

Evidence from prior reports, however, suggests that the inhibitory effects of BZA on ER-
activity may differ according to the dose and/or type of estrogen used in BZA+estrogen
therapies. For example, cell culture studies showed that 10 nM of BZA completely inhibits
the growth of E2-stimulated MCF-7 breast cancer cells, while 1.0 pM of BZA results in
negligible inhibition.38 Similarly, in the 2-year SMART-1 trial, the uterotropic effects of
CEE (0.45 mg/d or 0.625 mg/d) were effectively antagonized with 20 mg/d but not 10 mg/d
of BZA.35 To date, the interactive effects of estrogens and BZA on the breast and
endometrium have only been evaluated with oral CEE as the primary ET;30, 35-37, 39

therefore, it is not known whether the target dose of BZA (20 mg/d) would prevent
endometrial and breast proliferation if co-administered with standard doses of other ETs
such as oral and transdermal E2.

Few prior studies have evaluated endometrial effects of estrogen + SERM therapies. In one
small study evaluating the combination of raloxifene (60 mg/d) and oral E2 (1 mg/d) in
postmenopausal women transitioning from EPT, the frequency of vasomotor symptoms, hot
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flushes, and night sweats were significantly reduced compared to baseline and raloxifene
monotherapy.40 However, this combination was associated with increased endometrial
thickness and two cases of atypical endometrial hyperplasia. Similarly, another pilot study
found significantly less vasomotor events but increased endometrial thickness with the
concomitant use of oral raloxifene and a transdermal E2 patch.41 Results from a rodent
study suggested that BZA has greater ER-antagonist activity than raloxifene in the
endometrium and may inhibit proliferation if co-administered with E2,42 but this
observation has not been tested in a randomized clinical trial or at clinically relevant doses
of BZA and E2. It is also worth noting that some estrogen + SERM combinations have
shown mixed agonist and antagonist effects in the endometrium. In a prior macaque study,
the addition of tamoxifen to low-dose E2 therapy inhibited E2-induced proliferation and
expression of genes related to cell cycle progression, but still induced stromal fibrosis, cystic
change, and increases in endometrial thickness similar to tamoxifen-alone therapy.22

We have previously reported that BZA with and without CEE reduces ERα immunolabeling
in the breast.30 As reported here, a similar observation was noted in the endometrium in
which both glandular and stromal ERα immunolabeling were significantly less with BZA
and BZA+CEE treatments compared to control and CEE, while ERα gene expression was
not affected. These unanticipated results suggest that BZA may increase ERα turnover in
addition to blocking estrogen binding. This hypothesis is supported by a recent breast cancer
cell study that showed proteasome-mediated degradation of the ERα by BZA.43 However,
further studies should be conducted to confirm that BZA may increase ERα ubiquitation and
degradation in normal endometrial cells.

CONCLUSIONS
Exposure to estrogens is a key risk factor for endometrial cancer. In postmenopausal
women, exogenous ET leads to increased endometrial proliferation, hyperplasia, and up to a
5-fold higher incidence of cancer.1, 44, 45 Our results show that BZA at the target human
equivalent dose fully antagonized the proliferative and transcriptional effects of CEE on the
macaque endometrium while having no estrogen agonist activity when given alone. This
information should be useful in the planning of future SERM+estrogen clinical trials and to
symptomatic postmenopausal women seeking alternatives to traditional estrogen + progestin
therapies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
Ultrasonographic measurements of uterine area in postmenopausal macaques receiving no
hormone therapy (n=23), BZA (n=24), CEE (n=24), and BZA+CEE co-therapy (n=27).
Uterine area values among the control, BZA, and BZA+CEE groups were comparable and
significantly smaller than the CEE group at 6, 12, and 20 months of treatment. a P < 0.0001
compared to respective control and BZA+CEE groups. b P < 0.0001 compared to baseline
values. Values represent means ± 95% confidence interval (CI). CTL = control (no hormone
treatment).
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FIG. 2.
Effects of BZA with and without CEE on uterine weight, endometrial thickness, and
epithelial area in postmenopausal macaques (A-C). The addition of BZA to CEE
significantly inhibited the agonistic effects of CEE on uterine weight (A), endometrial
thickness (B), and epithelial area (C) (P < 0.0001 to P < 0.05 for all). n = 23, 24, 24, and 27
for control (CTL), BZA, CEE, and BZA+CEE co-therapy, respectively, for all measures.
Treatment groups not connected by the same letter are significantly different. Values
represent means ± 95% CI.
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FIG. 3.
Effects of BZA given alone and in combination with CEE on endometrial proliferation in
postmenopausal macaques (A-C). Treatment with BZA+CEE resulted in lower MKI67
expression and Ki67 immunolabeling in the superficial endometrium compared to CEE
alone (P < 0.001 for all). BZA given with CEE significantly inhibited the gene and protein
expression of the proliferation marker Ki67 in the superficial endometrium to the level of
control or beyond (A and B). No treatment effect was observed in the basal endometrial
glands (C) however treatment with BZA induced greater Ki67 immunolabeling in the basal
stroma compared to control (P = 0.04). n = 23, 24, 24, and 27 for control (CTL), BZA, CEE,
and BZA+CEE co-therapy, respectively, for all measures. Treatment groups not connected
by the same letter are significantly different. Values represent means ± 95% CI.
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FIG. 4.
Effects of BZA, CEE, and BZA+CEE on endometrial morphology in postmenopausal
macaques (A-C). Within the superficial endometrium, only treatment with CEE induced
change in luminal space (cystic dilation) (A), stromal edema (B), and collagen content (C)
compared to control (P < 0.01 for all). In the basal endometrium, treatment with BZA+CEE
induced a modest but significant increase in luminal space (A) of the endometrial glands (P
< 0.05). n = 23, 24, 24, and 27 for control (CTL), BZA, CEE, and BZA+CEE co-therapy,
respectively, for all measures. Treatment groups not connected by the same letter are
significantly different. Values represent means ± 95% CI.
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FIG. 5.
Effects of BZA given alone and in combination with CEE on ERα expression and markers
of ERα activity in the postmenopausal macaque endometrium (A-D). BZA treatment with
and without CEE decreased ERα immunolabeling in the superficial and basal endometrium
(A and B) compared to control and CEE alone (P < 0.0001 to P < 0.05 for all). The
concomitant use of BZA and CEE significantly attenuated ERα-mediated expression of
TFF1 and PGR (C and D) compared to CEE alone (P < 0.001 for all). n = 23, 24, 24, and 27
for control (CTL), BZA, CEE, and BZA+CEE co-therapy, respectively, for all measures.
Treatment groups not connected by the same letter are significantly different. Values
represent means ± 95% CI.
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TABLE 1

Histopathological Findings

Control BZA 20 mg/d CEE 0.45 mg/d BZA 20 mg/d + CEE 0.45 mg/d

Simple Glandular Hyperplasia 1 (4%) 4 (17%) 23 (96%) 2 (7%)

 Mild 3 4 1 2

 Moderate 0 0 15 0

 Marked 0 0 7 0

 P value vs. Control NA 0.35 <0.0001 1.0

Stromal Hyperplasia 1 (4%) 4 (17%) 22 (92%) 3 (11%)

 Mild 1 4 0 3

 Moderate 0 0 15 0

 Marked 0 0 7 0

 P value vs. Control NA 0.35 <0.0001 0.61

Stromal Edema 3 (13%) 1 (4%) 23 (96%) 0 (0%)

 Mild 3 1 1 0

 Moderate 0 0 14 0

 Marked 0 0 8 0

 P value vs. Control NA 0.35 <0.0001 0.09

Cystic Dilation 0 (0%) 1 (4%) 9 (38%) 0 (0%)

 Mild 0 1 4 0

 Moderate 0 0 4 0

 Marked 0 0 1 0

 P value vs. Control NA 1.0 0.006 1.0

Number Examined 23 24 24 27

NOTE: All lesions demonstrate evidence of an estrogenic effect but are not considered high-risk. Neither complex nor atypical endometrial
hyperplasia was observed. All cases had evidence of vascular remodeling associated with past pregnancy. All P values were determined using a
Fisher’s Exact Test.
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