
Perturbations of Neural Circuitry in Aging, Mild Cognitive
Impairment, and Alzheimer’s Disease

Stephanie Leal and Michael A. Yassa*

Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD
21218

Abstract
Alzheimer’s disease (AD) is a global public health threat that continues to rise as the proportion of
the population over the age of 60 rapidly increases. Aging and dementia are both associated with
cognitive decline and share some features in terms of structural and functional alterations in neural
circuitry. In this review, we attempt to highlight the network perturbations that occur in “typical”
aging and emphasize how they may differ from those that manifest in dementia. We focus in
particular on neuroimaging studies of the medial temporal lobe (MTL) network, which is involved
in episodic memory and is known to change both with age and with AD pathology. We propose a
temporal model of structural and functional alterations in the MTL along the aging-dementia
continuum. The earliest changes are synaptic in nature and are detectable in particularly
vulnerable white matter pathways such as the perforant path. These are followed by structural
degradation in the transentorhinal region and subsequently neurodegeneration of the hippocampus
as a result of accumulating pathology as well as deafferentation from entorhinal input. We believe
that testing this model explicitly is an important direction for future research, particularly in the
context of biomarker discovery and clinical trial design.
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1. Introduction
By 2050, almost a third of the world’s population will be 60 years or older. The population
over 65 is projected to increase to 86.7 million by 2050 (U.S. Census Bureau, Population
Estimates and Projections, 2004). In addition, the risk for developing Alzheimer’s disease
(AD) increases with age, with people 85 and older facing the highest risk (Brookmeyer et
al., 1998). An estimated 5.4 million Americans are living with AD today (Alzheimer’s
Association, 2012). If there is no prevention or treatment discovered, the number of
individuals with AD in 2050 could range between 11 and 16 million. Since age is the single
most striking risk factor for AD, the rapid increase in the aging population significantly
complicates this public health problem and places a strain on the nation’s health care system.
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Indeed, the costs of care for AD in 2012 alone are estimated at $200 billion (Alzheimer’s
Association, 2012).

Although much of the research conducted on memory loss focuses on AD, aging in the
absence of Alzheimer’s pathology is itself associated with neurocognitive decline.
Differentiating the mechanisms for neural changes in successful and pathological aging is
critical to accurate diagnosis and effective intervention. In order for this discrimination
process to be relevant in the therapeutic arena, it must take place early enough before AD
pathology has initiated irreversible neurodegenerative processes (i.e. frank cell loss). There
is widespread agreement that intervention at this stage is too late, thus providing the impetus
for early diagnosis based on biomarkers during the preclinical / asymptomatic stage
(Sperling et al., 2011). During this stage, molecular and synaptic changes take place (thus
giving rise to potential biomarker signatures that can be detected using physiological
measures), however cognition remains largely intact.

Here, we review evidence from brain imaging studies that may be used to differentiate aging
from AD and its prodromal phase, mild cognitive impairment (MCI). In particular, we focus
on neural circuitry that is essential for the formation of new declarative memories, as
memory is one of the first domains to show change in the course of AD and memory
complaints with aging are fairly common. Although we restrict our review to studies of
neural circuits in humans using brain imaging techniques such as structural magnetic
resonance imaging (MRI), functional MRI (fMRI), and diffusion tensor imaging (DTI), it is
worth noting that studies in aged animals and genetic models of AD have contributed much
to our understanding of neural circuits underlying age and pathology-related changes in
cognition (e.g., see recent reviews by Gallagher and Koh, 2011; Kitazawa et al., 2012).

2. Neuroimaging studies in cognitive aging
It is commonly known that many forms of memory decline with age. Older adults report
memory complaints more frequently than problems with any other cognitive skill (Newson
and Kemps, 2006). The medial temporal lobes (MTL), which include the hippocampus and
surrounding cortices, play an essential role in declarative (fact and event) memory
processing (Milner et al., 1998). Changes in this system with normal aging have been
documented in animal studies (see Burke and Barnes, 2010 and Wilson et al., 2006 for
reviews) and human brain imaging studies (Chee et al., 2006; Murty et al., 2008; Raz et al.,
2005; Sperling, 2007). At a cognitive level, aging is associated with a decline in the ability
to form new episodic memories (Craik and Simon, 1980; Hedden and Gabrieli, 2004;
Hedden and Gabrieli, 2005; Small et al., 1999) spatial memory and navigation (Newman
and Kaszniak, 2000), and contextual source memory (Henkel et al., 1998), all functions
thought to be subserved by the MTL and the prefrontal cortex.

2.1. Structural Imaging
Structural neuroimaging methods measured across the lifespan have revealed many age-
related changes in the brain. There is a decrease in total brain volume resultant from cortical
thinning and gyral atrophy (Uylings and de Brabander, 2002). Specifically, the prefrontal
cortex and the hippocampal formation display volume loss in advanced aging that
significantly accelerates from normal aging to MCI to AD (Jack et al., 2000; Raz et al.,
2005). Some MRI studies have also shown that the extent of hippocampal and entorhinal
volume decline with increasing age predicted performance on memory tasks (Rodrigue and
Raz, 2004; Rosen et al., 2003). Despite these studies, it is not clear whether any of these
changes are actually the result of frank cell loss with age, or perhaps are secondary to
synaptic and dendritic loss. Studies in aged rodents and non-human primates have reliably
demonstrated the absence of frank cell loss in the hippocampus with age (Rasmussen et al.,
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1996; Rapp and Gallagher, 1996; Rapp et al., 2002) but regions in the prefrontal cortex are
found to undergo cell loss (Peters et al., 1994; Smith et al., 2004; Stranahan et al., 2012).

2.2. Functional Imaging
Early positron emission tomography (PET) studies of the MTL demonstrated differential
activation patterns between young and older adults on memory tasks. For example, Grady et
al. (1995) and subsequently Cabeza et al. (1997) found that left prefrontal activity during
memory encoding was decreased in older adults. Cabeza and colleagues additionally found a
bilaterality in older adults (equivalent levels of activity in the right and left prefrontal cortex)
that was not present in young adults (conceptualized in the Hemispheric Asymmetry
Reduction in Older Adults - HAROLD model). Grady and colleagues also found that the
correlation between hippocampal and prefrontal activity found in the young (.94) was
remarkably diminished in the old (.02), suggesting that there is a decrease in connectivity
between these regions with age.

Morcom et al. (2003) reported that both older and younger individuals showed more
hippocampal activity for remembered items than forgotten items in a subsequent memory
paradigm1, with younger adults showing more activity in the left inferior temporal cortex
than older adults. Several other fMRI studies confirmed that activity in the hippocampus
was similar in young and old individuals across a range of memory tasks (Duverne et al.,
2008; Rand-Giovannetti et al., 2006; Sperling, 2007). This is in contrast to findings reported
by Daselaar et al. (2003) who used a similar task to Morcom and colleagues, although
remembered items were compared to baseline instead of forgotten items due to an
inadequate number of stimuli. The authors found that high-performing older adults showed
similar levels of hippocampal activity to young adults, whereas low-performing older adults
showed less medial temporal lobe activation for remembered items. Another study by
Gutchess et al. (2005) used an incidental picture-encoding task and observed that older
adults had lower parahippocampal activation and higher left frontal activation for
remembered items. Other studies have also suggested that there are reductions in activity in
the hippocampus with aging (Cabeza et al., 2004; Daselaar et al., 2006; Dennis et al., 2008;
Murty et al., 2008), coupled with an increase in compensatory activity in the left frontal
cortex. The lack of consensus across fMRI studies could be due to the wide variability in
tasks and statistical contrasts used to assess hippocampal function. It is also possible that age
difference could derive from a reduced ability to use the correct strategy to resolve the
memory task instead of a failure of neural circuitry (Dennis et al., 2007; Logan et al., 2002;
Morcom et al., 2003; Reuter-Lorenz and Lustig, 2005). Rodent studies have shown
increased variability in learning index in aged compared to young rodents (Gallagher et al.,
2006), suggesting that the variability seen in fMRI studies of MTL function could be
reflecting this variability in memory performance with age. The differential distribution of
fMRI variability across young and aged groups further complicates fMRI group analyses
and must be taken into consideration especially with small samples.

Functional MRI studies of the in older adults have some additional noteworthy limitations.
First, aging is associated with changes in basal state factors such as cerebrovascular
coupling and metabolic rate (Small et al., 2004; Ances et al., 2009; Fleischer et al., 2008)
which can severely affect group comparisons and may even lead to misleading results. This
issue is magnified when baseline tasks such as rest or fixation are used, as they involve
hippocampal activity on par with mnemonic tasks (Stark and Squire, 2001). A potential
solution to these problems is to compare groups on within-participant contrasts only. Let us

1The Subsequent Memory paradigm is a commonly used fMRI task where performance during retrieval is used to sort encoding trials
into subsequently remembered (S-R) and subsequently forgotten (S-F). Much research using this task has shown hippocampal activity
during the S-R trials compared to the S-F trials.
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assume for example that groups A and B were both administered two active conditions X
and Y. The comparison of (XA – YA) vs. (XB –YB) should be relatively immune from basal
effects unless one assumes a complex interaction between condition and basal state.

Yassa et al. (2010a) recently used this approach in a study of hippocampal memory in young
and older adults. The investigators reported hyperactivity in the hippocampus, but it was
limited to the dentate gyrus and CA3 subregions, and only in a specific memory contrast,
which accounted for baseline metabolic factors. The extent of hyperactivity predicted the
degree to which participants generated false alarms (judged items previously not seen as
familiar), suggesting that hyperactivity is not compensatory but rather may be an index of
network dysfunction. These results are also consistent with findings from Miller et al.
(2008a) who demonstrated that low-performing older adults have greater hippocampal
activation on a face-name paired associate learning task that did not manifest in high-
performing older adults.

Overall, the results from functional MRI studies of the aging brain, and in particular as they
pertain to episodic memory and the medial temporal lobe, have been mixed and studies have
been plagued with many experimental and methodological confounds (for example, baseline
metabolic factors, strategy use, the lack of behavioral effects, using blocked designs, and
using whole-brain alignment techniques that miss hippocampal activity at a group level).
The most recent work discussed above takes into consideration all of these issues and
suggests a new perspective on age-related hippocampal alterations. The idea is that
particular subregions of the hippocampus are vulnerable to age-related loss of inhibitory
input, which has been shown in rodent studies (see Wilson et al. 2006 for review), and as a
result show hyperactivation, the extent of which predicts memory deficits. This
hyperactivation is even more dramatic in the context of mild cognitive impairment (MCI),
which will be discussed later in the review. Hyperactivation in the dentate and CA3 regions
of the hippocampus can be viewed as an index of network dysfunction that may predict later
decline to MCI, although this hypothesis has not yet been directly tested.

In addition to task-activated fMRI, correlational approaches have also been applied to
studies of the aging brain. These resting-state functional connectivity magnetic resonance
imaging (rs-fcMRI) studies examine connectivity by analyzing spontaneous fluctuations in
brain networks (Biswal et al., 1995; Fox and Raichle, 2007). Most analyses focus on the
integrity of brain circuitry that is active during rest, otherwise known as the “default mode
network (DMN)” (Gusnard and Raichle, 2001; Raichle et al., 2001) - a network that
involves the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), precuneus,
anterior cingulate cortex (ACC), parietal cortex, and the medial temporal lobe, including the
hippocampus (Greicius and Menon, 2004; Buckner et al., 2008). These regions are active
during rest and are typically inactivated during task performance (Raichle et al., 2001).

The DMN is hypothesized to mediate task-independent “internal” thought rather than
extrinsic stimulus processing. Individuals perform better on tasks involving extrinsic
stimulus processing when more of the DMN regions are being suppressed. In the healthy
brain, greater suppression of the DMN is associated with better memory formation (Daselaar
et al., 2004; Daselaar et al., 2009). As task difficulty increases, DMN suppression increases
(Singh and Fawcett, 2008; McKiernan et al., 2003), suggesting that attentional resources are
diverted away from internal processing and toward more difficult task-related processing. In
addition to DMN activation being associated with attention and memory processing task
performance, many studies have attributed this network to self-referential processing
(D'Argembeau et al., 2005; Gusnard et al., 2001; Kelley et al., 2002; Northoff and
Bermpohl, 2004; Northoff et al., 2006; Whitfield-Gabrieli et al., 2011) and with
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remembering the past, planning one’s future, and forming beliefs (Buckner et al., 2008;
Raichle and Snyder, 2007).

Studies of the DMN in older adults have generally shown a decrease in connectivity
between the DMN regions compared to young adults. Specifically, the PCC, superior and
middle frontal gyrus, and the superior parietal regions show reduced connectivity compared
to young adults (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008). A negative
association between age and DMN connectivity has also been demonstrated (Biswal et al.,
2010). The reduction in connectivity within the DMN may reflect a reduction in the ability
to suspend DMN activity when more complex cognitive processes are required. There may
be some difficulty in switching from a “default mode” to a task-related mode of brain
function (Grady et al., 2006; 2010). Some studies in healthy older subjects have shown
increased activity at rest, mainly in anterior brain areas such as the anterior cingulate (Davis
et al., 2008; Grady et al., 2006; van den Heuvel and Hulshoff Pol, 2010), medial prefrontal,
and superior frontal cortices (Lustig et al., 2003). This increased activity at rest in frontal
DMN regions in elderly adults has been viewed to reflect a compensatory mechanism that
may be compensating for the decrease of resting-state activity in posterior DMN areas
(Mevel et al., 2011).

In addition to investigations of the DMN, some recent work has focused on the medial
temporal lobe network using high-resolution functional MRI. One recent study (Yassa et al.,
2011b) showed an age-related decrease in connectivity between the entorhinal cortex and
the dentate and CA3 regions of the hippocampus, which are implicated in the hippocampus’
ability to support pattern separation (storing similar experiences as distinct memories using
orthogonalized neural codes). This local connection can be thought of as a functional assay
of the perforant path, a major input pathway to the hippocampus from the entorhinal cortex.
The age-related decline was tightly coupled to levels of activity in the dentate and CA3
regions, behavioral performance on a task sensitive to pattern separation deficits, as well as
structural integrity of the perforant path measured using diffusion tensor imaging (this
method is discussed in detail in the next section). Future studies investigating both DMN
circuitry and more fine-grained details of intra-network connectivity such as the MTL
network will be required to further understand age-related brain dynamics. This step will
require high-resolution sequences that are capable of querying individual subfields of the
hippocampus as well as the entire brain, which is quite elusive given our current scanning
capabilities.

To summarize, resting state fMRI studies, unlike task-activated fMRI studies, have
generally provided a more consistent picture with most studies observing decreases in
posterior DMN connectivity, increases in anterior DMN connectivity, overall loss of
coherence in the DMN, and loss of intra-network connectivity in the medial temporal lobe, a
critical component of the DMN, all of which have been associated with age-related memory
deficits.

2.3. Diffusion Imaging
Diffusion tensor imaging (DTI) has been used to investigate the microstructural features of
white matter (Taylor et al., 2004). A number of DTI studies have shown white matter loss
with aging (see review by Chua et al., 2008), most likely due to thin myelinated fiber
degeneration (Marner et al., 2003; Meier-Ruge et al., 1992; Sandell and Peters, 2003; Tang
et al., 1997). The majority of DTI studies assess white matter integrity using voxel-wise
values such as fractional anisotropy (FA). FA is a scalar quantity that measures the
anisotropy (i.e. directionality) of the diffusion signal in any given voxel and is taken as an
indirect proxy to white matter integrity. There are many factors that affect FA including
axonal degeneration, demyelination, disorganization, packing density, and other
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microstructural features. Although the neural basis of FA is still not completely understood,
it has been used as an index of white matter integrity in thousands of studies of the human
and animal brain. Typically the higher the FA value, the more intact a fiber pathway is
thought to be.

Stebbins et al. (2002) examined frontal lobe FA in selected regions-of-interest (corrected for
atrophy) in ten younger and ten older right-handed healthy participants and found that
frontal FA was significantly reduced in older compared to younger participants. Age-related
FA reductions also seem to have a temporal pattern where they start in more anterior brain
regions then proceed gradually to more posterior regions (Davis et al., 2008). In addition to
white matter FA decline in aging, mean diffusivity (MD) increases (Chen et al., 2001;
Engelter et al., 2000; Head et al., 2004; Helenius et al., 2002; Naganawa et al., 2003; Ota et
al., 2006; Pfefferbaum et al., 2005; Pfefferbaum and Sullivan, 2003). MD is another scalar
measure of overall diffusivity within any given voxel and tends to increase in regions where
white matter is compromised.

A novel high-resolution DTI sequence capable of resolving fibers with sub-millimeter
resolution was recently used to quantify the perforant path in young and older adults, with
results demonstrating a significant decline in perforant path integrity with aging (Yassa et
al., 2010a). Furthermore, the degree of such decline was negatively correlated with scores on
tests of hippocampal function as well as functional activity in the dentate and CA3 regions
of the hippocampus in the same individuals (Yassa et al., 2011a).

To summarize, diffusion imaging studies of the aging brain have generally noted a decrease
in white matter integrity throughout the entire brain starting with more anterior (prefrontal)
regions, as well as more specific degradations in pathways critical for episodic memory,
such as the perforant path. Diffusion imaging, compared to other imaging modalities,
however is still in its infancy and will likely make more significant contributions in the
future as our techniques for high-resolution scanning and tractography improve.

2.4. Summary
Structural, functional, and diffusion imaging techniques have all been applied to the study of
the aging human brain. Structurally the entire brain undergoes gray matter volume loss, with
some regions such as the medial temporal lobe (particularly the entorhinal cortex and the
hippocampus) and the prefrontal cortex being the most vulnerable. White matter structural
loss (using DTI) has also been reported in the prefrontal cortex and in a specific
hippocampal pathway, the perforant path, which conveys input from the entire brain to the
hippocampus and is critical for episodic memory processing.

Functionally, there is a shift in brain dynamics where the following age-related features have
been reported: (1) reduced laterality in the prefrontal cortex in episodic memory tasks, (2)
increased activity in the dentate and CA3 regions of the hippocampus in low-performing
older adults in episodic memory tasks sensitive to hippocampal pattern separation, (3)
decreased entorhinal – hippocampal connectivity in low-performing older adults during rest,
and (4) decreased DMN connectivity particularly in the posterior regions, e.g. posterior
cingulate and precuneus. Many of these features have been linked to episodic memory
deficits, thus they may be used to track individuals longitudinally to determine which of
them may predict later decline. Since there is no way to exclude AD pathology in the aged
brain (amyloid imaging is a step in the right direction, but is in no way diagnostic), some of
these features may be specific to the aging brain and some may be precursors for
Alzheimer’s disease. Longitudinal follow-up studies are essential to determine the
specificity of these neurobiological alterations.
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3. Neuroimaging studies in MCI and early AD
Episodic memory deficits have been documented as important and early-detected risk
factors for AD (DeCarli et al., 2004; Grober et al., 2008; Grober et al., 2000; Kawas et al.,
2003; Welsh et al., 1992). The hippocampus and entorhinal cortex are most affected in AD,
with increasing atrophy in these structures from normal aging to MCI to AD (Du et al.,
2001; Welsh-Bohmer et al., 2012). Frank neuronal loss in the hippocampus (CA1 field) and
layer II of the entorhinal cortex has been observed in histological studies of Alzheimer’s
disease (Gomez-Isla et al., 1996; Nestor et al., 2004; Price et al., 2001; West et al., 1994;
2004). Further, such work has even been able to show that cellular loss is correlated with the
onset of disease symptoms (Price et al., 2001; West et al., 2004). In discussing neuroimaging
findings, we will once again focus on the medial temporal lobe, since histological studies
have all pointed to this network as the one where AD pathology first manifests. Also, we
will specifically focus on the earliest stages of Alzheimer’s disease (i.e., mild cognitive
impairment), which is where much of the diagnosis and intervention effort is focused.

3.1. Structural Imaging
Although dramatic neuronal loss is not observed in preclinical AD or MCI, several studies
have shown mild hippocampal atrophy during these stages. Hippocampal atrophy has been
linked to cognitive impairment suggestive of AD (Convit et al., 1993; 1995; Killiany et al.,
1993). Several human structural MRI studies have used very-high-dimension transformation
techniques to observe changes in the shape of the hippocampus associated with AD.
Consistent with the histological data, changes in the area of the CA1 fields in the
hippocampus have been reported (Csernansky et al., 2000; Csernansky et al., 2005; Wang et
al., 2006). Notably, in one of these studies, the same region of CA1 identified as differing in
shape between non-demented and mildly demented patients also varied in the non-demented
patients as a function of whether or not they later converted to a CDR (Clinical Dementia
Rating) of 0.5. More recent work by the same group suggests that surface deflections across
all hippocampal subfields (CA1 lateral zone, dentate gyrus/CA2-4 superior zone, and
subiculum inferior medial zone) differentiate non-demented controls from early AD patients
(Qiu and Miller, 2008).

Recent high-resolution structural imaging studies in MCI patients where subfields of the
hippocampus were manually segmented have suggested that specific subfields are more
vulnerable than others. Yassa et al. (2010b) found that the CA1 and CA3/dentate gyrus
regions both show volumetric loss, with left-lateralized changes in both subregions. The
subiculum and other medial temporal regions were no different in MCI patients and
controls. Similar techniques showed that the subiculum, CA1, and entorhinal cortex are
further affected in AD (Mueller et al., 2010; Mueller and Weiner, 2009). Mueller and
Weiner (2009) also found that ApoE4 status was associated with volumetric decline in the
CA3/dentate subregions, suggesting that early risk for AD may selectively affect this region,
consistent with the loss of synaptic input reported in animal studies.

Several reports based on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) have
strongly suggested that entorhinal cortical thickness declines early in MCI and continues to
do so linearly as the disease progresses to AD. For example, a recent study by Desikan et al.
(2010) found that entorhinal cortical thinning predicted later hippocampal decline in MCI
and AD and that this MRI feature was linked to p-tau elevations found in cerebrospinal fluid
(CSF) of the same sample, consistent with histopathological data. Another recent study by
Ewers et al. (2012) suggested that the entorhinal cortex was one of the best predictors of
MCI conversion to AD, even surpassing multimarker models.
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Thus, results from structural MRI studies have generally shown that both the entorhinal
cortex and the hippocampus show robust volumetric declines in MCI and AD (with the
entorhinal change occurring earlier) and may be used as an early diagnostic feature,
although functional changes may well precede structural changes in this network.

3.2. Functional Imaging
Several studies have used fMRI to examine functional changes in MCI and early AD. In one
example (Dickerson et al., 2004), MCI patients were scanned during memory encoding.
Consistent with studies of young, healthy individuals, the amount of activity in the medial
temporal lobe during this encoding phase correlated with participants’ subsequent memory
performance. Critically, the amount of activity in these regions also varied as a function of
the patients’ CDR-SB (Clinical Dementia Rating – Sum of Boxes) scores. Further, the
amount of activation in the parahippocampal gyrus varied as a function of whether the
patients’ CDR-SB scores remained constant or declined over several years. Studies of novel
encoding in mild AD patients have consistently found decreased fMRI activation in
hippocampal and parahippocampal regions compared to healthy older adults (Rombouts et
al., 2000; Small et al., 1999; Sperling et al., 2003). Several studies have also found evidence
of increased activation in some neocortical regions in AD patients, which may be secondary
or even compensatory to MTL network failure (Dickerson et al., 2005; Pariente et al., 2005).

Dickerson and colleagues (2005) found increased hippocampal activity during learning in
individuals with MCI compared to normal controls and individuals with AD. Another study
by the same group (Celone et al., 2006) using an independent component analysis found that
less impaired MCI patients showed this increase, while more impaired MCI patients showed
a decrease in activity similar to mild AD cases (Dickerson et al., 2005; Kato et al., 2001;
Rombouts et al., 2000; Small et al., 1999; Sperling, 2007). Additional data from Miller et al.
(2008b) shows that hippocampal activation at baseline predicts cognitive decline as
measured by the CDR-SB scores over 4 years after scanning. This paradoxical
“hyperactivity” seen in some MCI patients has also been noted in cognitively intact ApoE 4
carriers (Bookheimer et al., 2000) and in asymptomatic offspring of autopsy-confirmed AD
patients (Bassett et al., 2006).

Recent work has shown that this hippocampal hyperactivity in MCI, similar to that present
in low-performing older adults, is specific to the dentate and CA3 subregions of the
hippocampus (Yassa et al., 2010b). This is consistent with studies in aged rodents, where the
CA3 region demonstrates maladaptive hyperexcitability (see Wilson et al., 2006 for review).
This elevation in activity can be targeted with inhibitory pharmacological manipulations
(Koh et al., 2010) reversing memory deficits in treated animals. The remarkable consistency
across animal and human studies here was used recently to leverage translational work in a
clinical trial with a low-dose anti-epileptic (levetiracetam) in individuals with MCI. The trial
reported positive results where levetiracetam successfully reduced hippocampal
hyperactivity and reversed deficits on a test of hippocampal pattern separation (Bakker et al.,
2012).

Thus, fMRI studies have generally shown hippocampal hyperactivation in MCI, likely
secondary to loss of inhibitory tone as well as loss of perforant path input (see Wilson et al.,
2006). As the disease progresses and hippocampal atrophy takes hold, studies have reported
declines in hippocampal activity, which one would expect given the neurodegenerative
process.

Resting-state functional connectivity between the hippocampus and the posterior cingulate
cortex (a major part the default mode network) is disrupted with AD (Greicius and Menon,
2004). This finding is in agreement with PET studies of AD which report hypometabolism
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in the posterior cingulate (see review by Mosconi et al., 2005). Recently, amyloid imaging
methods able to measure AD pathology have revealed another link to the default network:
pathology preferentially accumulates in the DMN (regions typically forming well-connected
and highly active hubs) even before symptoms emerge (Buckner et al., 2008). DMN
abnormalities are typically found to increase with disease progression (Petrella et al., 2011;
Sanz-Arigita et al., 2010; Supekar et al., 2008; Zhang et al., 2010; Zhou et al., 2010; Agosta
et al., 2011). Brier et al. (2012) recently showed that AD is associated with widespread loss
of both intra-network and inter-network correlations. A recent study of functional
connectivity within the medial temporal lobe reported a relative disconnection of the MTL
from other neocortical structures, but increased connectivity locally within the MTL in MCI
patients (Das et al., 2012). This suggests that altered activity in components of the DMN
may act as an early marker for AD pathology, although much work has yet to be done to
understand the individual roles of each of the DMN sub-networks in disease
pathophysiology.

3.3. Diffusion Imaging
DTI has recently been applied to the study of AD (see review by Chua et al., 2008). DTI
studies of MCI and AD show widespread declines in white matter integrity throughout the
brain with the most reliable changes reported in the temporal lobes (Bozzali et al., 2002;
Chua et al., 2008; Huang and Auchus, 2007; Huang et al., 2007; Naggara et al., 2006; Xie et
al., 2006). Investigations of white matter connectivity changes in aging and AD have
focused on the fornix and the cingulum, as they are the major links between the limbic
system and the rest of the brain. The fornix is the largest input/output fiber bundle of the
hippocampus and connects it to the hypothalamus, while the cingulum connects the
cingulate and the parahippocampal gyri to the septal cortex (Haines and Lancon, 2003).
Damage to the fornix in animal studies has been found to reproduce learning and memory
deficits resulting from hippocampal lesions (McDonald and White, 1993; Sutherland et al.,
1982). DTI fiber tracking studies show reduced fractional anisotropy in the fornix in AD
(Teipel et al., 2007). Several studies have found white matter changes in the cingulum in
MCI and mild AD cases (Choo et al., 2010; Firbank et al., 2007; Villain et al., 2008). At
least two studies have suggested a reduction in fractional anisotropy in the MTL in ApoE4
carriers (Nierenberg et al., 2005; Persson et al., 2006), suggesting that microscopic changes
precede the onset of dementia and can be detected in the absence of any cognitive
symptoms.

One critical pathway for episodic memory is the perforant path, discussed earlier in the
sections on aging. A recent study by Kalus et al. (2006) found reductions in intervoxel
coherence in the perforant path zone in MCI patients compared to controls, possibly
indicating synaptic loss in the region. However, since there are many crossing fibers in the
region, it was not possible to uniquely attribute these signal losses to the perforant path
itself. In order to measure the integrity of the perforant path, a high-resolution sequence
similar to the one used by Yassa et al. (2010a; 2011b) in older adults may be applied.
Preliminary results from this method suggest that perforant path decline is much more
dramatic in MCI and AD (Yassa and Stark, unpublished observations) compared to the loss
exhibited in normal aging.

3.4. Summary
Structural, functional and diffusion imaging studies in MCI and early AD have shown
volume changes and thinning in the entorhinal cortex and the hippocampus and
demonstrated a link between these changes and disease status and progression. Functional
MRI studies of episodic memory have generally shown hippocampal hyperactivity in the
early stages followed by hypoactivity in the later stages of the disease. Resting state studies
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of the DMN suggest general disconnection among its components in MCI and furthermore
in AD. DTI studies have reliably demonstrated loss of integrity in the fornix, the cingulum,
and the perforant path, with the latter being one feature that is directly linked to
hippocampal function and episodic memory performance.

4. Synthesis and Hypothetical Biomarker Model
Based on a survey of the neuroimaging literature in aging, MCI, and AD, we propose a
preliminary model to understanding medial temporal lobe structural and functional changes
along the continuum from aging to MCI to AD. Many of the features in this model are on a
quantitative, rather than a qualitative scale, suggesting that there are key features that change
very early in the course of the disease and which can be targeted for diagnosis and
intervention. We choose to focus on the medial temporal lobe here, as the picture in this
region is far clearer than anywhere else in the brain, although much still remains to be
accomplished. The hypothetical model is shown in Figure 1, and extends several models
recently hypothesized in the literature (e.g., Sperling et al., 2011; Ewers et al., 2011) with
more specific emphasis on neurobiological features in the MTL network. Our model
specifically adds two features with their hypothesized temporal parameters, namely
entorhinal cortical thinning and perforant path degeneration.

We suggest that during the preclinical stage, the biomarker signals undergoing the most
change are hippocampal hyperactivity and perforant path loss, with the structural signals in
the entorhinal cortex and the hippocampus being much more difficult to detect as frank
neurodegeneration has not yet occurred. During the MCI stage, hippocampal hyperactivity
reaches its peak, coupled with a considerable decline in the perforant path. Decline in this
pathway is hypothesized to have retrograde effects (loss of entorhinal cortical neurons
leading to cortical thinning) and anterograde effects (loss of neurons in the hippocampus
leading to volume decline). Given converging reports from autopsy and MRI, we further
suggest that the retrograde effect on the entorhinal cortex precedes and predicts the later
change to the hippocampus. Since AD pathology tends to accumulate first in the
transentorhinal region (Braak stage I), we suggest that the impact of synaptic loss in the
perforant path may manifest first in the entorhinal cortex by interacting with
hyperphosphorylated tau pathology in this region.

In MCI, the most sensitive biomarkers (those exhibiting the largest change) will vary as a
function of how far along individuals are in the disease process. If individuals are earlier in
that spectrum, then hippocampal hyperactivity and perforant path loss will be the most
salient (with detectable but smaller changes in entorhinal cortical thickness and hippocampal
volume). If individuals are farther along in that spectrum, hippocampal hyperactivity will
have diminished, thus making this biomarker less useful. Using structural features such as
perforant path integrity, entorhinal cortical thickness, and hippocampal volume as
longitudinal markers of decline may be more robust against individual variations in
progression. In AD, the perforant path is completely deteriorated, thus biomarker change
here may not be salient; however, structural assays of neurodegeneration, i.e. hippocampal
volume and entorhinal cortical thickness, will likely be the most salient. It is worthy of note
that although hippocampal activity may also be a salient feature here (lower magnitude in
AD), functional markers are most helpful in the absence of structural change (i.e. in the
preclinical and early MCI phase).

Figure 1 represents our current understanding of how different regions of the medial
temporal lobe change from healthy aging to MCI to AD, but it is important to note that it is a
work in progress and much still remains to be understood. For example, the individual
contributions of each of the hippocampal subfields is not entirely understood, although we
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suggest that the dentate and CA3 are especially vulnerable earlier on, with the vulnerability
extending to the CA1 and subiculum later on in the disease.

Furthermore, other subregions of the medial temporal lobe such as the perirhinal cortex and
the parahippocampal cortex have not received as much attention in the literature on
neurocognitive aging and the pathophysiology of AD, although they are undoubtedly
implicated by virtue of pathology accumulation and network connectivity. Finally, the
relationship between these biomarkers and other indices of brain dysfunction is not well
understood. Future studies focused on investigating connectivity changes within and across
brain networks with focus on the medial temporal lobe and posterior parietal networks will
significantly inform this understanding.

5. Conclusion
We conclude that although most of the perturbations in medial temporal network dynamics
found in aging, MCI, and AD are a continuous spectrum and can be construed as varying
quantitatively rather than qualitatively, pathology tends to accelerate the decline of certain
features thus making them more detectable and perhaps diagnostic of the disease process.
Understanding the nature of these pathological changes and how they affect network and
circuit dynamics is critical to understanding the aging brain, differentiating healthy aging
from dementia, and improving diagnostic and therapeutic tools for dementia.
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Highlights

- Structural and functional changes in the medial temporal lobe occur in aging,
mild cognitive impairment and Alzheimer’s disease.

- Synaptic dysfunction precedes frank neurodegeneration and can be used as a
sentinel to predict decline.

- Changes in the medial temporal lobe follow a distinct temporal biomarker
pattern, potentially informing clinical intervention trials.
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Figure 1.
Summary model for hypothesized changes in the MTL in the preclinical phase
(asymptomatic), MCI, and AD. Functional activity in the hippocampus increases during the
preclinical stage and continues to do so during the MCI stage, then declines towards the end
of the MCI stage and more so in AD. The earliest structural decline occurs in the perforant
path (measured using DTI), followed by entorhinal cortical thinning, followed by
hippocampal volume loss, with each of these features independently predicting episodic
memory deficits and disease decline. See text for discussion.
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