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Summary
Clustered survival data frequently arise in biomedical applications, where event times of interest
are clustered into groups such as families. In this article we consider an accelerated failure time
frailty model for clustered survival data and develop nonparametric maximum likelihood
estimation for it via a kernel smoother aided EM algorithm. We show that the proposed estimator
for the regression coefficients is consistent, asymptotically normal and semiparametric efficient
when the kernel bandwidth is properly chosen. An EM-aided numerical differentiation method is
derived for estimating its variance. Simulation studies evaluate the finite sample performance of
the estimator, and it is applied to the Diabetic Retinopathy data set.
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1. Introduction
Clustered survival data are a common type of multivariate survival data, often encountered
in fields such as medicine, economics and epidemiology. Because multivariate survival
models are important tools for analyzing clustered survival data, they have attracted
considerable attention. There are two main approaches: marginal modelling and joint
modelling via random effects. The first approach models the marginal distribution of
correlated failure times without specifying the correlation structure. For example, Wei et al.
(1989) proposed marginal regression analysis based on the proportional hazards model
(Cox, 1972) for multivariate failure time data. A review of marginal approaches based on
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the proportional hazards model can be found in Lin (1994). In some applications, such as
family studies, the within-cluster association is also important to investigators. Joint
modelling uses random effects to describe the association among failure times within
clusters. In addition, by appropriately taking into account the correlation structure, joint
modelling can have better estimation efficiency than the marginal approach. Clayton &
Cuzick (1985) introduced cluster-specific random effects or frailties to the proportional
hazards model, which assumes that subjects within the same cluster can be considered
independent conditional on the frailty. The multiplicative proportional hazards frailty model
has been widely studied (Hougaard, 1987; Oakes, 1989; Nielsen et al., 1992) and various
frailty distributions have been used to describe the within cluster correlation. The large
sample properties of the associated nonparametric maximum likelihood estimators have
been investigated by Murphy (1994, 1995) and Parner (1998).

The accelerated failure time model (Kalbfleisch & Prentice, 2002) is a useful alternative to
the proportional hazards model. Many methods have been developed for parameter
estimation in the accelerated failure time model for univariate survival data (Buckley &
James, 1979; Tsiatis, 1990; Ying, 1993; Jin et al., 2003; Zeng & Lin, 2007). Recently, this
model has been extended to clustered survival data. For example, Jin et al. (2006a,b)
considered the marginal accelerated failure time model for clustered survival data: the
former extended the Buckley-James estimation method; the latter extended the weighted
log-rank estimation method. To improve the efficiency of the marginal approach, Li & Yin
(2009) proposed a generalized moments estimation method, incorporating a posited
correlation matrix into the rank-based estimating equations and minimizing a quadratic
inference function. In addition, Johnson & Strawderman (2009) applied the induced
smoothing technique to the weighted log-rank estimators for clustered survival data, which
facilitates the resulting estimation and inference procedures. To characterize the correlation
structure of failure times within clusters, Pan (2001) proposed to use frailties in the
accelerated failure time model and developed an EM-like algorithm to estimate the
coefficients in the accelerated failure time frailty model. Based on Pan’s method, Zhang &
Peng (2007) and Xu & Zhang (2010) developed more stable estimation procedures using M-
estimation and rank-based estimation, respectively. More recently, Johnson & Strawderman
(2012) introduced smoothing into the EM-like algorithm to facilitate parameter estimation.
However, none of the above estimators are semiparametric efficient because the considered
EM-like algorithms do not maximize the likelihood function. Moreover, the asymptotic
properties of these estimators have not been studied. In this article, we develop a
nonparametric maximum likelihood estimation method for the accelerated failure time
frailty model.

2. The accelerated failure time frailty model
Let Tij be the failure time, Cij be the censoring time and Xij be the p-dimensional vector of
baseline covariates for the jth individual in the ith cluster, for i = 1, …, n and j = 1, …, mi.
Here n is the total number of clusters and mi is the size of the ith cluster. The observed data
are O = {(T ̃ij, δij, Xij) : i = 1, …, n; j = 1, …, mi}, where T̃ij = min(Tij, Cij) and δij = I(Tij ≤
Cij).

The marginal accelerated failure time model is

(1)

where β is the p-dimensional vector of regression coefficients, and the error terms, (εi1, …,
εimi), are independent across clusters and independent of (Xi1, …, Ximi). It is assumed that all
εij have a common unknown marginal distribution, and εij and εik may be correlated for j ≠
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k. We assume that Tij and Cij are independent conditional on Xij, and mi is small compared to
n and is noninformative, i.e., independent of Tij, Cij and Xij.

To describe the dependence between clustered survival times, Pan (2001) proposed to
consider the accelerated failure time frailty model. Specifically, given a positive latent
variable αi of mean 1 and variance σ2, it is assumed that the hazard function of eεij is

(2)

where λ(·) is an unspecified baseline hazard function. In addition, εi1, …, εimi are assumed
independent conditional on αi and the magnitude of dependence among the εij is
characterized by the value of σ2. There are many choices for the frailty distribution, e.g., the
gamma distribution (Clayton, 1978), the positive stable distribution (Hougaard, 1986), the
compound Poisson distribution (Aalen, 1992) and the log-normal distribution (McGilchrist
& Aisbett, 1991).

3. Nonparametric maximum likelihood estimator
Let fα(·; θ) denote the density of the latent variable αi, where θ is an unknown finite
dimensional vector of parameters. The log-likelihood function for the complete data, {(T̃ij,
δij, Xij, αi) : i = 1, …, n; j = 1, …, mi}, can be written as

where , Rij (β) = log(T̃ij) + β′ Xij,

(3)

(4)

We use an EM algorithm to obtain the nonparametric maximum likelihood estimator. Let
Ω̂[k] = (β̂[k], Λ̂[k], θ̂[k]) denote the parameter estimates at step k. In the expectation step, we
obtain the conditional density of αi given the observed data O and current parameter
estimates Ω̂[k],

(5)

The conditional expectations E(αi∣O, Ω̂[k]), E(log αi∣O, Ω̂[k]) and E{log fα(αi; θ)∣O, Ω̂[k]}
can be calculated as the integrals of the corresponding terms with respect to the conditional
density fα(αi∣O, Ω̂[k]). For example, when the frailty has a gamma density fα(x; θ) = xθ−1

e−θx θθ/Γ(θ), where x > 0, θ > 0 and , we have
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where ψ (x) = Γ′(x)/Γ(x) is the digamma function. For general frailty distributions, such as
the log-normal distribution, these conditional expectations may not have closed analytical
forms. In such cases we use gaussian quadrature. Therefore, the conditional expectations of
(3) and (4) given O and Ω̂[k] are

(6)

(7)

where  is the total number of observed events in cluster i.

In the maximization step, equation (6) can be easily maximized using standard gradient-
based optimization algorithms. Let θ̂[k+1] denote the maximizer of (6). The conditional log-
likelihood given in (7) cannot be directly maximized over β and Λ. We adopt a kernel
smoothing technique similar to that used by Zeng & Lin (2007). Specifically, consider the

piecewise constant hazard function  on [0, M], where 0 = t0 <
t1 < ⋯ < tJn = M are equally spaced, and M is an upper bound for all eRij (β). Accordingly,
the cumulative hazard function is

. Using these expression for
λ̃(·) and Λ̃(·) in (7) and maximizing (7) with respect to cl (l = 1, …, Jn), for fixed β, the
following maximizers are obtained:

The profile likelihood function for β constructed using the above expression for  is
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Following derivations similar to those given in Zeng & Lin (2007),  converges
uniformly in β to a limiting function as n → ∞, Jn → ∞ and Jn/n → 0, and the limiting
function can be approximated by the smooth function

(8)

where

(9)

Let β̂[k+1] denote the maximizer of . Given β̂[k+1], a smooth estimator of λ(t) can be

obtained as λ̂[k+1](t; β̂[k+1]) and .

From an initial estimator Ω̂[0], the E-step and M-step are repeated until convergence. The
estimators of β, Λ(·) and θ at convergence are denoted by β̂n, Λn(·) and θ̂n, respectively. In
our implementation, the starting value of β was taken to be the maximum smoothed profile
likelihood estimator of Zeng & Lin (2007) assuming working independence among
correlated failure times. An initial estimator for λ was obtained by setting k = −1 and

 in (9). Based on our numerical experience, the convergence of the proposed EM
algorithm is not sensitive to the choice of the starting value for θ. For convenience, we chose

θ̂[0] = 1 for all scenarios considered in our numerical studies. Define  and

, the true value of γ. Let Λ0 and λ0 denote the true values of Λ and λ,
respectively. Next, we establish the asymptotic properties for estimators γ̂n and Λ̂n.

Theorem 1
Assume that the regularity conditions (C1)–(C8) given in the Appendix hold. As n → ∞,

 and : (i) supt∈[0,τ] |Λ̂n(t) − Λ0(t)| → 0 and γ̂n → γ0 almost surely; and
(ii) n1/2(γ̂n − γ0) converges in distribution to a mean-zero normal random vector with a
covariance matrix that achieves the semiparametric efficiency bound I−1.

The proof of Theorem 1 is given in the Appendix. To estimate the variance of β̂n, we adopt
the EM-aided numerical differentiation method proposed by Chen & Little (1999), which
numerically computes the empirical Fisher information matrix of the profile likelihood. A
similar method was used by Lu (2010) for variance estimation in the accelerated failure time
model with a cure fraction. Specifically,

The jth component of β̂n is perturbed by a small value, d. The pair of perturbed estimates is
denoted by β̂n,j− = (β̂n,1, …, β̂n,j − d, …, β̂n,p)′ and β̂n,j+ = (β̂n,1, …, β̂n,j + d, …, β̂n,p)′ for j =
1, …, p. The β is fixed at β̂n,j−, and the above EM algorithm is implemented until
convergence. The estimates of Λ and θ at convergence are denoted by Λ̂n,j− and θ̂n,j−,
respectively. The estimates Λ̂n,j+ and θ̂n,j+ can be similarly obtained. For i = 1, …, n and j =
1, …, p, define
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Let S̃i = (S̃i1, …, S̃ip)′ and . Then, the covariance matrix of β̂n can be

estimated by .

4. Numerical Examples
4·1. Simulation studies

We generated clustered failure times from the following model

where Xij1 follows a Bernoulli distribution with a success probability of 0.5, Xij2 follows a
uniform distribution on [-1,1] and εij follows the frailty model (2). We considered two frailty
distributions: gamma frailty with mean 1 and variance σ2 = 1/θ; and log-normal frailty with
mean 1 and variance σ2 = eθ − 1. Further, we considered three choices for λ0(t): Weibull-
type, λ0(t) = atb; log-normal-type, λ0(t) = t−1 ϕ{log(t)}/[1 − Φ{log(t)}], where ϕ(·) and Φ(·)
are the density and cumulative distribution functions of the standard normal random
variable; and reciprocal-type, λ0(t) = c/(1 + t). Here, a, b and c are positive constants.
Censoring times were generated from a uniform distribution on [0, τc], where τc was chosen
to yield censoring proportions of 15% and 40%. For each setting, we conducted 2000
simulation runs.

For the bandwidth parameter, hn, of the kernel smoother, we adapted the optimal bandwidths
proposed by Jones (1990) and Jones & Sheather (1991) for density estimation. Such
bandwidths were also used by Zeng & Lin (2007) for smoothing the profile likelihood in the
standard accelerated failure time model. Specifically, we set hn = ζ σ̂e n−1/3, where ζ is a
positive constant, and σ̂e is the sample standard deviation of the fitted residuals,

. Here β̂LS is the least squares estimate based on all of the data, including
censored data. In our simulations, we tried a range of values for ζ and found that 0.8 ≤ ζ ≤
1.8 works well in all of the scenarios. For comparison, we also included the Gehan rank
estimator (Jin et al., 2006b), the induced smoothing estimator (Johnson & Strawderman,
2009) and the smoothed EM-like estimator (Johnson & Strawderman, 2012). The former
two estimators are based on the marginal accelerated failure time model.

The results for the gamma and log-normal frailties are summarized in Tables 1 and 2,
respectively. Because the results for the various hazard functions are similar, we present
only the results for the Weibull-type and reciprocal-type. In addition, as reported in Johnson
& Strawderman (2009), the Gehan rank estimator and induced smoothing estimator have
very similar performances. Therefore, we exclude the results for the Gehan rank estimator.
All three estimators for the regression parameters are essentially unbiased under all settings
and the averages of the estimated standard errors obtained using the proposed EM-aided
numerical differentiation method for the nonparametric maximum likelihood estimator are
close to their standard deviations with the empirical coverage probabilities close to the
nominal level. In most cases, the nonparametric maximum likelihood estimator is more
efficient than the Gehan rank estimator and the induced smoothing estimator. The efficiency
gain is more substantial when the variance of the frailty is large, but it decreases as the
variance decreases. This result agrees with our expectation since when the variance of the
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frailty is large, the survival times within the same cluster are strongly correlated. Thus, the
nonparametric maximum likelihood estimator is expected to be more efficient since it
effectively accounts for the within-cluster correlation. The nonparametric maximum
likelihood estimator is generally more efficient than the smoothed EM-like estimator in
terms of the mean square error for the Weibull-type hazard function, especially when the
correlation between clustered survival times is strong and the censoring proportion is low.
However, for the reciprocal-type hazard function, the smoothed EM-like estimator may have
better efficiency than the nonparametric maximum likelihood estimator when the correlation
is weak or the censoring proportion is high. This result is attributed to the smaller biases of
the smoothed EM-like estimators. Finally, the proposed nonparametric maximum likelihood
estimator for the variance of the frailty is nearly unbiased. The mean estimated survival
curves for S0(t) ≡ exp{−Λ0(t)} are given in Figures 1 – 6 of the Supplementary Material.
For all the scenarios, the mean estimated survival curves are close to the true survival
curves.

We also conducted a sensitivity analysis to study the performance of the nonparametric
maximum likelihood estimator when the frailty distribution is misspecified. Specifically,
clustered survival data were generated from the accelerated failure time frailty model with
the log-normal frailty as considered previously. However, the nonparametric maximum
likelihood estimator was computed based on the gamma frailty. The simulation results are
given in Table 3. The nonparametric maximum likelihood estimator for the regression
parameters shows very small biases that are comparable to those reported in Table 2 when
the log-normal frailty distribution was correctly specified. The means of the estimated
standard errors are close to the standard deviations with proper coverage probabilities. Based
on the limited simulations we have conducted, the performance of the nonparametric
maximum likelihood estimator for the regression parameters is relatively robust to the
misspecification of the frailty distribution. However, the estimate for the variance of the
frailty shows large biases when the frailty distribution is misspecified. The mean estimated
survival curves for S0(t) are given in Figures 7–9 of the Supplementary Material. When the
log-normal frailty is misspecified as the gamma frailty, the mean estimated survival curves
slightly overestimate the true survival curves for the cases with large frailty variance, i.e., σ2

= 3.48, while they are nearly unbiased for cases with smaller variances.

We conducted additional simulations with cluster size of 2 and n = 200. The simulation
results are given in the Supplementary Material. The findings are similar to those reported
here.

4·2. Analysis of diabetic retinopathy data
We applied our estimation methods to clustered survival data from the diabetic retinopathy
study conducted by the National Eye Institute (Huster et al., 1989). The study enrolled 197
patients with proliferative diabetic retinopathy representing a 50% simple random sample of
patients with high-risk. For each patient, the photocoagulation treatment was randomly
assigned to one eye, while the other eye was an untreated control. The endpoint of interest is
the time to severe visual loss after treatment. In addition to the treatment indicator, 1 for
treated with photocoagulation and 0 for untreated, there are three prognostic factors: age at
diagnosis of diabetes, type of diabetes, 1 for adult and 0 for juvenile, and risk group ranging
from 6–12. A primary goal is to study the effects of treatment and risk factors on the time to
severe visual loss. This data set has been previously studied. For example, Lu (2007) studied
the data using a marginal bivariate accelerated failure time model based on the weighted
log-rank estimation method of Jin et al. (2006b). Lu also developed a statistical test for the
association between pairs of failure times after adjusting for covariates. It was found that the
null hypothesis of independence was rejected with a small p-value, which implies that there

Liu et al. Page 7

Biometrika. Author manuscript; available in PMC 2014 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is a strong correlation between the pair of error terms in the bivariate accelerated failure time
model. Here, we fit the accelerated failure time frailty model with all four covariates using
the proposed nonparametric maximum likelihood estimation method and the Gehan rank
estimation method. For our method, both the gamma and log-normal frailties were
considered. The bandwidth parameters for the nonparametric maximum likelihood
estimators were selected as in the simulation studies. The results are given in Table 4. The
nonparametric maximum likelihood estimators have much smaller standard errors than the
Gehan rank estimator, which indicates the efficiency gained by taking the correlation
between error terms into account in the nonparametric maximum likelihood estimators. In
addition, the nonparametric maximum likelihood estimators with the gamma and log-normal
frailty distributions show very similar performances, which may imply that the analysis
results are not sensitive to the choice of the frailty distribution. The estimated variance of the
frailty is 0.88 under the gamma frailty and 1.16 under the log-normal frailty. Finally, all of
the methods found that treatment and risk group are significantly associated with time to
severe visual loss, whereas age at diagnosis of diabetes and type of diabetes are not.

5. Discussion
The proposed kernel-smoothing based nonparametric maximum likelihood estimation
method can be extended to other types of multivariate survival data, such as recurrent event
data. Specifically, let  denote the number of events observed on subject i by time t. We
assume that  is a nonhomogeneous Poisson process and model its conditional intensity
function given covariates Zi and frailty αi by αi eβ′ Zi λ(eβ′ Zi t). This model is an extension of
the accelerated failure time model for counting processes considered by Lin et al. (1998) and
was studied by Strawderman (2006) using an EM-like algorithm. The nonparametric
maximum likelihood estimation and its associated inference for the above model require
further investigation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
Throughout the proofs, we assume the following regularity conditions:

(C1) The hazard function λ0(·) is positive and thrice-continuously differentiable with
λ̇0(0) > 0, where λ̇0(0) is the right derivative of λ(t) at t = 0. In addition, Λ0(τ) <
∞.

(C2)
There exists some positive constant c0, such that .

(C3) The covariates Xij are bounded. If there exists a constant vector a, such that a′Xij
= 0 almost surely, then a = 0.

(C4) The true regression parameters β0 belong to the interior of a known compact set
B, and 0 < θ0 < ∞.
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(C5) The kernel function K(·) is thrice-continuously differentiable. In addition, K(r) (·)
(r = 0, 1, 2, 3), have bounded variations in R, where K(r) (·) is the rth derivative
of K(·).

(C6) The cluster size mi is completely random. In addition, there exists a positive
integer m0, such that 1 ≤ mi ≤ m0 and pr(mi ≥ 2) > 0.

(C7) For any 1 ≤ k ≤ m0,  for m = 0, 1, 2, where

 is the mth derivative of fα(u; θ) with respect to θ. In addition,

 for some k.

(C8) The information matrix I is finite and positive definite.

Conditions (C1)–(C5) are similar to those used in Zeng & Lin (2007). Condition (C7) is
assumed to establish the consistency of the proposed estimators, which is satisfied by many
commonly used frailty distributions, e.g., the gamma and log-normal distributions.
Condition (C8) is assumed to establish the asymptotic normality of the estimators.

Proof of Theorem 1
To establish the consistency of the estimators, we introduce the following quantity

where . Following Lemma 2.4 of Schuster (1969), we can show that as
n → ∞,

almost surely. Moreover,

where Sc(t ∣ x) = pr(Cij ≥ t ∣ Xij = x). Therefore,
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almost surely, which implies Λ̃n(t) → Λ0(t) almost surely for any t ∈ [0, τ]. This pointwise
consistency can be strengthened to uniform consistency on [0, τ] due to the monotonicity
and boundedness of Λ̃n(t) and Λ0(t).

By Helly’s theorem, there exists a convergent subsequence (β̂nk, θ̂nk, Λ̂nk) such that (β̂nk, θ̂nk,
Λ̂nk) → (β*, θ*, Λ*) almost surely, where Λ* is a monotonically increasing function. Define
the observed log-likelihood function

We have

Letting k → ∞ leads to

where λ* is the derivative of Λ*. Due to the nonnegativity of the Kullback–Leibler
information,

Set δi1 = 1 and T̃i1 = 0. For j = 2, …, mi, if δij = 0, set T̃ij = τ; if δij = 1, integrate T̃ij from 0 to
τ. We have

The two sides of the above equation are summed over all possible combinations of δij (j = 2,
…, mi) to obtain

since E(αi) = 1. Therefore, (β* − β0)′ Xij = log{λ0(0)/λ*(0)}. By (C3), β* = β0. It follows that
λ0(0) = λ*(0). In addition, following similar steps, we can obtain
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for any 1 ≤ k ≤ mi, which leads to θ0 = θ*. Finally, set δi1 = 1 and integrate T̃i1 from 0 to t.
For j = 2, …, mi, if δij = 0, set T̃ij = τ; if δij = 1, integrate T̃ij from 0 to τ. The two sides of the
equation are summed over all possible combinations of δij (j = 2, …, mi) to obtain

It follows that Λ*(t) = Λ0(t) for t ∈ [0, τ]. Therefore, (β̂n, θ̂n, Λ̂n(t)) → (β0, θ0, Λ0 (t)) almost
surely by Helly’s theorem, which can be strengthened to uniform convergence on [0, τ].

Next, we show that β̂n is asymptotically normal and its variance achieves the semiparametric
efficiency bound. Let BV[0, τ] denote the space of bounded variation functions on [0, τ] and
define class H = {h = (h11, h12, h2) : h11 ∈ ℝp with ∥h11∥1 < ∞, |h12| < ∞, h2 ∈ BV[0, τ]}.
For h ∈ H, define the norm ∥h∥ = ∥h11∥1 + |h12| + ∥h2∥υ, where ∥h11∥1 is the L1 norm of
h11, and ∥h2∥υ is the absolute value of h2(0) plus the total variation of h2 on the interval [0,

τ]. Consider submodels βd = β + dh11, θd = θ + dh12 and .

Further, define , where (h11, h12,
h2) ∈ H. For simplicity of notation, we denote

Then we can write Un(β, θ, Λ) (h11, h12, h2) = Un1(h11) + Un2(h2) + Un3(h12), where

(A1)

(A2)

(A3)

Define u(β, θ, Λ) (h11, h12, h2) = limn→∞ Un(β, θ, Λ) (h11, h12, h2) ≡ u1(h11) + u2(h2) +
u3(h12). It can be easily shown that u(β0, θ0, Λ0) (h11, h12, h2) = 0. In addition, it is easy to
show that u(β, θ, Λ) is Fréchet differentiable since u(β, θ, Λ) is a smooth function of β, θ and
Λ. Let u̇(β0, θ0, Λ0) (β − β0, θ − θ0, Λ − Λ0) (h) denote the corresponding Fréchet derivative
of u(β, θ, Λ) at (β0, θ0, Λ0). After some algebra, we have
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where h = (h11, h12, h2),

where B1 is a p × (p + 1) matrix, B2(t) and B3 are (p + 1)-dimensional vectors, D1 (t) is a p-
dimensional function, and c2(t), D2(t, u) and D3(t) are scalar functions. Therefore, Q(h) ≡
(Q1(h), Q2(h), Q3(h)) is a continuous linear operator from the linear span of H to itself.

Consider two classes of functions:

where

and Ai0 = Ai(β0, Λ0). Since  and  are bounded functions based on
assumptions (C1)–(C5), A1 is a Donsker class. In addition, since h2 ∈ BV[0, τ], A2 can be
written as the summation of bounded Donsker classes, which is also a Donsker class.
Therefore, we have n1/2{Un(β0, θ0, Λ0)(h) − u(β0, θ0, Λ0)(h)} converges weakly to a
Gaussian process G* on l∞(H).

In addition, since ∥β − β0∥1 + |θ − θ0| = op(1) and supt∈[0, τ] |Λ(t) − Λ0(t)| = op(1), we can
show that A1(β, θ, Λ) and A2(β, θ, Λ) are Donsker classes. This implies that

(A4)

Finally, we show that u̇(β0, θ0, Λ0) is continuously invertible. It is equivalent to show that
Q(h) is a one to one map, i.e., Q(h) = 0 implies h = 0. If Q(h) = 0, u̇(β0, θ0, Λ0) = 0 for (β, θ,
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Λ) in a neighbourhood of (β0, θ0, Λ0). We choose β = β0 + dh11, θ = θ0 + dh12 and

 for a small constant d. By the definition of u̇(β0, Λ0, θ0),
we have

. This

implies that  almost surely.
Following the techniques used to derive the consistency of the estimators, we can show that
h = 0. The details are given in the Supplementary Material.

Since u̇(β0, θ0, Λ0) is continuously invertible on its range, based on Theorem 3.3.1. of van
der Vaart & Wellner (1996), we have that n1/2[{γ̂n, Λ̂n(t)} − {γ0, Λ0(t)}] converges weakly
to a tight Gaussian process G = {u̇(β0, θ0, Λ0)}−1G*. In addition, the variance of G is

where  is the inverse of Q(h). We derive the
semiparametric efficiency bound I−1 (Bickel et al., 1993) and show that the asymptotic
variance of n1/2(γ̂n − γ0) achieves the semiparametric efficiency bound. The details are given
in the Supplementary Material.
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