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Abstract
We introduce an image segmentation algorithm, called , which combines, in novel manner,
the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard)
Graph Cut (GC). We show, both theoretically and experimentally, that  preserves
robustness of RFC with respect to the seed choice (thus, avoiding “shrinking problem” of GC),
while keeping GC’s stronger control over the problem of “leaking though poorly defined boundary
segments.” The analysis of  is greatly facilitated by our recent theoretical results that RFC
can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our
implementation of  we use, as a subroutine, a version of RFC algorithm (based on Image
Forest Transform) that runs (provably) in linear time with respect to the image size. This results in

 running in a time close to linear. Experimental comparison of  to GC, an iterative
version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical
images, indicates superior accuracy performance of  over these other methods, resulting in
a rank ordering of .
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1. Introduction
The image segmentation field has a rich literature dating back to the 60’s. The algorithms
for image segmentation can be categorized into three groups: purely image-based (pI), shape
model-based (SM), and hybrid. pI methods (Liang et al., 2006; Malladi et al., 1995; Udupa
and Samarasekera, 1996; Singaraju et al., 2010; Pham, 2001; Boykov et al., 2001;
Kolmogorov and Zabih, 2004) focus on delineating objects based entirely on the information
about the object that can be harnessed from the given image. SM approaches (Cootes et al.,
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1999; Sandor and Leahy, 1997; Pizer et al., 2003) bring in information about the object
family in terms of its appearance variation in the form of statistical/fuzzy texture and/or
shape models to bear on the segmentation problem. Hybrid approaches (Miranda et al.,
2009; Liu and Udupa, 2009; Imielinska et al., 2001; Angelini-Casadevall et al., 2002; Lim,
2006) are recent; they combine synergistically the pI and SM approaches in an attempt to
overcome the weaknesses of the individual approaches. The major frameworks existing
under the pI approaches include: level sets (LS), active boundaries, clustering, Markov
Random Field, graph cut (GC), fuzzy connectedness (FC), and watershed (WS).

All these classes of approaches have their place in the segmentation armamentarium. The
focus of this paper is on the pI approaches. Since they are based entirely on the information
available in the given image, and since top-rated algorithms in this group harness this
information with equal effectiveness, there must exist similarity or even equivalence among
such algorithms. This observation prompted researchers to study the possibility of
explaining such algorithms in a common framework (Ciesielski and Udupa, 2011a; Aubert
and Blanc-Féraud, 1999; Miranda and Falcão, 2009). In the same spirit, the popular GC
framework has been generalized recently to, what we refer to as, Generalized GC (GGC).
This framework was proposed by the authors in (Ciesielski and Udupa, 2011b; Ciesielski et
al., 2011, 2012b), and studied in a slightly different form in (Couprie et al., 2011), to
describe GC, FC, and WS algorithms in a unified manner. A byproduct of such a unification
effort was a deeper understanding of the strengths and weaknesses of the individual
algorithms, which can lead to new methods with improved performance, as we will
demonstrate in this paper.

Despite the success, attested in several applications, and the popularity of approaches such
as watersheds (Miranda and Falcão, 2009; Couprie et al., 2011; Sinop and Grady, 2007),
iterative relative fuzzy connectedness (Ciesielski et al., 2007), optimum-path forest
(Miranda and Falcão, 2009; Falcão et al., 2004; Falcão and Bergo, 2004), and shortest paths
(Bai and Sapiro, 2007; Protiere and Sapiro, 2007), the lack of regularity constraints often
makes these approaches inappropriate (or at least not the best choice) for some application
domains. For instance, whenever the object is expected to present simple and regular shapes,
the presence of poorly defined boundary segments can cause leaking problems in the above
methods, resulting often in not only wrong but also irregular (jagged) boundaries.

In order to amend this problem, some authors consider the usage of regularization energies
(e.g., internal forces) intrinsic to their formulations (Boykov et al., 2001; Malladi et al.,
1995; Shi and Malik, 2000; Grady, 2006), while others enforce smoothness by post-
processing (Malmberg et al., 2010, 2011; Malmberg, 2011; Falcão et al., 2002). The main
drawback of the second group of methods is that it may be too late to fix a result, when it is
already too far from the goal (e.g., significant leakage). However, such methods may be
beneficial in applications where only some specific parts of the object are supposed to be
smooth. In this case, we can easily constrain the post-processing to those areas, while global
intrinsic regularization energies will affect other object parts which are not necessarily
intended to be smooth. On the other hand, the methods with intrinsic regularization are less
prone to leakage. However this usually comes at a price, such as the shrinking problem
(GC), local optima issues (LS, snakes), poor robustness to seed position (GC, random
walker), besides the higher computational cost.

This work falls within the GGC framework described in (Ciesielski et al., 2011, 2012b),
wherein we identified and justified some of the strong and weak properties of GC and FC,
both theoretically and empirically, in a comparative manner. The most crucial among these
were robustness of segmentation with respect to the selection of seed points (FC better than
GC), boundary smoothness (GC better than FC), and computational efficiency (FC better
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than GC). The proposed new algorithm combines the best of both GC and FC and achieves
an intermediate speed close to that of FC. In Section 2 we introduce the elements of the
GGC framework needed in the rest of the paper. Following the new algorithm description in
Section 3, experimental results are shown in Section 4, and our conclusions are summarized
in Section 5.

The new algorithm, , as well as its theoretical properties (see Section 3.3) were
previously announced in (Ciesielski et al., 2012a). However, this conference publication
contained neither theoretical (proof of Theorem 3.2) nor extensive experimental justification
of the advantages of  we show here.

2. Terminology: The GGC framework
A digital image will be identified with a pair I = 〈C, f〉, where C is its domain (whose
elements will be referred to as spels, short for space elements) and f : C → ℝℓ is the image
intensity (or attribute) function, with the value f(c) of f at c representing image intensity (an
ℓ-dimensional vector, each component of which indicates a measure of some aspect of the
signal, like tissue property or color) at the spel c.

It is assumed that the image domain comes with an adjacency relation, which decides which
pairs of spels are adjacent. An image domain C together with its adjacency structure is
referred to as a scene.

In a given input image I = 〈C, f〉, an object P ⊂ C is identified with its characteristic function
χP, that is, a mapping x: C → {0, 1} such that x(c) = 1 if, and only if, c ∈ P. We usually
restrict the collection 𝜒 of all allowable objects by indicating two disjoint sets of spels,
referred to as seeds: S ⊂ C indicating spels in the object and T ⊂ C pointing out to spels
from the background. This restricts the collection of plausible outputs of the algorithm to
𝜒(S, T) = {χP : S ⊂ P ⊂ C \ T}.

In every algorithm within GGC, a digital image I = 〈C, f〉 is identified with a weighted
directed graph G = 〈V, E, w〉 having the following properties. V is the set of vertices of the
graph and is equal to the image domain C. (In the case of GC, the set V is often expanded by
two additional “virtual” vertices, a source and a sink.) E is set of all edges {c, d} in G, that
is, the pairs 〈c, d〉 (identified with 〈d, c〉) such that the spels c and d are adjacent. w: E → [0,
∞) is a weight function associating with any edge e ∈ E its weight w(e).

For q ∈ [1, ∞) consider the energy functional εq : 𝜒 → [0, ∞), where, for every x ∈ 𝜒, εq(x)
is defined as the q-norm of the functional Fx : E → ℝ given by a formula Fx(c, d) = w(c, d)|
x(c) − x(d)| for 〈c, d〉 ∈ E. In particular for q = 1 and q = ∞ we have, ε1(x) = ‖Fx‖1 =
∑〈c,d〉∈E w(c, d)|x(c) − x(d)| and ε∞(x) = ‖Fx‖∞ = max〈c,d〉∈E w(c, d)|x(c) − x(d)|.

For 1 ≤ q ≤ ∞, a fixed weighted graph G, and seed sets S and T, let  be the minimum of

the energy εq(x) over all objects x ∈ 𝜒(S, T); that is, . Any

element of the family  will be referred to as an
energy εq minimizer of 𝜒(S, T). Any algorithm A that, given an image I and seed sets S and
T, returns an object A(I, S, T) from 𝜒q(S, T) will be referred to as an εq-minimizing
algorithm.

The standard min-cut/max-flow algorithm is an ε1-minimizing algorithm. We will use a
symbol GCsum to denote this algorithm. We have recently proved (Ciesielski and Udupa,
2011b) (see also (Ciesielski et al., 2011, 2012b)) that both Relative Fuzzy Connectedness,
RFC, and Iterative Relative Fuzzy Connectedness, IRFC, algorithms are the ε∞-minimizing
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algorithms. Moreover, we proposed in (Ciesielski et al., 2012b) an IRFC segmentation
algorithm, which we named GCmax, based on the Optimum Path Forest Framework (Falcão
et al., 2004), and proved that it runs in linear time with respect to the image size.

3. The new algorithm
3.1. Motivation

The ε1- and ε∞-minimizing algorithms, GCsum and GCmax, have their complementary
strengths and weaknesses (Ciesielski and Udupa, 2011b; Ciesielski et al., 2011, 2012b).
From the point of view of this paper, the most important differences between these
algorithms lie in the sensitivity of their output to the choice of the seed sets and the nature of
the object’s boundary in the input image. Specifically,

Choice of seeds—The outcome of the ε∞-minimizing algorithm, GCmax as well as its
older versions RFC and IRFC, are completely unaffected by any changes of the seed sets
within the delineated object. (For specifics, see (Ciesielski and Udupa, 2011b, thm 4) or
Theorem 3.1 below.) In particular, relatively small sets of seeds, chosen with little care, lead
to the same output as carefully chosen seeds, close to the actual final delineated object.

On the other hand, the ε1-minimizing algorithms, GCsum and its more effective versions, are
highly sensitive to the choice of seeds. This behavior, known as the shrinking problem, is
especially acute when the sets of seeds are small, in which case the algorithm has a tendency
to output, as a delineated object, a small set very close to the set of object-indicating seeds.1

Therefore, the GCsum algorithm requires a careful choice of seeds, relatively close to the
desired object boundary, in order for the actual delineated object to be close to the desired
object. Such a careful seed choice is especially difficult to achieve automatically in 3D
images and to reproduce, if the choice is made by an operator.

Poorly defined boundary—The ε1-minimizing algorithms, including the GCsum
algorithm, have a tendency to choose the objects with small boundary. Although this may
lead to an object shrinking problem, this is not an issue, when the input seed sets are
relatively large, especially, when they are relatively close to the desired boundary of object
and background. At the same time, the tendency of choosing the objects with small
boundaries decreases the chance that an output object crosses a true weakly visible boundary
or a gap in a boundary, so it reduces the likelihood of causing delineation errors, usually
referred to as leaking problems. Moreover, this decreasing of boundary size has a boundary
smoothing effect, a feature that may be desirable in certain image segmentation tasks.

On the other hand, the output of the ε∞-minimizing algorithms is independent of the object
boundary size. So, their output has a greater chance of being scraggly and/or passing
through gaps in the true object boundary.

3.2. The algorithm
To combine the strengths of both kinds of minimization strategies, we devised the following
algorithm. Basically, we obtain a first approximation of the object by applying the GCmax
algorithm with a conservative weight function, so leakage is minimized. We obtain the final
delineation by applying GCsum to the output of thus created first approximation. The first

1The shrinking problem has been addressed by many authors, via modifications of the GC method. The best known among these
modifications is the method of normalized cuts (see (Shi and Malik, 2000)), in which the energy εsum is replaced by another
“normalized” measure of energy cost, similar to, but different from the ε1 energy. Moreover, finding the resulting delineation
minimizing this new energy measure is NP-hard (see (Shi and Malik, 2000)), and so only approximate solutions can be found in
practical time.
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step, optimizing ε∞, enlarges the initially specified (possibly small) sets of seeds, preserving
the algorithm’s robustness (with respect to seed choice) and avoiding the shrinking problem
of GCsum. The second step, optimizing ε1, refines this approximation by enlarging it further
to an object with a smoother boundary. This final increase creates only a small risk of object
leakage, the attribute of GCsum.

More specifically, the algorithm, called2 , is as follows.

2The chosen name stresses that we use, consecutively, the optimizers of max and sum energies. Another appealing name would be
RFC-GC, to stress more conventional names of the algorithmic components.
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Algorithm

Input: An image I = 〈C, f〉 and non-empty disjoint sets: S ⊂ C indicating object, T ⊂ C indicating background.

Output: An object χP from 𝜒(S, T).

begin

  1. create the weighted graph G = 〈V, E, w〉 associated with I;

  2. use the RFC version of GCmax on G to find the sets: Ŝ with χŜ ∈ 𝜒∞(S, T) and T̂ with χT̂ ∈ 𝜒∞(T, S);

  3. apply GCsum to G using Ŝ and T̂ as new seed sets to find χP;

  4. return χP;

end

The fact that both algorithms, GCmax and GCsum, can use the same weighted graph G,
associated with the input image I, makes the merging of these two algorithms seamless and
effortless.

Line 1 of the algorithm constitutes an “implicit parameter” of the algorithm, as mentioned
above. The choice of the weight function, which in FC literature is called the affinity
function, is explained in more detail in the next section.

Line 3 is straightforward. Since the sets Ŝ and T̂ of spels, output by the GCmax step, are
typically already quite large and close to the desired object boundary, there is little danger of
shrinkage. Also, GCsum has a smoothing effect on the final output.

Line 2 requires a few words of explanation. To find Ŝ, we run GCmax in a version described
in (Ciesielski et al., 2012b, sec. 4.3) which, in particular, returns a function μC(c, W), of
variable c from C = V into [0, 1], denoting the strength of connectedness of spel c ∈ C to the
set W of spels. We run GCmax twice, once with W = S and once with W = T, calculating
functions μC(c, S) and μC(c, T), respectively. The RFC object Ŝ is simply defined as the set
{c ∈ C : μC(c, S) > μC(c, T)}. Similarly, the RFC coobject is defined as T̂ = {c ∈ C : μC(c, T)
> μC(c, S)}. Since GCmax runs in a linear time with respect to the image size |C|, a fact
theoretically proved in (Ciesielski et al., 2012b), this does not add much to a total run time
of the algorithm, especially in comparison with the running time of the GCsum component,
which runs in time of order O(|C|2.5) or greater. We choose the RFC segmented objects Ŝ
and T̂ as the new seed sets rather than their IRFC counterparts—the standard output of
GCmax—since they are smaller (see (Ciesielski et al., 2012b, Theorem 4.3(iii))), while they
still belong to 𝜒∞(S, T) and 𝜒∞(T, S), respectively, insuring 𝜒∞(Ŝ, T̂) = 𝜒∞(S, T). This
leaves some extra room for the GCsum step of the algorithm to act upon, which chooses an
object from 𝜒(Ŝ, T̂), while preserving the extrema choices, Ŝ and T̂, indicated by GCmax.
(Note that 𝜒1(Ŝ, T̂) need not be equal to 𝜒1(S, T). In fact, 𝜒1(Ŝ, T̂) can be disjoint with 𝜒∞(Ŝ,
T̂) = 𝜒∞(S, T).)

It is interesting to observe that in , the GCsum component always runs in a reduced set
D = {c ∈ C : μC(c, T) = μC(c, S)}, where RFC finds a tie in strength of connectedness with
respect to seed sets S and T. This makes the final execution time of  to be O(|C| + |
D|2.5), where |D| is typically proportional to the size of the boundary. In practical situations,
wherein object boundary size is much (10–80 times) smaller than its volume, |D| ≪ |C|, and
so the execution time of  is quasi-linear. Note also that sequences of executing GCsum
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and GCmax, such as GCsum → GCmax, GCsum → GCmax → GCsum, and GCmax → GCsum
→ GCmax, are not useful from the viewpoint of the goal of this paper.

Figure 1 shows, via an example, what happens in Steps 2 and 3. The RFC objects, shown in
(d) and (e), represent, respectively, the sets Ŝ and T̂. The output of GCsum, by employing Ŝ
and T̂ as seed sets, is shown in (f). This constitutes the output of the  algorithm,
which should be compared to the outputs of: (b) IRFC, (c) graph cut GCsum, and (d) RFC
algorithms.

3.3. Nice properties of 
Robustness with respect to seed set size and location—We have the following
theorem, which immediately follows from a similar result on RFC segmentations. (See e.g.
(Ciesielski and Udupa, 2011b; Ciesielski et al., 2007).)

Theorem 3.1. Let I = 〈C, f〉 be an image and S, T ⊂ C non-empty disjoint sets of seeds. If S′
⊂ Ŝ intersects every connected component of Ŝ and T′ ⊂ T̂ intersects every connected

component of T̂, then  and  have identical outputs.

In particular, if each of Ŝ and T̂ has only one connected component in the graph G, then any
other choice of non-empty sets of seeds S′ ⊂ Ŝ and T′ ⊂ T̂ leads to identical delineations.
Note in particular that, in this case, even if S′ and T′ are singleton sets, the identity of
outputs is guaranteed.

Robustness with respect to remapping the image intensity by an increasing
function—The validity of this property depends very much on the way the weight/affinity
function is created from the image intensity function. We have the following results
concerning the weight function.

Theorem 3.2. Let I = 〈C, f〉 and I′ = 〈C, f′〉 be the images with associated weighted graphs
G = 〈V, E, w〉 and G′ = 〈V, E, w′〉, respectively. If w′ is a modification of w via an increasing
linear function (i.e., if w′ is a composition L ◦ w of w and a linear function L), then for every

seed sets S, T ⊂ C, the outputs of  and  are identical.

More generally, if w′ is a modification of w via an increasing function, then the associated
RFC approximations 〈Ŝ, T̂〉 and 〈Ŝ′, T̂′〉 are identical.

Proof. Let the weight function w′ be a modification of w via an increasing function h, that is,
w′ = h ◦ w. Then the resulting RFC approximations 〈Ŝ, T̂〉 and 〈Ŝ′, T̂′〉 are identical, as
proved in (Ciesielski and Udupa, 2010, sec. 2). If, moreover, function h is linear (i.e., h(z) =
az + b so that w′(c, d) = h(w(c, d)) = a w(c, d) + b), then the final GCsum outputs are also
identical, since, in this situation, for every x1, x2 ∈ 𝜒,

if, and only if,
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So, the inequality ε1(x1) ≤ ε1(x2) is true for the weight function w if, and only if, it is true for
w′.

Notice that for many methods of constructing weight/affinity functions w from the intensity
map f (Saha et al., 2000; Ciesielski and Udupa, 2010) (e.g., for the homogeneity based
affinity), the linear modification h(z) = az + b of the intensity function with 0 < a < 1
translates into an increasing linear modification of w.

Other nice properties—The following properties are difficult to express in the formal
mathematical language, as the theorems above. Nevertheless, they can be argued at a less
formal level and demonstrated empirically. Some level of boundary smoothness is assured
for the output of  by a similar property of GCsum. Similarly, some level of leakage
control is achieved. The greater robustness (insensitivity) to the artifacts such as a slow
background variation component modulating the image intensity function can be achieved
by a careful creation of w, a property stemming from FC as demonstrated in (Udupa and
Samarasekera, 1996).

4. Experimental results
In this section we present results for accuracy and efficiency of segmentation based on
experiments carried out on three sets of data: 2D medical images (without and with added
noise), 2D natural color images, and 3D medical images. True segmentations for the medical
images were created by manual or user-steered but algorithm-determined (Falcão et al.,
1998) outlining by experts knowledgeable in the domain. These data have been used in
several earlier publications, e.g. in (Miranda et al., 2009) and in (Rother et al., 2004). For the
medical images true segmentations were created by experts on a slice-by-slice basis. For the
natural images, we used the true segmentations available on line.

4.1. 2D medical images
These data comprise of 40 MR image slices of the human foot. The 40 slices were selected
from 3D MRI scene data pertaining to the left or the right foot of 20 different live subjects.
Several (1–3) slices were selected randomly approximately at similar anatomic locations
from each 3D scene. The objects of interest in these slices are the two large bones in the
peritalar complex, namely, the talus and the calcaneus. These data were chosen since they
present real and practical situations for some of the issues mentioned earlier (leakage,
shrinkage, etc.). Cortical bones elicit very little signal and so do connective tissues such as
ligaments and tendons, yet the objects we seek have smooth boundaries. Figure 2(a)
demonstrates the context of the two objects in a sample image.

We compared four different algorithms in the task of segmenting calcaneus and talus: the
linear time IRFC algorithm, implemented as GCmax (Ciesielski et al., 2012b); the graph cut
GC max-flow algorithm GCsum; our new algorithm ; and the power watershed PW
algorithm PWq=2 (Couprie et al., 2011). The GCsum code comes from a software library in C
++ developed by Yuri Boykov and Vladimir Kolmogorov. It implements the max-flow
algorithm as described in (Boykov and Kolmogorov, 2004). The  implementation
combines the codes of the RFC version of GCmax algorithm, as described in (Ciesielski et
al., 2012b), with GCsum. The power watershed algorithm (Couprie et al., 2011) is a recently
introduced version of the IRFC algorithm GCmax, as discussed in detail in (Miranda and
Falcão, 2009). The PWq=2 code comes from a software library in C developed by Camille
Couprie, which is available at sourceforge: http://sourceforge.net/projects/powerwatershed/.
The experiments presented in this section were conducted on an AMD Athlon 64 X2 Dual-
Core Processor TK-57 (1.9 GHz, 2 × 256 KB L2 cache) with 2GB of RAM.
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The arc weights w(c, d) were computed as the complement of the difference of image
intensities (i.e., as K − |f(c) − f(d)|, where K stands for the maximum value of |f(c) − f(d)| in
the scene), see (Miranda et al., 2010) for more complex weight functions. To assess
segmentation accuracy, we used Dice coefficient.

4.1.1. Seeds chosen by erosion—In these experiments, the seeds were chosen by
erosion of different magnitude, that is, the seeds constitute the boundaries of the foreground
and background objects eroded in a specified way, see e.g. (Sinop and Grady, 2007). This
allows varying the seed set in a controlled manner compared to the alternative of operators
specifying seeds interactively, and thereby we can study the influence of seed sets on results
also in a controlled manner.

Mean accuracy estimated over the 40 images is plotted in Figures 3(a) and 4(a) for talus and
calcaneus as a function of varying seed set size for the four methods. Figures 3(b) and 4(b)
similarly display the average curves of computational time for the four methods. The rank
ordering of these methods over all images for the accuracy is depicted in Figure 5.

From Figures 3, 4, and 5 we observe that  outperformed the remaining three
algorithms. Similarly, the accuracy of GCsum was consistently lower than that of the other
three algorithms. On the other hand, the distinction between PWq=2 and GCmax is not
apparent. While for calcaneus, Figure 4(a), PWq=2 presented better results than GCmax, for
talus the results of PWq=2 and GCmax, Figure 3(a), are quite similar.

The lack of a clear cut distinction between PWq=2 and GCmax is in agreement with our
theoretical result of (Ciesielski et al., 2012b, sec. 4) that, under the assumption that there are
no tie zones (i.e., spels having the same strength of connectedness values μ(·, S) and μ(·, T)
with respect to the object and background seeds), the outputs of PWq=2 and GCmax are
identical. In this light, the similarity of the talus segmentations returned by PWq=2 and
GCmax can be interpreted as a lack of large tie zones for this object. At the same time, the
differences between calcaneus segmentations of PWq=2 and GCmax were caused, most
likely, by the existence of larger tie zones for the calcaneus.

Finally, notice that, according to our theoretical results from (Ciesielski et al., 2012b, sec. 4),
the replacement of the graph weight function w with wq (i.e., substituting AI↦wq for AI↦w)
for the large values of q makes the outputs of GCmax and GCsum (and so, also of PW and

) essentially identical.

In regard to computational time, Figures 3(b) and 4(b), it was not possible to measure the
exact running time of PWq=2, because its source code does not allow us to restrict the
computation to only inside the band generated by erosion (i.e., the band between the internal
and external seeds). It seemingly executed over the entire image graph taking more time
than necessary, so it took an almost constant and large running time for any erosion level.
However, it was possible to measure an estimated running time by normalization of its
measured running time, taking into account the relative size of the band in relation to the
image domain size. In fact, this gives us an upper-bound for its actual running time inside
the band, and this is what is depicted in Figures 3(b) and 4(b).

In Figure 6 we display images of some sample segmentations for the talus.

4.1.2. 2D medical images with added noise—To evaluate the robustness of the
methods in relation to different noise levels, we conducted experiments on the same set of
40 2D images with different amounts of added white noise. The random noise was obtained
using the ImageMagick command-line tools. Figure 7 shows some sample noise-corrupted
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images used in our experiments. The accuracy curves for the segmentation of talus and
calcaneus are given in Figures 8 and 9. Again a relative behavior similar to that observed in
Figures 3 and 4 is demonstrated by the algorithms under added noise.

4.1.3. Seeds chosen by a robot user—In these experiments, the seeds were chosen by
a robot user, the method introduced by (Gulshan et al., 2010), to simulate user interaction of
interactive segmentation by placing brush strokes automatically to iteratively, and
interactively, complete the segmentation task. The procedure, including the choice of seeds
(based on the knowledge of the ground truth) and the successive delineations, is iterative.
The initial seeds for the object are placed at the point(s) in the object farthest from the
boundary; similarly, for the background. At each successive iteration, the robot always
places a circular brush stroke in the largest connected component of the segmentation error
area (placed at the point(s) farthest from the boundary of the component), and updates the
segmentation. The process is repeated up to 20 times, generating a sequence of 20 simulated
user strokes.

We used a circular brush with a diameter of 17 pixels for the grabcut dataset, as suggested in
(Gulshan et al., 2010). For the talus and calcaneus, we used a smaller diameter of 10 pixels,
in order to be more compatible with the smaller image size of this dataset (256 × 256
pixels). Figure 10 shows the experimental curves. We observe again that 
outperforms other algorithms. Interestingly, GCsum tends to approach the performance of

, as do other algorithms. This demonstration reemphasizes the need for carefully
specified seed sets for GCsum in order to reap good performance from it.

4.2. 2D natural color images
A dataset with 50 natural color images with known true segmentations was obtained from
(Martin et al.; Rother et al.) for these experiments. The pixels in the reference segmentations
represent three different regions: background, object, and mixed areas. The last category
represents a set of pixels which cannot be unequivocally allocated to either background or
object. Since we are interested only in one object, we conducted two separate experiments,
the first considering the mixed areas as object and the second taking the mixed areas as
background. The goal of these experiments was to show that the final conclusions were not
affected by this choice. The arc weights w(c, d) were computed as the complement of the
maximum difference of intensity values over the three channels, that is, given by a formula
K − max{|fR(c) − fR(d)|, |fG(c) − fG(d)|, |fB(c) − fB(d)|}, where f(c) = 〈fR(c), fG(c), fB(c)〉). For
more on how to chose suitable weights see (Miranda et al., 2010). The experiments
presented in this subsection were conducted on an Intel Core i7-2630QM CPU at 2.00GHz ×
8, with 8GB of RAM.

The resulting mean curves are displayed in Figures 11 and 12, and some sample images with
results are displayed in Figure 13 for different methods. The graphs show that the combined
approach  provided slightly better results. In the case of heterogeneous databases,
such as the 2D color images used in this experiment, there is no best method in the absolute
sense for all the images, because each image has its own characteristics which may favor a
particular approach.

To study this phenomenon, we present also the rank distributions in Figure 14, obtained by
comparing the methods for each individual image separately. It is readily seen that the
proposed method was the best for most of the images. Figure 15 displays sample results,
similar to that shown in Figure 13, but for a user selected set of seeds.
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4.3. 3D medical images
In the first experiment, we used a dataset of 3D MRI brain images of 20 normal subjects.
We performed the 3D segmentation of the cerebellum for all methods in all data sets.
Segmentation and separation of the cerebellum from the rest of the brain region is crucial in
many neurological applications, such as the study of schizophrenia (Puri et al., 1996) and
epilepsy (Hagemann et al., 2002). T1-weighted images were acquired on a 2T Elscint
scanner and at a voxel size of 0.98 × 0.98 × 1.00 mm3. The arc weights w(c, d) were
computed as the complement of the difference of image intensities (i.e., K − |f(c) − f(d)|)
using 6-neighbors for spel adjacency. The experiments were carried out on an Intel Core
i7-2630QM CPU at 2.00GHz × 8, with 8GB of RAM.

Figures 16 and 17 show the obtained results. Again, as demonstrated in various 2D images,
the comparative behavior of the four algorithms is borne out in this 3D segmentation task as
well.

In the last experiment, we used a 3D dataset, composed of 20 MR images of the foot. The
objects of interest in these 3D volumes are the two large bones in the peritalar complex,
namely, the talus and the calcaneus. The image parameters are the same as for the 2D foot
data; the slice spacing was 1.5 mm. We computed the mean accuracy curve (over the 20 3D
scenes) for the four methods to segment the talus and the calcaneus, as a function of the
different seed sets obtained by eroding the true segmented objects. The results are shown in
Figure 18.

5. Conclusions
The focus of research in this paper was on pI approaches, particularly graph-based
combinatorial optimization techniques. As we noted in Section 1, there are two
contradictory requirements to be fulfilled by any pI-based segmentation algorithm—
gathering the object parts no mater how compact or how scattered the object is. Some
mathematical constraints, such as those based on GC max-flow, inherently favor
compactness. Others, such as FC, have an inherent bias to favor scattered objects. The
shrinking problem apart, the former strategies often fail to gather the loose and detailed
peripheral parts of the same object. The latter strategies, conversely, often get misled and
collect non-object surrounding regions considering them as loose aspects of the same object.
It is a challenge to balance off these opposing requirements within a single mathematical
framework. (We note that often the same object has both compact and loose parts, which
precludes the possibility of choosing a strategy that best suits the object characteristics.)
This paper makes an important contribution, we believe, by combining within a single
framework two methods, GC and RFC, representative of the above two strategies, for
achieving an optimal trade-off. It also demonstrates how some desirable properties (such as
robustness to seed set size and location, as well as speed) are maintained by the new
strategy. Our empirical evaluation on a variety of images indicates that the new strategy
consistently outperforms other state-of-the-art pI techniques such as PW and IRFC.

There are some avenues for possibly further advancing the proposed approach. The new
strategy seems to be best suited within a hybrid (pI+SM) approach wherein a prior object
model (in applications where it is feasible to create a model) can guide conservatively the
automatic selection of a small set of seeds. Another possible extension is generalizing the
framework from two objects (object and background) to many objects. While RFC itself
poses no problem to this effort (Ciesielski et al., 2007), the GC part of the iteration is more
difficult to handle. The additional constraints provided by the large seed sets (segmentations,
which get produced by RFC) may make this problem more tractable than the multi-object
GCsum segmentation problem.
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• Novel image segmentation algorithm robust w.r.t. seed choice

• Synergistic combinantion of Fuzzy Connectedness (FC) and Graph Cut (GC)
algorithms

• Better delineation of poorly defined boundary segments than either FC or GC
alone
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Figure 1.
(a) A region of interest around a tendon in an MRI slice of the wrist. The tendon cross
section appears dark. S consists of one spel indicated inside the object by a + mark. T
consists of two spels indicated by the other two + marks in the surrounding tissue. (b) IRFC
object (obtained by the full version of GCmax) using 8-neighborhood with the cost function
w(c, d) = K − |f(c) − f(d)|. (c) GCsum object collapses to just the seed set S. (d) RFC object Ŝ
for the internal seed set S. (e) RFC object T̂ for the external seed set T. (f) The 
returned object, resulting from applying GCsum to sets Ŝ (from (d)) and T̂ (from (e)) used as
seeds.
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Figure 2.
(a) An example of an MR image slice of a foot from our 2D medical image data set showing
talus and calcaneus bones. (b) True segmentation of the talus used to create two examples of
seed sets, the curves shown in (c,d), for the object and background obtained by eroding the
true segmentation.
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Figure 3.
(a) The mean accuracy curves and (b) running times for different methods for the
segmentation of talus.
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Figure 4.
(a) The mean accuracy curves and (b) running times for different methods for the
segmentation of calcaneus.
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Figure 5.
For each individual image, the methods may be ranked according to their mean Dice
coefficient values, as first (best), second, third, or fourth (worst). By computing the
frequency for each rank position, we have a rank distribution for segmenting: (a) talus, and
(b) calcaneus.

Ciesielski et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Some sample results for the talus for the seed sets depicted in Figures 2(b) (top row) and in
2(c) (bottom row): (a,d) GCsum, (b,e) GCmax, (c,f) . Compare these with the true
segmentation in Figure 2(a).
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Figure 7.
Examples of images with random (additive and white) noise. (a) Original image, (b) original
with 20% noise, (c) original with 30% noise.
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Figure 8.
The mean accuracy curves for different methods for the segmentation of talus in the images
with different noise levels: (a) 10%, (b) 20%, (c) 30%.
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Figure 9.
The mean accuracy curves for different methods for the segmentation of calcaneus in the
images with different noise levels: (a) 10%, (b) 20%, (c) 30%.
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Figure 10.
Results using a robot user for segmenting: (a) talus, (b) calcaneus, and (c) grabcut dataset.
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Figure 11.
(a) The mean accuracy curve and (b) running times for different methods considering the
mixed areas as object for the color image data set.
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Figure 12.
(a) The mean accuracy curve and (b) running times for different methods considering the
mixed areas as background for the color image data set.
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Figure 13.
Results with seeds obtained by eroding and dilating the ground-truth. First column: Input
images and seeds shown with solid colors. Second column: GCmax results (more specifically
IRFC, but PW outputs similar results). Third column: GCsum results. Fourth column: 
results for the same seeds.
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Figure 14.
For each individual image in the color image data set, the methods may be ranked according
to their mean Dice coefficient values, as first (best), second, third, or fourth (worst). By
computing the frequency for each rank position, we have a rank distribution: (a) considering
the mixed areas as object, and (b) considering the mixed areas as background.

Ciesielski et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 15.
Examples with user-selected seeds. First column: Input images and seeds shown with solid
colors. Second column: GCmax results (more specifically IRFC, but PW outputs similar
results). Third column: GCsum results. Forth column:  results.
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Figure 16.
(a) Mean accuracy curves and (b) running times for different methods for segmenting the
cerebellum.
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Figure 17.
Sample 3D results for segmenting the cerebellum by using different algorithms: (a–d)
GCsum, (e–h) GCmax, and (i–l) . Seeds were generated by using an erosion radius of 4
voxels.
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Figure 18.
(a) The mean accuracy curves and (b) running times for different methods for the 3D
segmentation of talus. (c) The mean accuracy curves and (d) running times for different
methods for the 3D segmentation of calcaneus.
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Algorithm

Input: An image I = 〈C, f〉 and non-empty disjoint sets: S ⊂ C indicating object, T ⊂ C indicating background.

Output: An object χP from 𝜒(S, T).

begin

  1. create the weighted graph G = 〈V, E, w〉 associated with I;

  2. use the RFC version of GCmax on G to find the sets: Ŝ with χŜ ∈ 𝜒∞(S, T) and T̂ with χT̂ ∈ 𝜒∞(T, S);

  3. apply GCsum to G using Ŝ and T̂ as new seed sets to find χP;

  4. return χP;

end
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