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Abstract

To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at
the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved
RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-
tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina
enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis
of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis,
mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and
peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity,
indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of
the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease
production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in
other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a
chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and
stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of
two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.
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Introduction

The genus Yersinia includes three human pathogenic species,

namely Y. pestis, the agent of plague and two enteropathogenic

species, Y. pseudotuberculosis and Y. enterocolitica. We study the

Gram-negative bacterium Y. enterocolitica as a model for an

extracellular enteropathogen. Upon ingestion of contaminated

food or water, Y. enterocolitica is able to invade the intestinal

submucosa and preferentially multiplies extracellularly in Peyer’s

patches and mesenteric lymph nodes [1,2]. Y. enterocolitica

virulence factors include proteins important for early stages of

infection, such as urease, a multisubunit metalloenzyme which

facilitates survival to stomach acidity [3,4] or the outer membrane

adhesin called invasin which promotes transcytosis across the

epithelial barrier [5]. Two other major virulence factors, which are

essential for later stages of infection, are encoded by the virulence

plasmid pYV: the outer membrane adhesin YadA and the type III

secretion system Ysc (Ysc-T3SS). The Ysc-T3SS is a complex

machinery that translocates at least 6 anti-host effector proteins

into the host cell (YopH, YopM, YopO, YopT, YopP and YopE),

where they collectively inhibit phagocytosis and dampen the

inflammatory response [6,7]. In addition to the pathogenicity

factors mentioned above, strains of Y. enterocolitica biogroup 1B,

which are highly virulent in a mouse model of infection, carry a so-

called high pathogenicity island (HPI). The HPI encodes proteins

involved in production and import of the siderophore yersinia-

bactin [8]. These proteins include the transcriptional activator

YbtA, the biosynthetic enzymes Irp1-Irp5 and Irp9, the inner

membrane ABC transporters Irp6 and Irp7, and the yersiniabactin

receptor FyuA, which is localized in the outer membrane [8–15].

FyuA also confers sensitivity to the bacteriocin pesticin [11].

Importantly, yersiniabactin production and utilization is an

essential virulence trait for Y. enterocolitica in mouse infection

[10,11,16].

Genes involved in pathogenicity of enteropathogenic Yersinia

ssp. are regulated by environmental factors such as temperature,

ionic strength, pH and host cell contact. For example, under in vitro

conditions, urease and invasin are most highly expressed at 27uC,

the optimal growth temperature [17,18]. In contrast, pYV plasmid

genes encoding the Yop proteins, Ysc-T3SS and the adhesin YadA

are upregulated at 37uC, the temperature of the mammalian host
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[18,19]. Many transcriptional and post-translational processes

underlying pathogenicity gene regulation have been uncovered in

Yersinia ssp. [18–20], but the importance of post-transcriptional

mechanisms has only recently become a focus of interest with the

discovery of numerous small RNAs (sRNAs) in bacteria. sRNAs

(also known as non-coding RNAs) are usually between 50-300

nucleotide long and modulate mRNA translation and/or stability

by complementary base-pairing [21]. One key co-factor for many

sRNA-mRNA interactions is the RNA chaperone Hfq [22].

Originally described in Escherichia coli as a host factor important for

the replication of phage Q,beta., Hfq is an abundant 11-kDa

protein that forms hexameric rings. Present in many but not all

bacteria, Hfq promotes sRNA-mRNA pairing and sRNA stability.

Moreover, it may regulate the activity of proteins involved in

mRNA turnover such as RNase E, polynucleotide phosphorylase

and poly(A) polymerase and thus may control the stability of

numerous gene transcripts. Finally, it is also believed that Hfq

might play additional roles in transcription antitermination and

translation [22–24]. The influence of Hfq on bacterial physiology

and virulence has been studied in a growing number of bacterial

Gram-negative and Gram-positive pathogens [25], including

pathogenic yersiniae [26–29]. Hfq generally modulates motility

and promotes resistance to stresses likely encountered in the host,

such as oxidative stress or low pH [25]. Moreover, it was reported

to modulate T3SS in Salmonella enterica sv. Typhimurium,

enterohemorrhagic E. coli, Vibrio cholerae, Pseudomonas aeruginosa

and Y. pseudotuberculosis [28,30,31]. Recent studies have shown

distinct phenotypes associated with loss of hfq between Y.

pseudotuberculosis and Y. pestis, with a stronger effect on bacterial

growth and on sRNA instability in Y. pestis [27,28,32,33]. The

finding that more of 40% of the sRNAs described in Y.

pseudotuberculosis are not conserved in Y. enterocolitica [32] suggests

that Hfq could modulate protein production differently in the two

enteropathogenic Yersinia ssp.

A first description of hfq in Y. enterocolitica serotype O:9 (low

virulence in mouse infection model) was published in 1996 and

described the isolation of spontaneous hfq mutants that lost

expression of the heat stable enterotoxin Y-ST [26]. In light of the

emerging role of Hfq in post-transcriptional gene regulation, we

revisited the significance of Hfq for the Y. enterocolitica, using the

highly mouse-virulent strains of serotype O:8. In this study we

generated and characterized mutants deleted in the hfq gene in two

prototypes of Y. enterocolitica serotype O:8, i.e. WA-314 and the

8081-derivative JB580v. We show that Hfq plays a role in growth,

metabolism of carbohydrates and nitrogen, and the production of

urease and yersiniabactin siderophore.

Materials and Methods

Bacterial strains and media
Y. enterocolitica and E. coli strains used in this study are listed in

Table 1. Salmonella Typhimurium SB300 and E. coli MG1655 were

used as positive and negative controls for 1,2-propanediol (1,2-PD)

utilization, respectively [34,35].

Y. enterocolitica and E. coli were routinely grown in LB broth

(10 g tryptone, 5 g yeast extract and 5 g NaCl per liter) and on

LB-agar at 27uC and 37uC, respectively. When indicated yersiniae

were also grown on selective yersinia agar (CIN plates, Oxoid,

Wesel, Germany), in brain heart infusion (BHI) (Becton Dickinson,

Heidelberg, Germany), RPMI 1640 (Invitrogen) and M9 minimal

medium [36] supplemented with 0.1% Casamino Acids (Difco,

Becton Dickinson), 0.05 mg/ml thiamine and either 1% glucose or

1% glycerol. Finally, to assess sugar utilization by Y. enterocolitica,

we monitored acidification of the agar media around bacterial

spots in the presence of neutral red or phenol red. MacConkey

agar (Oxoid) as well as LB agar containing 0.003% neutral red

were supplemented with either no sugar, glucose (2%), mannitol

(2%) or 1,2-PD and vitamin B12 (1% and 200 ng/ml, respective-

ly). Antibiotics were used at the following concentration: ampicillin

(Ap) for E. coli, 100 mg/ml; carbenicillin (Cb) for Y. enterocolitica,

300 mg/ml; chloramphenicol (Cm), 20 mg/ml; kanamycin (Km),

50 mg/ml; spectinomycin (Sp), 50 mg/ml.

Growth and metabolic assays
Growth in liquid medium was assessed by measuring the optical

density (OD) of the culture at 600 nm over 24 h (Ultrospec 3100

pro spectrophotometer; Amersham Biosciences). Bacterial strains

were first precultured overnight in broth at 27 uC, then diluted to

OD(600 nm) = 0.1 in 20 ml media and subcultured in Erlenmeyer

125-ml flasks. Bacterial cultures were incubated with shaking at

180 rpm in a Certomat BS-1 incubator (B-Braun Biotech

International, Sartorius, Göttingen) at 27 or 37uC.

To observe utilization of sugars, bacteria were either streaked or

spotted on media containing a carbohydrate source and pH

indicator dye. Overnight cultures in LB were washed and

subsequently resuspended in sterile phosphate buffered saline

(PBS) to an OD(600 nm) of 0.1. Five microliters were spotted on

agar plates, and subsequently incubated at 27uC. Acidification of

the medium was observed by the formation of a red or yellow halo

around the spots on media containing neutral red or phenol red,

respectively. We also analyzed strains with the API-20E biochem-

ical characterization kit (bioMérieux) according to manufacturer’s

instructions.

To measure indole production, we used a protocol adapted

from Chant and Summers [37]. 0.5 ml bacterial culture superna-

tant was thoroughly mixed with 0.5 ml HCl-amyl alcohol mixture

(75 ml HCl and 225 ml amyl alcohol). After formation of two

phases, 0.2 ml of the upper phase was mixed with 1 ml HCl-amyl

alcohol mixture containing 5 g/l of 4-dimethylamino-benzalalde-

hyde (Kovacs’ reagent, Carl Roth). The absorbance of the solution

was measured spectrophotometrically at 540 nm and indole

concentration was calculated using a standard curve.

Mutant generation and complementation analysis
To facilitate construction of hfq mutants, we used the gene

inactivation technique described by Datsenko and Wanner [38].

Primers used are listed in Table 2. Using pACYC177 [39] as a

template and primers OR1 and OR2, we amplified by PCR a

DNA fragment encoding a Km resistance (KmR) cassette flanked

on the one side by the hfq start codon and 47 bp upstream, and, on

the other side, by the hfq stop codon and 47 bp downstream. To

eliminate the template plasmid, the PCR product was subse-

quently digested with DpnI and precipitated. To express the l
phage Red recombination functions in Yersinia, strains WA-314

and JB580v harbouring plasmid pKD46 were grown in LB

supplemented with 1% arabinose and subsequently made electro-

competent [36]. Following electroporation of the PCR product,

recombinant bacteria were selected with Km and further analysed

by PCR with primers OR14 and OR15 to confirm correct allelic

exchange. The hfq-negative strains thus derived from WA-314 and

JB580v were designated SOR3 and SOR17, respectively. Loss of

pKD46 and maintenance of the virulence plasmid pYV was

confirmed by PCR using primer pairs OR20/OR21 and OR33/

OR34, respectively. In these mutants the KmR cassette might have

a polar effect on the expression of hflX, the gene downstream of

hfq.

We also generated a mutant with an unmarked deletion of hfq.

Here primers OR5 and OR6 were used along with template

Yersinia enterocolitica RNA Chaperone Hfq
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plasmid pKD3 to amplify a CmR cassette flanked on the one side

by the hfq start codon and 47 bp upstream, and, on the other side,

by the hfq stop codon and 47 bp downstream. Two CmR colonies

were selected from two independent electroporations of strain

WA-314(pKD46). Correct insertion of the CmR cassette was

verified by PCR. Following growth at 37uC, the strains were

subsequently cured of the plasmid pKD46 and electroporated with

helper plasmid pCP20. To express the FLP recombinase strains

Table 1 Strains used in this study.

Strains Description Source or Reference

Y. enterocolitica

WA-314 Clinical isolate of serotype O:8, carrying virulence plasmid pYVO8 [93]

WA-C pYVO8-cured derivative of WA-314 [93]

WARS WA-C derivative carrying a deletion in the YenI restriction modification system [94]

WA-314 pYV-515 WA-314 derivative carrying pYVO8 lcrD::Tn5, defective in Yop secretion [95]

WA fyuA WA-C derivative carrying a nonsense mutation in fyuA [11]

WA ybtA WA-C derivative with the insertion of a KmR cassette inactivating ybtA [96]

SOR3 WA-314 derivative with a deletion of hfq marked with a KmR cassette This study

SOR4 WA-314 derivative with an unmarked deletion of hfq This study

SOR5 pYVO8-cured WA-314 derivative with an unmarked deletion of hfq This study

SOR33 WARS strain with an unmarked chromosomal fusion of hfq with sequences encoding
the 3xFLAG epitope

This study

JB580v Derivative of clinical isolate 8081, restriction endonuclease-negative (R2),
methyltransferase-positive (M+), carrying virulence plasmid pYVO8

[97]

SOR17 JB580v derivative with a deletion of hfq marked with a KmR cassette This study

SOR35 JB580v derivative with an unmarked chromosomal fusion of hfq with sequences
encoding the 3xFLAG epitope

This study

8081-U-GB R2M+ derivative of clinical isolate 8081, yeuA::Km, urease-negative [4]

E. coli

DH5a [98]

CC118lpir [99]

S. enterica serotype Typhimurium

WR1542 reporter strain WR1330 (fepA::Tn10dTc, iroN::pGP704, cir::MudJ) carrying plasmid
pACYC5.2L with genes promoting the import of yersiniabactin (fyuA, irp6-8), their
transcriptional activator (ybtA) and a fusion of the fyuA promoter to luciferase

W. Rabsch, Wernigerode

doi:10.1371/journal.pone.0086113.t001

Table 2 Primers used in this study.

Primer name Sequence

OR1hfqKanfor CGATAGGTTCTTAGTTAATAACAACAAGCAAATAAGGAAAATATAGAATGTCACTGACACCCTCATCAGTG

OR2hfqKanrev TGAATCCGTTGCTTATGTTCCCCGTCATGGTTGACCAGCAATGCGCTTTACGTCAAGTCAGCGTAATGCTC

OR5hfqp1 AGCCGATAGGTTCTTAGTTAATAACAACAAGCAAATAAGGAAAATATAGAGTGTAGGCTGGAGCTGCTTC

OR6hfqp2 GCCTGAATCCGTTGCTTATGTTCCCCGTCATGGTTGACCAGCAATGCGCTCATATGAATATCCTCCTTAG

OR8hfqHindIII AACATAAGCTTGAATCCGTTGC

OR11hfqFLAG GTAATCCATCTGCGCCGCAACAGCCGCAGCAGGATAGCGATGACGCTGAAGACTACAAAGACCATGACGG

OR14hfq GGTTGCGGGGCTGGGGTTCA

OR15hfq GTAGTCGCAAAGCACCGCACCCT

OR20pKD46beta CCTTTCCTGATAAGCAGAATG

OR21pKD46beta AATCCAAGAGCTTTTACTGC

OR30hfqUSSalI TGATGTCGACGAAATGGTTTACC

OR33yscCfor ACCGCGAAACCTTATGTCAC

OR34yscCrev AAACCCTACTTCCAGACAAG

OR35pcp20ApF GCGATCTGTCTATTTCGTTC

OR36pcp20ApR ACCAGTCACAGAAAAGCATC

doi:10.1371/journal.pone.0086113.t002

Yersinia enterocolitica RNA Chaperone Hfq
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harbouring pCP20 were grown overnight at 37uC in LB and

subsequently plated on LB agar. Cm-sensitive colonies were

further analysed by PCR for the loss of the resistance cassette, loss

of pCP20 and maintenance of the pYV plasmid. Two independent

hfq deletion mutants were thus derived from WA-314, i.e. SOR4

and SOR27.

To assist in the detection of Hfq, we tagged the chromosomal

gene with a sequence encoding the 3xFLAG epitope using the

method described by Uzzau et al. [40]. Using plasmid pSUB11 as

a template and primers OR11 and OR6, we amplified a KmR

cassette flanked by sequences encoding the last 16 aminoacids of

Hfq fused to the 3xFLAG epitope on one side and on the other

side, 47 bp downstream of the hfq gene. KmR colonies were

isolated after electroporation of WARS(pKD46) or

JB580v(pKD46). Elimination of the KmR was carried out with

pCP20 as described above. Km-sensitive colonies were then

analysed by PCR for the loss of the resistance cassette, loss of

pCP20 and maintenance of the pYV plasmid. Strains SOR33 and

SOR35, derived from strains WARS and JB580v, respectively,

were selected for further analysis.

For complementation analysis, a 635–bp DNA fragment

containing hfq with 266–bp upstream sequence was amplified

using primers OR30 and OR8 and genomic DNA from JB580v as

a template, digested with SalI and HindIII and cloned into

pACYC184 (New England Biolabs) to generate pAhfq. To clone

hfqFlag into pACYC184, we used the same strategy as for pAhfq

except that SOR35 genomic DNA was used for the PCR, thus

producing pAhfqFlag. To inactivate the tetracycline resistance

cassette of plasmid pACYC184 we digested the pACYC184 with

BamHI and SalI, generated blunt ends fragments with Klenow

fragment of DNA polymerase I and religated the vector, thereby

generating pACYC184ts.

Subcellular protein fractionation, two-dimensional gel
electrophoresis (2-DE)

Bacteria were grown overnight at 27uC, subsequently diluted in

fresh LB to an OD(600 nm) of 0.1, and then grown in triplicate at

37uC for 5 h (100 ml culture in 500 ml-Erlenmeyer flasks). Cells

were collected from 50 ml culture by centrifugation at 4uC for 15

min at 4300 x rpm (Centrifuge 4K15, rotor 12169-H, Sigma).

Bacterial cell pellets were resuspended in 1/5 of the original

volume with buffer (40 mM sodium phosphate, 50 mM NaCl,

pH 7.8, 4 mM phenylmethanesulfonyl fluoride) and cells were

then disrupted by two passages in a French Press. Cell lysates were

then centrifuged at 4uC for 30 minutes at 18,170 x g to separate

soluble proteins (in supernatant) from total membrane proteins (in

pellet). One milliliter of soluble proteins was precipitated overnight

at –20uC with an equal volume of 20% TCA diluted in acetone.

Following centrifugation, precipitated protein pellets were washed

twice with acetone, air dried and resuspended in 250 ml of 2DE-

loading buffer {8 M urea, 2% 3-[(3-cholamidopropyl)dimethy-

lammonio]-1-propanesulfonate (CHAPS), 1% dithiothreitol

(DTT), 2% Pharmalyte pH 3–10 carrier ampholytes (GE

Healthcare)}. Pellets of total membrane proteins were resuspended

in 1 ml of 10% TCA in acetone, incubated overnight at –20uC
and subsequently centrifuged as above. Pellets were washed twice

in acetone, air dried and resuspended in 300 ml of 2-DE loading

buffer. Protein concentrations were determined using the Bradford

protein assay kit (Bio-Rad) according to the manufacturer’s

instructions, using BSA as a standard. To further confirm that

proteins amounts were comparable, protein samples were loaded

on standard SDS-PAGE gels, followed by Coomassie blue

staining. pH 3–10 strips (NL, 7 cm, Bio-Rad) were rehydrated

for 12 h with 200 mg proteins in rehydration buffer (8 M urea, 2%

CHAPS, 0.4% DTT, 0.5% Pharmalyte) in the isoelectric focusing

cell (Protean IEF cell, Bio-Rad) set at 50 V. Isoelectric focusing

was done for a total of ,8,000 V-hr. For the second-dimension

separation, strips were first equilibrated for 10 min in 2% DTT in

equilibration buffer (6 M urea, 2% SDS, 50 mM Tris pH 8.8,

20% glycerol) followed by a 10-min incubation in 2.5%

iodoacetamide in equilibration buffer, and were then loaded onto

12.5% SDS-PAGE gels. Gels were run in a Dodeca cell (Bio-Rad),

stained with Coomassie blue and scanned under high resolution

using the GS-800 calibrated densitometer (Bio-Rad). For this

analysis, three biological replicates for each strain were compared.

Data were then analysed using the PDQuest 2-D analysis software

from Bio-Rad v. 8.0.1, and included spot matching, normalization

and intensity averaging. Spots for which the intensity ratio wt/hfq

mutant was either $2 or #0.5 were excised and further processed

for mass spectrometry (except spot 3601, identified as AtpD, for

which the ratio was 1.79).

Trypsin digest and mass spectrometry
In-gel digests were performed as described in standard

protocols. Briefly, following the SDS-PAGE and washing of the

excised gel slices proteins were reduced by adding 10 mM DTT

(Sigma Aldrich) prior to alkylation with 55 mM iodoacetamide

(Sigma Aldrich). After washing and shrinking of the gel pieces with

100% acetonitrile, trypsin (Sequencing Grade Modified, Promega)

was added and proteins were digested overnight in 40 mM

ammoniumbicarbonate at 37uC.

For protein identification, we used MALDI or LC-MS/MS. For

MALDI, 10 ml of each sample were first purified and concentrated

on a C18 reversed phase pipette tip (ZipTip, Millipore) prior to

elution of the peptides with 1 ml of ,alpha.-cyano-4-hydro-

xycinnamic acid (HCCA, Sigma) and directly spotting on a

MALDI sample plate (Applied Biosystems). MALDI-TOF mea-

surements were then performed on a Voyager-DE STR Time Of

Flight (TOF) mass spectrometer (Applied Biosystems). Alterna-

tively, protein identification probes were directly used for nano-

ESI-LC-MS/MS. Each sample was first separated on a C18

reversed phase column via a linear acetonitrile gradient (UltiMate

3000 system, Dionex) and column (75 mm i.d. x 15 cm, packed

with C18 PepMapTM, 3 mm, 100 Å, LC Packings) before MS and

MS/MS spectra were recorded on an Oribitrap mass spectrom-

eter (Thermo Scientific). The resulting spectra were analyzed via

the MascotTM Software (Matrix Science) using the NCBInr

Protein Database.

Protein staining and immunoblotting
Protein extracts from comparable OD(600 nm) equivalents were

denatured at 95–100uC for 5 min, chilled on ice, and separated by

SDS-PAGE (Mini-Protean Tetra-cell, Bio-Rad, Munich). Gels

were stained by Coomassie blue staining [41] or silver staining

using the PageSilver kit (Fermentas, St.Leon-Rot, Germany). For

immunoblotting, proteins separated by SDS-PAGE were trans-

ferred to PVDF membranes using a Semi-Dry-Blotter (Carl Roth,

Karlsruhe) according to manufacturer’s instructions. Following

overnight blocking in 3% skim milk diluted in PBS, membranes

were reacted with primary antibodies diluted in PBS with 0.1%

Tween 20 (PBST) for 1 h at room temperature (RT), washed three

times for 10 min in PBST, and incubated for 1 h at RT with PBST

containing the secondary antibody conjugated to horseradish

peroxidase (HP) (GE Healthcare, Freiburg). After three 5-min

washes in PBST, chemiluminescence detection was performed

using the Amersham ECL Western blotting analysis system (GE

Healthcare) and membranes were exposed to an X-ray film

(Fujifilm superRX, Hartenstein). Developed films were scanned

Yersinia enterocolitica RNA Chaperone Hfq
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with the GS-800 calibrated densitometer (Bio-Rad) and Western

blot semi-quantification was performed with QuantityOne soft-

ware (v. 4.5.0, Bio-Rad). In each experiment, loading of equivalent

amounts of proteins was controlled by Coomassie blue staining

and/or by equivalent amounts of cross-reacting bands in

immunoblots (when applicable).

Primary antibodies used were rabbit antisera directed against

UreB [4] (1:1,000 dilution, a kind gift from S. Batsby, Freiburg),

FyuA [10], YopB, YopD, LcrV [42], YopP, YopE, YopM [43],

YopH [44], and YopQ [45] (all antibodies specific for Yop

proteins were diluted 1:5,000). We also used mouse monoclonal

antibodies directed against the FLAG epitope of tagged proteins

(anti-FLAG M2, 1:2000, Sigma). Secondary antibodies were HP-

conjugated anti-rabbit or anti-mouse immunoglobulin G (GE

Healthcare), both diluted 1:10,000.

Sensitivity assays
To measure survival to acid or oxidative stress, overnight

cultures in LB were diluted in PBS (pH 7.5) to 107 CFU/ml.

0.5 ml bacterial suspension was mixed with an equal volume of

PBS acidified with acetic acid to pH 4.0 (acid stress), or PBS

containing 1 mM H2O2 (oxidative stress) or PBS at pH 7.5 (mock-

treated). Bacteria were incubated at 37uC for 90 min and then

bacterial dilutions were plated to determine CFUs. Percentage

survival is defined as the CFUs after treatment x 100/CFUs after

mock-treatment.

Minimal inhibitory concentrations of antibiotics were deter-

mined on LB agar using M.I.C.Evaluator strips (Oxoid).

Sensitivity to pesticin was assessed as previously described [10].

Yersiniabactin detection
Y. enterocolitica strains were cultivated in LB medium supple-

mented with 0.2 mM a,a’-dipyridyl (DIP) for 24 h at 37uC (Fur-

derepressed conditions). Bacteria were pelleted by centrifugation

and their supernatant was added to the Salmonella siderophore

indicator strain WR1542 carrying plasmid pACYC5.3L (kind gift

of W. Rabsch, Wernigerode). The plasmid encodes all genes

necessary for yersiniabactin uptake (irp6, irp7, irp8, fyuA) and ybtA.

Additionally, the fyuA promoter region fused to the luciferase

reporter gene luc is included on pACYC5.3L. The indicator strain

was grown in presence of bacterial supernatants for 24 h at 37uC,

after which it was centrifuged and lysed with bacterial lysis buffer

(100 mM potassium phosphate buffer [pH 7.8], 2 mM EDTA, 1%

[wt/vol] Triton X-100, 5 mg/ml bovine serum albumin, 1 mM

dithiothreitol, 5 mg/ml lysozyme). Complete lysis was performed

by incubation at room temperature for 20 min and repeated

mixing. The samples were centrifuged and supernatants were

tested by addition of luciferase reagent (20 mM Tricine-HCl

(pH 7.8), 1.07 mM (MgCO3)4Mg(OH)2, 100 mM EDTA, 470 mM

D(–) luciferin, 33.3 mM dithiothreitol, 270 mM Li3 coenzyme A,

530 mM Mg-ATP). Luciferase activities were determined in

triplicates using the multimode reader Tristar LB 941 (Berthold

Technologies, Bad Wildbad, Germany). Values were normalized

to the OD(600 nm) of the Y. enterocolitica bacterial cultures. E. coli

strain DH5a served as negative control.

Type III secretion assay
For studying Yop secreted proteins released into culture

supernatant by the Ysc-T3SS, bacteria were first precultured

overnight in LB (or BHI) at 27uC, diluted in 20 ml LB (or BHI) to

OD(600 nm) = 0.1 and incubated for 90 min at 37uC. Then, to

induce Yop secretion, we added MgCl2 and ethylene glycol

tetraacetic acid (EGTA) to a final concentration of 10 mM and

5 mM, respectively [46]. After incubation for 90 min at 37uC, the

cultures were centrifuged at 2,600 x g for 10 min at 4uC. The

supernatants were further cleared by passing through a 0.2 mm

low protein binding filter and then precipitated overnight with 0.1

volume trichloroacetic acid (TCA) on ice. Following centrifugation

at 10,000 x g for 30 min at 4uC, the pellet was resuspended in 1 ml

PBS with a cell scraper, precipitated with 8 ml freezer-cold (–

20uC) acetone for 30 min on ice and centrifuged at 10,000 x g for

30 min at 4uC. A second wash was performed with 1 ml freezer-

cold acetone, after which the pellet was dried before resuspension

in Laemmli buffer. The volume of Laemmli buffer used was

adjusted according to the OD(600 nm) of each culture with the

following formula: ODx100 ml. To prepare bacterial lysates, cell

pellets from centrifuged cultures were resuspended in ODx200 ml

of PBS. Then 100 ml of bacterial suspension was mixed with

100 ml of 2x Laemmli buffer.

Results

Deletion of Y. enterocolitica hfq gene and its effect on
general growth characteristics

Examination of the genome sequence of Y. enterocolitica strain

8081 showed that it encodes a protein with 82% identity and 88%

similarity to E. coli Hfq. The cluster of genes flanking hfq is similar

to that described in Y. pestis and Y. pseudotuberculosis as well as in E.

coli [29,47]. As a first step in understanding the significance of

post-transcriptional regulation for Y. enterocolitica, we used allelic

exchange to replace the entire hfq coding sequence by a KmR

cassette in two strains of Y. enterocolitica serotype O:8 of different

lineages, i.e. WA-314 and 8081-derived JB580v [48,49]. Mutant

strains SOR3 and SOR17 were isolated from strains WA-314 and

JB580v, respectively. In addition, we also generated an indepen-

dent unmarked deletion mutant in strain WA-314, i.e. hfq-negative

strain SOR4.

All hfq-negative strains formed normal colonies on LB and BHI

agar at 27uC (size, surface, color). However, in LB and BHI liquid

media, the hfq mutants exhibited a slowed growth rate at 27uC
(Fig. 1). Moreover, compared to parental strains, the mutants

entered stationary phase at a lower OD, which correlated with the

reduction in the CFUs recovered from the broth cultures (Fig. 1

and data not shown). When bacteria were grown at 37uC, the

growth rate of the hfq mutants was further reduced, as well as the

OD reached in stationary phase (Fig. 1). Introduction of hfq-

containing plasmid pAhfq restored normal growth in all three

mutant strains at 27uC and 37uC (Fig. 1). In the course of the

complementation experiments, we noted that pAhfq also promot-

ed growth of parental strains WA-314 and JB580v to higher OD

upon transition from exponential phase into stationary phase at

both temperatures, probably due to an increase in hfq copy

number (Fig. 1C-D). We also investigated growth of hfq-negative

strains in minimal M9 medium supplemented with glucose or

glycerol (to bypass catabolite repression) at 27uC. With both

carbon sources, hfq mutants reached stationary phase at a lower

OD than wild types (data not shown). Taken together, these results

show that the presence of the hfq gene promotes optimal bacterial

growth in Y. enterocolitica.

We next examined cell shapes of all bacterial strains by light

microscopy. Upon growth in LB at 27uC for 16 h, hfq-negative

strains were more elongated and slightly wider than parental

strains (data not shown). Therefore, lack of Hfq leads to a change

in cell morphology of Y. enterocolitica, as has been described for

other bacteria [25,50], including Y. pestis [29].
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Proteomic analysis
To assess the scope of proteins of which production and/or

stability are affected by Hfq in Y. enterocolitica, we used two-

dimensional electrophoresis (2-DE) to compare the proteome of

strain JB580v with that of the hfq-negative derivative SOR17.

Bacteria were grown in triplicate in LB for 5 h at 37uC
(temperature of the infected host). After French-press treatment,

the disrupted cells were separated into total soluble and total

membrane protein fractions. Proteins were then subjected to 2-DE

and stained with Coomassie blue. In all replicates analyzed, several

protein spots showed a reproducible difference in abundance

between the protein fractions of the hfq mutant and those of the

wild type (Fig. 2). Mass spectrometry allowed the identification of

proteins from 26 spots, which matched 21 distinct proteins from Y.

enterocolitica strain 8081 (Table 3). In addition, one protein present

only in SOR17 (spot 3202) corresponded to the neomycin

phosphotransferase encoded by the KmR cassette used to mark

the deletion of the hfq gene.

Proteins less abundant in the hfq mutant are likely involved in

lipid metabolism and transport (AccA, FadL), cell redox homeo-

stasis (AhpC), modulation of protein chaperones (YbbN), anaer-

obic respiration (FrdA), translation (TufA), and ATP synthesis

(AtpD) (Table 3). Proteins upregulated in the hfq-negative strain

included chaperones and proteases involved in response to stress

(HtpG, ClpB, DegP, Lon), or proteins implicated in carbon

metabolic pathways (TalB, TktA, PykF), amino acid catabolism

and peptide transport (TnaA, OppA), tRNA synthesis (ProS), as

well as four OMPs (LpxR/SfpA, OmpX, and TonB-dependent

siderophore receptors FyuA and FcuA) (Table 3).

We also performed a less extensive 2-DE comparison of total

protein content of bacteria grown for 16 h at 27uC, with only one

replicate per strain. Using mass spectrometry we identified nine

spots which were more abundant in the hfq mutants (Table 4).

Three proteins had previously been identified in the analysis

undertaken at 37uC, i.e. FcuA, TnaA and DegP (Tables 3 and 4).

Five newly identified proteins were all predicted to play a role in

1,2-propanediol (1,2-PD) utilization (PduA, PduB, PduC, PduD

and PduG) (Table 4), a metabolic activity believed to promote

adaptation of S. Typhimurium and Listeria monocytogenes to

particular niches in host tissues [51]. The last spot found to be

more abundant in the hfq mutant is a putative periplasmic binding

protein encoded by gene ye2751, which flanks the pdu region, and,

unlike the pdu genes, is conserved in Y. pseudotuberculosis and Y.

pestis. Based on conserved domain CD06302, YE2751 could be

involved in the transport of pentose or hexose sugars.

Figure 1. Growth of Y. enterocolitica strains in BHI (A, B) and LB (C,D). (A and B) Bacteria were grown in BHI at 27uC (A) and 37uC (B): parental
strains WA-314 (black diamonds) and JB580v (black squares), hfq-negative strains SOR3 (white diamonds), SOR4 (white triangles) and SOR17 (white
squares). (C and D) Growth in LB of complemented strains at 27uC (C) and 37uC (D): JB580v(pACYC184) (black squares and straight line, parental strain
harbouring the control plasmid), JB580v(pAhfq) (white square and dotted line, parental strain with complementing plasmid), SOR17(pACYC184)
(black triangle and black line, hfq-negative strain with control plasmid), and SOR17(pAhfq) (white triangle and dotted line, complemented hfq strain).
Full complementation of the growth defect of strains SOR3 and SOR4 was also observed after introduction of plasmid pAhfq (data not shown).
Results are the mean and standard deviation (error bars) of two cultures and are representative of at least two independent experiments.
doi:10.1371/journal.pone.0086113.g001
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Taken together, the results of the 2-DE analysis suggest that Hfq

impacts metabolism, surface proteins and stress responses of Y.

enterocolitica.

Influence of hfq on carbohydrate metabolism
As the next step in our analysis, we explored the influence of

Hfq on carbohydrate metabolism. First, we performed biochem-

ical tests using the API-20E kit. Using a pH indicator dye, this kit

detects the release of organic acids upon bacterial growth in the

presence of different carbohydrates. Amygdalin was the only

carbohydrate for which all hfq–negative strains exhibited reduced

medium acidification compared to the corresponding parental

strains (data not shown). Interestingly, growth in the presence of

inositol led to increased medium acidification for hfq mutants

SOR3 and SOR4 compared to the parental strain WA-314 (data

not shown), similarly to what has been described in Y. enterocolitica

O:9 [26]. Strains lacking hfq exhibited typical acidification of the

media after growth for 24 h at 27 uC in the API-20E wells

containing glucose, mannitol, sorbitol, sucrose and arabinose.

However, we wondered if the slowed growth of hfq mutants could

mask differences between parental and mutant strains. Bacterial

suspensions inoculated to the API-20E strips are very dilute and an

increase in acidification might not be detectable because parental

and mutant bacteria are at different stages of growth. A hint that

this might be the case came from the following observation: upon

growth on Yersinia selective agar (CIN agar) for two days at 27 uC,

all strains produced colonies with the typical dark pink bull’s eye

pattern, indicative of mannitol utilization (mannitol is the only

carbohydrate in CIN agar). However, we noticed that all the hfq-

negative strains also produced a strong pink halo surrounding

areas of heavy bacterial growth. Indeed, when we spotted bacterial

suspensions on CIN agar, we observed that after two days of

Table 3 hfq-dependent changes in protein abundance found by 2-DE analysis upon growth in LB for 5 h at 37uC.

Spot # Regulationa
MW
(kDa) YE # Gene name Protein description GO Biological processb

Soluble proteins

1302 – 32 YE3057 ybbN putative thioredoxin

2802 + 71 YE3090 htpG heat shock protein 90 protein folding; response to stress

7601,
8602

+ 50 YE0741 degP/gsrA/htrA serine endoprotease proteolysis

5803 + 96 YE0893 clpB/htpM protein disaggregation chaperone protein metabolic process; response to stress

7802 + 88 YE3132 lon/capR DNA-binding ATP-dependent protease La ATP-dependent proteolysis

3802 + 64 YE3258 proS/drpA prolyl-tRNA synthetase prolyl-tRNA aminoacylation

4301 + 35 YE0604 tal/talB transaldolase B pentose-phosphate shunt

7801 + 72 YE3416 tkt/tkt1/tktA transketolase metabolic process (pentose-phosphate)

5604 + 53 YE0650 tnaA tryptophanase tryptophan catabolic process

7707 + 51 YE2164 pykF pyruvate kinase glycolysis

7706 + 62 YE2233 oppA periplasmic oligopeptide-binding protein
precursor

transport

3202 + 31 N/Ac nptII neomycin phosphotransferase [Escherichia
coli]

Insoluble proteins

2601 – 46 YE1274 fadL/trr/todX putative long-chain fatty acid transport
protein

lipid transport

3601 – 50 YE4206 atpD F0F1 ATP synthase subunit beta plasma membrane ATP synthesis coupled
proton transport

4601,
5602

– 43 YE0278 tufA/tuf1 elongation factor Tu translational elongation

6302 – 36 YE3268 accA acetyl-CoA carboxylase carboxyltransferase
subunit alpha

fatty acid biosynthetic process

8103 – 22 YE3174 ahpC putative alkyl hydroperoxide reductase
subunit c

cell redox homeostasis

8801 – 67 YE0364 frdA/b4154 fumarate reductase flavoprotein subunit anaerobic respiration

3301,
4302,
5301

+ 35 YE3039 lpxR/sfpA lipopolysaccharide deacylase, systemic factor
protein A

5801 + 74 YE2622 fyuA outer membrane pesticin and yersiniabactin
receptor

siderophore transport; iron ion transport

6803 + 74 YE1771 fcuA outer membrane ferrichrome receptor
protein FcuA

siderophore transport; iron ion transport

7001 + 19 YE2835 ompX outer membrane protein X

a, +: protein more abundant in hfq-negative strain; –: protein less abundant in hfq-negative strain; b, Gene ontology biological function used in the GenoList database
(http://genodb.pasteur.fr); c, N/A: not applicable.
doi:10.1371/journal.pone.0086113.t003
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incubation at 27uC, spots of hfq mutants were surrounded by a

sharp dark pink halo that intensified over the next 2 days (Fig. 3A).

The wild type also produced a halo but only one or two days later,

suggesting that acidification of the agar medium was quicker for

the hfq-negative strains. Complementation of this phenotype was

achieved with plasmid pAhfq (Fig. 3A and data not shown). To

confirm that the halo appearance was independent of the dye used

to monitor acidification, we also spotted bacterial cultures on an

agar medium containing mannitol and phenol red (instead of

neutral red): indeed, strain SOR4 produced a yellow halo that

appeared earlier and was stronger than the one produced by wild-

type WA-314 (data not shown). We also grew bacteria on

MacConkey agar supplemented with different sugars. Since Y.

enterocolitica does not utilize lactose, all strains grown on

unsupplemented MacConkey produced yellow colonies, whereas

plates supplemented with mannitol, glucose or sucrose gave rise to

red/pink colonies (data not shown). When bacterial suspensions

were spotted on MacConkey agar with mannitol or glucose, the

pink halos were stronger for hfq mutants SOR4 and SOR17

compared to their parental strains WA-314 and JB580v. On

MacConkey agar containing sucrose, we could only observe a very

faint pink halo around all the spots with no noticeable differences

between parental strains and mutants (data not shown). Finally, we

also used MacConkey agar containing 1,2-PD and vitamin B12,

an essential co-factor for the Pdu enzyme complex. Similar to

medium containing sucrose, acidification around bacterial spots of

the wild types was very faint (Fig. 3A). Because hfq mutants grew

slightly more slowly on this medium, we could not easily compare

them to their parental strains (Fig. 3A). However, we noticed that

expressing additional copies of hfq in the parental strains (from

plasmid pAhfq) led to a reduction in the pink color of spots or

colonies (Fig. 3A and B), evoking a decrease in 1,2-PD utilization.

Overall, our results suggests that Hfq represses the catabolism of

mannitol, glucose, inositol and 1,2-PD in Y. enterocolitica.

Figure 2. 2-DE analysis of total soluble (A) and total membrane (B) proteins stained with Coomassie blue. Bacteria were grown in
triplicate at 37uC for 5 h. One representative gel per strain is shown. Proteins were separated in 2-DE gels (for all gels: pH range 3–10, molecular
weight (MW) range 15–150 kDa). Highlighted spots were identified by mass spectrometry (see Table 3). MW marker size is indicated in kDa.
doi:10.1371/journal.pone.0086113.g002
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Influence of hfq on nitrogen metabolism
Next we examined the influence of hfq on nitrogen metabolism.

Since our 2-DE proteome analysis suggested that tryptophanase

was more abundant in a hfq mutant, we used Kovacs’ reagent to

detect the production of indole, the by-product of tryptophanase

activity. Upon growth in LB at 27uC, hfq mutants produced more

indole than the parental strains, a phenotype that was comple-

mented for bacteria carrying plasmid pAhfq (Fig. 4A and B).

Therefore, together with results from 2-DE, our analysis indicates

that Hfq represses the production of tryptophanase.

Using the API-20E strips, we observed that the ornithine

decarboxylase activity was also markedly increased for all strains

lacking hfq when bacteria were grown at 27 uC (Fig. 4C),

suggesting that polyamine synthesis is also modulated by hfq.

Finally, we also noted that urease activity was decreased for all hfq

mutants compared to their corresponding parental strains in the

API-20E strips (data not shown). To further assess the influence of

hfq on the production of urease, we performed immunoblotting

using a rabbit polyclonal antibody specific for the 19-kDa UreB

subunit [17]. Bacteria were grown overnight at 27uC, conditions

described for maximal urease production [3,4]. Figure 5 shows that

the urease production is reduced in hfq-negative strains relative to

wild types, although the reduction observed in the WA-314

derivatives was more modest than in strain JB580v (50% and

80% reduction, respectively). Complementation was observed after

Table 4 hfq-dependent changes in protein abundance found by 2-DE analysis upon growth in LB for 16 h at 27uC.

Regulationa MW (kDa) YE # gene name Protein description GO biological functionb

+ 80 YE1771 fcuA ferrichrome receptor protein siderophore transport

+ 50 YE0650 tnaA tryptophanase tryptophan catabolic process

+ 51 YE0741 degP/htrA/gsrA serine endoprotease proteolysis

+ 38 YE2751 putative periplasmic binding protein transport

+ 70 YE2730 pduC/pddA putative propanediol utilization protein:
dehydratase, large subunit

metabolic process

+ 70 YE2733 pduG/ddrA putative propanediol utilization protein:
diol dehydratase reactivation

+ 33 YE2731 pduD/pddB putative propanediol utilization protein:
dehydratase, medium subunit

+ 32 YE2729 pduB putative propanediol utilization protein response to external stimulus

+ 10 YE2728 pduA putative propanediol utilization protein

a, +: protein more abundant in hfq-negative strain; b, Gene ontology biological function used in the GenoList database (http://genodb.pasteur.fr).
doi:10.1371/journal.pone.0086113.t004

Figure 3. Influence of hfq on carbohydrate metabolism. (A) Bacteria were spotted on CIN agar (top row) and MacConkey agar supplemented
with vitamin B12 and 1,2-PD (bottom row). Plates were incubated at 27uC for three (top) or two days (bottom). (B) Bacteria were grown on
MacConkey agar supplemented with vitamin B12 and 1,2-PD at 27uC for two days.
doi:10.1371/journal.pone.0086113.g003

Yersinia enterocolitica RNA Chaperone Hfq

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e86113



introduction of pAhfq in the mutant strains (Fig. 5B compare lane 1

and 2). Thus, Hfq enhances the production of urease, a known

virulence/fitness factor of Y. enterocolitica.

Role of hfq in susceptibility to acidic, oxidative and
antibiotic stress

Since urease is known to contribute to resistance to acidic pH,

we tested whether a hfq-negative strain would be more susceptible

to acid stress using a survival assay. As shown in Fig. 6A, both hfq-

negative strains SOR4 and SOR17 exhibited a reduced survival at

pH 4.0 compared to their parental strains. Mirroring its more

pronounced decrease in urease production, strain SOR17 was

more susceptible to acidic stress than strain SOR4 (6% compared

to 26% respectively). Using plasmid pAhfq, we observed

complementation of the survival defect of strain SOR17 (Fig.

6A). Hence, in Y. enterocolitica, Hfq promotes resistance to acidic

stress.

As a next step in our study, we analyzed bacterial susceptibility

to additional stress challenges, i.e. oxidative and antibiotic stress.

Both hfq mutants SOR4 and SOR17 were more susceptible to

killing by hydrogen perdoxide that parental strains, with again an

Figure 4. Influence of hfq on indole production and ornithine
decarboxylase activity. (A and B) The concentration of indole
present in culture supernatants was determined after growth in LB at
27uC. (A) Bacteria were grown for four hours at 27uC. Data represent
mean and standard deviation of at least three independent experiments
each performed with triplicate independent cultures. (B) Complemen-
tation analysis. Bacterial cultures were grown for 16 h at 27uC, since
strains carrying plasmids were delayed in their indole production.
Because of the variability of indole concentration produced by parental
strains carrying plasmids (between 0.07 and 1.5 mM in four indepen-
dent experiments), results were expressed relative to the indole
produced by the parental strain JB580v carrying the control vector(-
which was set at 100%). Data represent mean and standard deviation of
four independent experiments each performed with at least triplicate
independent cultures. Significance was calculated with Student‘s
unpaired t-test (*P,0.05; **P,0.01; ***P,0.001). (C) Ornithine decar-
boxylase activity detected using the API-20E strip. All wells are positive
(negative wells remain yellow), but wells inoculated with hfq-negative
strains turn red, whereas those inoculated with parental strains are
more orange.
doi:10.1371/journal.pone.0086113.g004

Figure 5. Immunodetection of the 19-kDa urease beta subunit
in total protein extracts of Y. enterocolitica. The relative signal for
each band compared to wild type (which was set to 100%) is indicated.
Upper panel shows the immunoblot, bottom panel shows part of the
Coomassie blue-stained gel used as loading control. (A) Loading was as
follows: 1, WA-314; 2, SOR4; 3, SOR3; 4, urease-negative control strain
8081-U-GB; 5, JB580v, and 6, SOR17. (B) Complementation analysis.
Loading was as follows: 1, SOR4(pACYC184ts); 2, SOR4(pAhfq); 3, WA-
314(pAhfq); 4, WA-314(pACYC184ts); 5, WA-314; and 6, 8081-U-GB. In
another experiment, we also observed restoration of the production of
UreB in the hfq-negative strain SOR17 carrying pAhfq (data not shown).
doi:10.1371/journal.pone.0086113.g005
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even stronger phenotype in strain SOR17 (Fig. 6B).Introduction of

the complementation plasmid pAhfq into SOR17 increased the

strain’s resistance to H2O2 (Fig. 6B). Therefore, as described for

other bacteria and Yersinia species [25,27,28], Hfq promotes

survival of Y. enterocolitica in the presence of oxidative stress.

Finally we determined the minimal inhibitory concentration

(MIC) of several antibiotics for WA-314 and SOR4: no significant

differences in MIC were observed between strains for all

antibiotics tested, i.e. ampicillin, oxacillin, gentamicin and

trimethoprim/sulfamethoxazole (data not shown). Therefore, lack

of hfq does not lead to general increase in sensitivity to antibiotics.

Influence of hfq on production of the siderophore
receptor FyuA

Among the OMPs whose production was increased in the hfq

mutant, the 2-DE proteomic analysis identified FyuA (Table 3),

which is an essential virulence factor in Y. enterocolitica biotype 1B

strains [11]. FyuA functions as the receptor for the siderophore

yersiniabactin but also for the bacteriocin pesticin [11]. To

confirm the influence of Hfq on FyuA production under

conditions where iron is not depleted, we performed a pesticin

susceptibility assay using a disk diffusion assay (Table 5). As

observed previously [11], a strain lacking fyuA is resistant to killing

by pesticin, as denoted by the absence of growth inhibition even at

the highest concentration of pesticin (Table 5). In contrast, the hfq-

negative strain SOR4 was more susceptible to pesticin compared

to the parental strain WA-314: SOR4 showed an increase in both

the size of the growth inhibition zone and in the minimum dilution

factor required to observe growth inhibition (MID), a phenotype

that was complemented by expressing hfq from plasmid pAhfq

(Table 5). In the course of the complementation experiment, we

also noted that pAhfq rendered the wild-type strain WA-314

completely resistant to pesticin (Table 5). Using this assay, we

observed some strain differences: strain JB580v appeared more

susceptible than strain WA-314 to pesticin. Lack of hfq renders

JB580v only slightly more susceptible to the bacteriocin with a

modest 2-fold increase in the MID (Table 5). In summary, Hfq

appears to repress susceptibility to pesticin, which is likely to reflect

its influence on the production of FyuA.

Next we tested whether Hfq also played a role in FyuA

production under low-iron conditions (to alleviate Fur repression).

Bacteria were grown for 24 h at 37uC in LB supplemented with

the ferrous iron chelator DIP (LBD), and then FyuA was detected

by immunoblotting (Fig. 7A). The outer membrane receptor was

more abundant in hfq-negative strains than in parental strains (ca.

30–50% increase). Most strikingly, increased production of Hfq

from plasmid pAhfq led to an 80% reduction in FyuA in the wild

type strains. Taken together, our results indicate that Hfq inhibits

the production of FyuA.

Role of hfq in siderophore production
Since the transcriptional regulator YbtA regulates expression of

fyuA as well as the genes involved in yersiniabactin biosynthesis, we

next tested whether Hfq played a role in yersiniabactin produc-

tion. Using a reporter strain which contains a yersiniabactin-

Figure 6. Influence of hfq on bacterial survival to acidic and
oxidative stress. (A) Bacterial survival to exposure to pH 4.0 for 90
min. (B) Bacterial survival to exposure to 1 mM H2O2 for 90 min. Results
are expressed as % survival relative to bacteria incubated in PBS pH 7.5
and are the mean and standard deviation of at least three experiments
performed with three separate cultures. Complementation assays
correspond to two independent experiments performed with at least
three separate cultures. Significance was calculated with Student‘s
unpaired t-test (*P,0.05; **P,0.01; ***P,0.001). Bacterial strains are
WA-314 and its hfq-negative derivative SOR4, JB580v and its hfq-
negative derivative SOR17.
doi:10.1371/journal.pone.0086113.g006

Table 5 Pesticin sensitivity assaya.

Strains Genotype
Halo diameterb

(cm) MIDc

WA-314 wt 1.0 2

SOR4 hfq 1.3 12

WA fyuA fyuA 0 ,1

WA-314(pAhfq) wt (hfq+) 0 ,1

SOR4(pACYC184) hfq (vector) 1.5 16

SOR4(pAhfq) hfq (hfq+) 0.8 1

JB580v wt 1.2 16

SOR17 hfq 1.2 32

a, all strains were tested in duplicate at least twice and a representative
experiment is shown; b, size of growth inhibition obtained with undiluted
pesticin preparate; c, MID: minimum inhibitory dilution factor for pesticin
preparate to inhibit bacterial growth.
doi:10.1371/journal.pone.0086113.t005
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responsive promoter fused to luciferase, we were able to detect

yersiniabactin released into the supernatants of bacteria grown in

LBD. As shown in Fig. 7B, the hfq-negative strains SOR4 and

SOR17 produced nearly twice as much siderophore as their

respective parental strains. Complementation was achieved by

expressing hfq from pAhfq (Fig. 7B). Our data indicate that Hfq

represses production of the siderophore yersiniabactin in

Y. enterocolitica.

Role of hfq in type III secretion
Given the essential role of Ysc-T3SS for the pathogenicity of

Y. enterocolitica [6], we next investigated the role of Hfq in protein

secretion. Following growth under inducing conditions, i.e. at

37uC in Ca2+-depleted media, Yop effector proteins secreted into

the supernatant were analyzed by SDS-PAGE and Coomassie

blue staining. All mutants were tested on at least four different

occasions in either low-Ca2+ LB or low-Ca2+ BHI, and we

observed no major differences between the profile of Yop proteins

in the supernatants of hfq mutants and those of the parental strains

(Fig. 8). Immunoblotting also confirmed that YopB, YopD, LcrV,

YopP, YopE, YopM, YopH and YopQ were secreted in

comparable amounts by parental strains and hfq mutants (Fig. 8

and data not shown). Moreover, the amount of Yops detected in

cell lysates was also not influenced by the absence of Hfq (Fig. 8).

These results are in contrast with those obtained with

Y. pseudotuberculosis, where Hfq promotes the production of Yops

[28], and thus point to some difference in Hfq-mediated regulation

of virulence factors between the two enteropathogenic Yersinia

species. When grown at 37uC in LB or BHI with intrinsic Ca2+

levels for 1.5 h (conditions allowing some Yop production but not

secretion), strains JB580v and SOR17 also produced comparable

amounts of cell-associated YopH (data not shown).

Figure 7. Role of hfq in production of yersiniabactin and its receptor FyuA. (A) Immunodetection of FyuA in strains grown for 24 h in LB
supplemented with DIP (LBD). Loading was as follows: 1, WA fyuA; 2, WA-314; 3, SOR4; 4, JB580v; 5, SOR17; 6, WA-314(pACYC184ts); 7, WA-
314(pAhfq); 8, SOR4(pACYC184ts); and 9, SOR4(pAhfq). Upper panel shows the immunoblot. The relative signal for each band compared to wild type
(which was set to 100%) is indicated. Bottom panel shows part of Coomassie blue-stained gel used as loading control. (B) Reporter assay measuring
yersiniabactin production. Following growth for 24 h in LBD at 37uC, bacterial culture supernatants were harvested. They were applied to a reporter
strain which expresses luciferase in response to yersiniabactin. Luciferase activity was determined after incubation of the reporter strain for 24 h at
37uC. Results are the mean and standard deviation of duplicate cultures each assessed in triplicate. Significance was calculated with Student‘s
unpaired t-test (**P,0.01; ***P,0.001). Similar results were obtained in three independent experiments.
doi:10.1371/journal.pone.0086113.g007

Figure 8. Analysis of Yop proteins secreted by Y. enterocolitica.
Proteins secreted into the supernatant (SN, lanes 1-4, 9–10) and
proteins from total bacterial cell extracts (Cells, lanes 5–8, 11–12) were
analyzed by Coomassie blue staining (upper panel) and by immuno-
blotting using antibodies specific for YopB, YopD, LcrV, YopE and YopP.
Loading was as follows: molecular weight markers (in kDa); 1 and 5,
parental strain WA-314; 2 and 6, hfq mutant SOR3; 3 and 7, hfq mutant
SOR4; 4 and 8, TTSS-defective lcrD mutant strain WA-314(pYV-515); 9
and 11, parental strain JB580v; 10 and 12, hfq-negative strain SOR17.
doi:10.1371/journal.pone.0086113.g008
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Production of Hfq in Y. enterocolitica serotype O:8
To facilitate Hfq detection in Y. enterocolitica strains, we tagged

the chromosomal hfq gene with sequences encoding the FLAG

epitope to generate strains SOR33 and SOR35. The fusion

appears to be functional as both strains exhibited normal growth

in LB in contrast to hfq mutants (data not shown). Production of

Hfq-Flag from plasmid pAhfqFlag was also able to complement

the growth of hfq mutants (data not shown), confirming that the

fusion protein is functional. We next analyzed the time course of

production of Hfq-Flag in Y. enterocolitica grown at 27uC and 37uC
in LB in four independent experiments. We observed an increase

in the amount of Hfq-Flag in late exponential phase and stationary

phase compared to early exponential phase (ranging from 300 to

800% upon growth at 27uC and 300 to 1200% at 37uC) (Fig. 9

and data not shown). Therefore, Hfq-Flag accumulates to higher

levels towards the end of exponential phase and beyond.

Discussion

In this study, we have phenotypically characterized hfq mutants

in two strains of different lineages of Y. enterocolitica serotype O:8,

strains WA-314 and JB580v. Loss of hfq led to the same

phenotypes in both strains, indicating that Hfq plays a conserved

role in Y. enterocolitica serotype O:8. We made several observations

indicating that the metabolism of Y. enterocolitica is profoundly

influenced by the RNA chaperone Hfq, encompassing the

metabolism of carbohydrates, nitrogen, iron and fatty acids, as

well as ATP synthesis. In the first step of our analysis we observed

that all hfq mutants exhibited a slowed growth and entered

stationary phase at a lower OD, a phenotype often (but not always)

associated with loss of hfq in other bacteria, including pathogens

[25,30,50]. In other pathogenic Yersinia spp., inactivation of hfq

was reported to affect growth to different degrees. Y. pestis strains

lacking hfq were most altered in growth [27,29], especially at 37uC,

whereas Y. pseudotuberculosis hfq mutants had only minor growth

defects [28,29]. Therefore, Y. enterocolitica appears to have an

intermediate phenotype. Moreover, in contrast to Y. pseudotuber-

culosis [28], lack of Hfq does not affect Yop production and

secretion by the Ysc-T3SS in Y. enterocolitica serotype O:8 strains.

Taken together, our results suggest that Hfq and potential Hfq-

associated sRNAs could affect metabolism and regulation of

pathogenicity factors differently among the pathogenic Yersinia

species.

Because of the central role of Hfq in post-transcriptional

regulation, deletion of the hfq gene results in pleiotropic

phenotypes in many bacteria. In Salmonella enterica sv. Typhimur-

ium, a mutation in hfq leads to differential expression of 20% of all

genes [52,53], whereas in Y. pestis ca. 6% of all genes were affected

[27]. Such a broad regulatory effect may be explained by the

impact of Hfq on the regulation of transcriptional regulators, such

as sigma factors [25,54], but also by the high number of mRNAs

that interact with Hfq. Indeed, up to 15% of S. Typhimurium

mRNAs are thought to directly interact with Hfq [53]. The Hfq

hexamer is believed to bind mRNAs on the proximal side and

sRNAs on its distal side [22]. Two studies have defined a

consensus for mRNA sequences bound to Hfq. The first one

analyzed the quaternary structure of Hfq bound to RNA and

defined a region with four or five (ARN) triplet repeats where R is

a purine nucleotide and N any nucleotide [55]. The second study

identified a consensus by genomic SELEX: AAYAAYAA, where Y

represents pyrimidines (C or U) [56]. An inspection of the genome

of Y. enterocolitica strain 8081 shows that both consensus can be

found in 38 annotated mRNAs within 40 nucleotides of the

ribosome binding site (preliminary results), suggesting that Hfq

might interact directly with these mRNAs and yet unknown

sRNAs to regulate their stability and/or translation.

Carbohydrate metabolism
In this study we observed that Hfq represses carbohydrate

metabolism in Y. enterocolitica. Enzymes associated with glycolysis

(PykF) and the pentose phosphate pathway (TktA and TalB) were

more abundant in the cellular extracts of the hfq mutant.

Moreover, we observed increased media acidification upon growth

in API-20E wells containing inositol, and upon growth on agar

media containing glucose or mannitol. Interestingly, in Y. pestis, a

strain mutated in hfq shows an increase in transcripts encoding

PykF and MtlK, a putative mannitol transporter, suggesting that

Hfq also represses glycolysis and carbohydrate transport in this

pathogenic species [27]. In addition, we observed that 1,2-PD

utilization (Pdu) is repressed by Hfq: (1) in our 2-DE analysis

performed with strains grown overnight at 27uC, five Pdu proteins

(PduA-D and PduG) were more abundant in the hfq-negative

strain, (2) when grown in the presence of 1,2-PD, overexpression

of Hfq in wild-type strains led to a decrease in media acidification.

1,2-PD is a by-product of fucose and rhamnose metabolism that is

found in the gut. Although 1,2-PD utilization has so far not been

investigated in Y. enterocolitica, it was mainly studied in S.

Typhymurium where it is believed to promote growth in vivo as

well as intracellular multiplication in macrophages [57,58],

suggesting metabolic adaptation to niches relevant to pathogenesis.

Figure 9. Immunodetection of Hfq-Flag in total protein extracts
of Y. enterocolitica. Time course of expression of Hfq-Flag during
growth in LB at 37uC (A) and at 27uC (B). (A) Bacterial extracts of WARS

derivatives (odd-numbered lanes) or JB580v derivatives (even-num-
bered lanes) were prepared after 2, 4, 6, 8 and 24 h of growth at 37uC.
Loading was as follows: extracts from SOR33 in lanes 1, 3, 5, 7 and 9;
SOR35 in lanes 2, 4, 6, 8 and 10; parental strain WARS in lanes 11 and 13;
and parental strain JB580v in lanes 12 and 14. The upper band indicated
by an asterisk is a background band also present in parental strains
WARS and JB580v (lanes 11–14) and it was used as loading control. (B)
Bacterial extracts of JB580v derivatives were prepared after growth for
2, 3, 4, 6, 8 and 12 h at 27uC. Loading was as follows: extracts from
SOR35 in lanes 1–6 and parental strain JB580v in lane 7.
doi:10.1371/journal.pone.0086113.g009
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In S. Typhimuriun, pdu gene expression is controlled by the

transcriptional activator PocR [59] and several global regulators,

including Hfq [52,60]. In Yersinia spp., pdu genes are restricted to a

subset of species, and are notably absent from the genomes of

Y. pestis and Y. pseudotuberculosis [61,62], suggestive of adaptation to

different niches.

Nitrogen metabolism
Besides carbohydrate metabolism, several proteins involved in

nitrogen metabolism were also influenced by Hfq: i.e. OppA,

ornithine decarboxylase and tryptophanase. Our 2-DE analysis

revealed that Y. enterocolitica Hfq represses production of OppA, a

conserved periplasmic oligopeptide-binding protein. Transcript

analysis using microarrays have shown a similar regulation of oppA

expression by Hfq in E. coli, S. Typhimurium and Y. pestis

[27,53,63]. At least one Hfq-dependent sRNA, GcvB, was shown

to directly repress OppA production in E. coli and S. Typhimurium

[64,65]. GcvB is conserved in many bacteria, including pathogenic

yersiniae [32,66]. We also observed that ornithine decarboxylase

activity is increased in hfq-negative strains, suggesting that

polyamine synthesis is repressed by Hfq. In Y. pestis, polyamines

are synthesized by arginine and ornithine decarboxylases (SpeA

and SpeC, respectively) and are important for biofilm formation

[67]. Finally, tryptophanase was another enzyme identified by 2-

DE that was more abundant in Y. enterocolitica strains lacking Hfq,

and we observed a corresponding increase in indole production.

Increased indole production is also associated with loss of Hfq in E.

coli [68]. Indole serves as an intercellular signalling molecule in

bacterial populations, playing an important role in bacterial

physiology, biofilm formation, induction of pathogenicity factors

and drug resistance [69]. Through its role in promoting entry into

stationary phase, increased indole concentrations could explain, at

least in part, the lower yield of Y. enterocolitica hfq mutants in LB,

and conversely why the wild-type strains overexpressing Hfq reach

higher cell densities. In summary, Hfq inhibits the production of

proteins involved in nitrogen metabolism and potentially in biofilm

formation.

Iron metabolism
Our 2-DE analysis identified two siderophore receptors FcuA

and FyuA as increased in a hfq mutant. The negative effect of Hfq

on FyuA production was confirmed using two different assays

(pesticin sensitivity and immunoblotting). Moreover, under low

iron conditions, we could show that Hfq inhibits yersiniabactin

production, the only siderophore known to be produced by Y.

enterocolitica. Taken together our results suggest that iron metab-

olism is affected by Hfq in this organism. A conserved sRNA,

RyhB, has been implicated in controlling iron homeostasis in

several enterobacteria [70]. Its expression is induced under low-

iron conditions upon relief from the repression of the global ferric

uptake regulator Fur. RyhB represses the translation of proteins or

enzymes associated with iron, such as the superoxide dismutase or

the succinate dehydrogenase. This mechanism leads to an effective

increase in levels of free intracellular iron upon iron starvation

[70]. In addition to its role in iron sparing, the E. coli RyhB

promotes the production of the siderophore enterobactin by

increasing the production of a permease involved in the uptake of

a siderophore precursor molecule [71] and by reorienting the

amino acid metabolism towards siderophore synthesis [72]. In P.

aeruginosa, siderophore production has not been directly assessed in

strains lacking hfq or the functional RyhB-like sRNAs, but

transcriptome analysis of an hfq-negative strain revealed a decrease

in the transcripts encoding siderophore biosynthetic genes [73].

To our knowledge (and in contrast to the examples just mentioned)

Y. enterocolitica is so far the only example where Hfq exerts a

negative effect on siderophore production. Further investigations

will aim to assess whether this effect is mediated through metabolic

alterations or through sRNAs specific for genes involved in

yersiniabactin biosynthesis, e.g. gene irp2 whose mRNA carries a

putative Hfq-binding motif.

Resistance to stress
As seen in other bacteria [30,52,60,63,74], loss of Hfq in Y.

enterocolitica leads to induction of the stress pathways governed by

RpoE and RpoH: the 2-DE proteome analysis identified the

chaperones ClpB and HtpG and the protease Lon (RpoH regulon)

and the periplasmic protease DegP (RpoE regulon) [75]. We also

observed that Hfq promotes resistance to oxidative stress, as has

been observed in many bacteria, including Y. pseudotuberculosis and

Y. pestis [25,27,28]. Increased sensitivity to hydrogen peroxide in

hfq-negative Y. enterocolitica correlated with diminished amounts of

AhpC, a putative peroxiredoxin in Y. enterocolitica. In Y. pestis,

disruption of hfq was associated with a decrease in the katA

transcript that encodes catalase[27]. In addition to its reduced

survival to oxidative stress, Y. enterocolitica hfq-negative strains were

also more sensitive to acidic pH. Factors involved in Y. enterocolitica

resistance to acid include RpoS (a conserved target of Hfq-

mediated regulation [25]), OmpR and urease [3,76,77]. Here, we

showed that Hfq promotes urease activity and production of the

UreB urease subunit. As previously mentioned urease promotes

virulence of Y. enterocolitica, probably by enhancing bacterial

survival at the acidic pH of the stomach [3]. Despite its key role in

the early events of host colonization, relatively little is known about

factors involved in its regulation in Y. enterocolitica. Its production is

elevated at low pH or at low temperatures in stationary phase but

does not depend on the sigma factor RpoS [17]. Here we have

identified Hfq as a positive regulator of urease production in Y.

enterocolitica. In Y. pestis, although urease is inactivated by a point

mutation [78], transcripts encoding UreB, UreC and UreE were

less abundant in an hfq mutant [27], suggesting that the role of Hfq

in promoting urease expression has been retained. In Y.

enterocolitica, since the leader transcript encoding UreA, UreB and

UreC carries a putative Hfq-binding site (corresponding to both

consensus), it is tempting to speculate that Hfq could directly

increase the ureABC mRNA stability along with a yet unknown

sRNA. Alternatively, Hfq could promote production of a regulator

of urease genes, e.g. OmpR which is a positive regulator of urease

gene transcription in Y. pseudotuberculosis [79].

Production of Hfq
In this study we examined the production of chromosomally

encoded Hfq-Flag. Growth stage was found to influence the

amount of the RNA chaperone in Y. enterocolitica, with a maximum

production in late exponential and/or stationary phase. In E. coli,

the amount of Hfq protein is known to increase in slow-growing

bacteria [80], but has been reported to either decrease [81] or

increase [82,83] in stationary phase. In P. aeruginosa, Hfq levels rise

upon entry into stationary phase [73]. The higher amount of Hfq

upon entry into stationary phase parallels the observed increase in

expression of many sRNAs at this growth stage in some organisms,

including Y. pseudotuberculosis [32]. In light of the role of Hfq-

dependent sRNAs in modulating metabolism in enterobacteria

[84], it is interesting that Hfq production itself is influenced by

global metabolic regulators such as cAMP-dependent catabolic

repressor protein CRP and the carbon storage regulator CsrA in

E. coli [85,86] or the ppGpp-mediated stringent response in Shigella

flexneri and S. Typhimurium [87,88]. Whether Hfq production in

Y. enterocolitica is influenced by metabolic cues, such as carbon and
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nitrogen sources for example, will be subject of further investiga-

tion.

Hfq and pathogenicity factors
Our work could demonstrate that Hfq influences the production

of two known virulence factors of Y. enterocolitica, i.e. urease and

yersiniabactin. Moreover, our proteomic approach also suggests

that Hfq represses the production of the lipopolysaccharide

deacylase LpxR/SfpA, which also contributes to pathogenicity

[89,90]. Therefore, with the previously described role of Hfq in

enterotoxin Y-ST production [26], a total of four pathogenicity

factors are regulated by the RNA chaperone in Y. enterocolitica.

In summary, we have investigated the scope of Hfq-dependent

processes in Y. enterocolitica and found many phenotypes linked to

the loss of the RNA chaperone, such as changes in metabolism,

stress resistance and production of pathogenicity factors. Of course

many of the regulatory effects described here are likely to be

indirect, and may reflect changes associated with RpoE, RpoH or

RpoS for example. In addition, the higher production of proteases

(Lon, DegP) most probably affects the stability of some proteins.

Lon is well known to contribute to the regulation of several

pathogenicity factors in Yersiniae, for example through proteolysis

of RovA, the transcriptional activator of early virulence genes [20].

Intriguingly, we found that the products of three RovA-repressed

genes, i.e. ompX, oppA and tnaA [91], were increased in an hfq

mutant. We also expect that some of the observed phenotypes are

directly mediated by Hfq and its role as a RNA chaperone. Future

work will aim to discover Hfq-dependent sRNAs and their role in

the physiology and virulence of Y. enterocolitica.

Accession to proteomics data
The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the PRIDE partner repository [92]

with the dataset identifier PXD000475 and DOI 10.6019/

PXD000475.
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Yersinia enterocolitica und ihr Einfluss auf die aktive Eisenaufnahme. Wuerzburg:
Julius-Maximilians-Universitaet Wuerzburg. 117 p.

97. Kinder SA, Badger JL, Bryant GO, Pepe JC, Miller VL (1993) Cloning of the
YenI restriction endonuclease and methyltransferase from Yersinia enterocolitica

serotype O8 and construction of a transformable R-M+ mutant. Gene 136: 271–

275.
98. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J

Mol Biol 166: 557–580.
99. Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing

non-antibiotic resistance selection markers for cloning and stable chromosomal
insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: 6557–6567.

Yersinia enterocolitica RNA Chaperone Hfq

PLOS ONE | www.plosone.org 17 January 2014 | Volume 9 | Issue 1 | e86113


