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ABSTRACT The Bcl-2 protein blocks programmed cell
death (apoptosis) through an unknown mechanism. Previ-
ously we identified a Bcl-2 interacting protein BAG-i that
enhances the anti-apoptotic effects of Bcl-2. Like BAG-i, the
serine/threonine protein kinase Raf-1 also can functionally
cooperate with Bcl-2 in suppressing apoptosis. Here we show
that Raf-1 and BAG-i specifically interact in vitro and in yeast
two-hybrid assays. Raf-i and BAG-i can also be coimmuno-
precipitated from mammalian cells and from insect cells
infected with recombinant baculoviruses encoding these pro-
teins. Furthermore, bacterially-produced BAG-i protein can
increase the kinase activity of Raf-i in vitro. BAG-i also
activates this mammalian kinase in yeast. These observations
suggest that the Bcl-2 binding protein BAG-i joins Ras and
14-3-3 proteins as potential activators of the kinase Raf-i.

The anti-apoptotic protein Bcl-2 regulates a distal step in an
evolutionarily conserved pathway for cell death (1-4). Over-
production of Bcl-2 occurs frequently in human cancers and
contributes to tumor radio- and chemoresistance by blocking
apoptosis induced by genotoxic injury and other types of
damage (5). Conversely, reduced levels of Bcl-2 have been
associated with higher rates of spontaneous and inducible
apoptosis in circulating lymphocytes of persons infected with
HIV and some other viruses (6, 7).
The Bcl-2 protein shares no significant amino acid sequence

homology with other proteins for which a biochemical mech-
anism is known. To gain insights into the function of the Bcl-2
protein therefore we recently attempted to identify proteins
with which Bcl-2 physically interacts, thus leading to the
discovery of a protein BAG-1 that binds to Bcl-2 in vitro and
that enhances the anti-apoptotic activity of Bcl-2 in cotrans-
fection assays (8). Like BAG-1, the serine/threonine protein
kinase Raf-1 can cooperate with Bcl-2 in suppressing apopto-
sis, based on cotransfection assays using Bcl-2 and a trans-
forming version of Raf-1 consisting only of the catalytic
domain devoid of its N-terminal negative-regulatory domain
and Ras-binding site (9). Furthermore, full-length Raf-1 pro-
tein, as well as Raf-1 deletion mutants containing only the
catalytic domain, can be coimmunoprecipitated with Bcl-2
from mammalian cells and from Sf9 insect cells when infected
with recombinant Bcl-2 and Raf-1 baculoviruses. However,
Raf-1 may not directly bind to Bcl-2 and indeed does not induce
phosphorylation of the Bcl-2 protein in vitro or in cells (9).
An N-terminal domain in Bcl-2 that is conserved among the

anti-apoptotic members of the Bcl-2 protein family (termed
A-box or BH4 domain) is required for its association with
BAG-1 and Raf-1 in vitro (unpublished data). The pro-apo-
ptotic Bcl-2 family protein Bax lacks this domain and fails to
interact with either BAG-1 or Raf-1 in vitro. We therefore
asked whether BAG-1 might bind to Raf-1. Our findings
indicate that BAG-1 not only binds to Raf-1 but can also

activate this kinase, suggesting that BAG-i represents a novel
type of Raf-1 activating protein.

MATERIALS AND METHODS

Coimmunoprecipitation Assays. Sf9 cells (6 x 106) were
coinfected with BAG-i and either Raf-1 or ,3-galactosidase
(13-gal) recombinant baculoviruses (multiplicity of infection
-10). Cells were lysed after 60 hr in 0.65 ml of Nonidet P-40
(NP-40) lysis buffer (10 mM Hepes, pH 7.5/142.5 mM KCI/5
mM MgCl2/1 mM EGTA/0.2% NP-40) containing 1 mM
phenylmethylsulfonyl fluoride (PMSF), 5 ,tg/ml leupeptin,
and 5 ,ug/ml aprotinin. After preclearing with normal rabbit
antiserum (50 ,ul/ml) and 50 ,ul protein A-Sepharose at 4°C for
1 hr, immunoprecipitations were performed by incubating 0.2
ml of lysate with 20 ,ul of protein A-Sepharose preadsorbed
with 10 ,ul of anti-Raf-1 antiserum (10), anti-BAG-i antiserum
(8), or normal rabbit antiserum as a negative control at 4°C for
3 hr. After extensive washing in NP-40 lysis buffer, beads were
boiled in 60 ,ll of Laemmli buffer and 20 ,ll of the eluted
proteins were subjected to SDS/12% PAGE immunoblot
analysis using 0.2% (vol/vol) anti-Raf-1 monoclonal antibody
ascites (URP30) (lanes 1-3) or anti-,3-gal monoclonal antibody
(Santa Cruz Biotechnology), followed by 0.3 ,ug/ml HRPase-
goat anti-mouse (Bio-Rad), and detected using an enhanced
chemiluminescence system (Amersham).

Cos-7 cells (1 x 106) in 10 ml of DMEM containing 10%
fetal calf serum were transiently transfected with 20 ,ug of
pcDNA3-HA-BAG-1 or pcDNA3 parental vector with 20 ,g
of pKRSPA-BXB(Raf-1) or pKRSPA parental plasmid DNA
by a calcium-phosphate precipitation method. Cells were lysed
60 hr later in 0.35 ml of NP-40 lysis buffer and incubated at 4°C
for 3 hr with 20 ,ul of protein G-Sepharose preadsorbed with
3 ,ug of anti-HA (hemagglutinin) mouse monoclonal antibody
(12CA5, Boehringer Mannheim). After washing 3 times in 1.5
ml of NP-40 lysis buffer, immune complexes were subjected to
SDS/4-20% PAGE immunoblot analysis using anti-Raf-1
rabbit antiserum or anti-BAG-i rabbit antiserum, followed by
HRPase-goat anti-rabbit (Bio-Rad) and detection by en-
hanced chemiluminescence.
In Vitro Binding Assays. Glutathione S-transferase (GST)

fusion proteins ("10 ,ug) were immobilized on glutathione-
Sepharose and incubated with 10 gl of reticulocyte lysates
(TNT-lysates, Promega) containing in vitro translated [35S]me-
thionine-labeled Raf-1 or R-Ras. After extensive washing,
beads were boiled in Laemmli buffer and eluted proteins were
analyzed by SDS/12% PAGE and detected by fluorography.
Yeast Two-Hybrid Assays. EGY191 strain yeast were trans-

formed with various combinations of the pEG202 expression
plasmids producing LexA DNA-binding domain fusion pro-
teins and pJG4-5 plasmids encoding B42 transactivation do-
main fusion proteins (ll). Growth on leucine-deficient me-

Abbreviations: NP-40, Nonidet P-40; ,3-gal, ,3-galactosidase; GST, glu-
tathione S-transferase; HA, hemagglutinin.
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dium that contained glucose or galactose for repression or
activation, respectively, of the Gall promoter in pJG4-5 was
scored 4 days later, as described (11, 12).

In Vitro Kinase Assays. Sf9 cells (107) were infected with
recombinant baculoviruses (multiplicity of infection 10)
encoding Raf-1. After -60 hr, cells were lysed in 1 ml RIPA
buffer (25 mM Tris, pH 8.0/150 mM NaCl/0.1% SDS/0.5%
sodium deoxycholate/1% NP-40/10% glycerol/2 mM EDTA)
containing 1 mM sodium orthovanadate, 5 mM NaF, 1 mM
PMSF, 5 ,tg/ml leupeptin, and 5 ,ug/ml aprotinin. After
preclearing with 200 ,ul of protein A-Sepharose, Raf-1 was
immunoprecipitated using 0.2 ml of protein A-Sepharose
preadsorbed with 0.1 ml anti-Raf antiserum and the resulting
immune complexes were washed twice in Triton X-100 buffer
(20 mM Tris, pH 7.4/150 mM NaCl/1% Triton X-100/10%
glycerol/2 mM EDTA) containing 1 mM sodium orthovana-
date, 5 mM NaF, 1 mM PMSF, 5,tg/ml leupeptin, and 5 p,g/ml
aprotinin and then washed in kinase buffer (25 mM Hepes, pH
7.4/150 mM NaCl/25 mM glycerol phosphate/i mM DTT/5
mM MgCl2/5 mM MnCl2). One-tenth (20 ,l) of the resulting
immune complexes were incubated with various amounts of
purified GST or GST-BAG-1 in 20,l of PBS at 4°C for 15 min.
Kinase buffer (30 ,ul) containing 1 ,tg purified GST-MEK
protein, 10 ,uM ATP, and 20 ,uCi [-y-32P]ATP was then added
for 30 min at 25°C. The samples were centrifuged at 15,000 x
g for 1 min, and the supernatant containing GST-MEK was
analyzed by SDS/PAGE and the results quantified using a
(3-scanner (Bio-Rad; GS-525 Molecular Imager System).
The 293 cells were transfected with 20 ,ug of pcDNA3-HA-

BAG-1, pcDNA3-HA-BAG-l(AN), or pcDNA3 parental plas-
mid DNA by a CaPO4 precipitation method and selected in 800
,ug/ml G418. Clones expressing high levels of HA-BAG-1
proteins were isolated and 107 transfected cells were lysed in
NP-40 lysis buffer or RIPA buffer containing 1 mM sodium
orthovanadate, 5 mM NaF, 1 mM PMSF, 5 ,ug/ml leupeptin,
and 5 ,ug/ml aprotinin. Endogenous Raf-1 protein was immu-
noprecipitated with protein A-Sepharose preadsorbed with
anti-Raf-1 rabbit antiserum and in vitro kinase assays were
performed using 1 ,ug of GST-MEK as a substrate (13).
Assay for Raf-I Activation in Yeast. Saccharomyces cerevi-

siae strain SY1984-RP was used to detect effects of BAG-1 on
Raf-1 activity, essentially as described (14). SY1984-RP cells
were transformed with pAAH5-BAG-1, pAD4-Bcl-2, pAD4-
SOD, YEplacl8l-Mas7OP, pAAH5 empty vector, YEpl3 pa-
rental vector, or YEpl3-RAS1 plasmid DNA. Activation of Raf-1
was detected by growth on histidine-deficient SC-plates for 3 days,
indicating activation of the FUS1::HIS3 reporter gene.

RESULTS
For initial experiments, Raf-1 and BAG-1 were coexpressed in
Sf9 insect cells using recombinant baculoviruses. Immunopre-
cipitations were performed using antisera specific for Raf-1
and BAG-1, or with normal rabbit serum as a control, followed
by SDS/PAGE immunoblot assay using anti-Raf-1 antibodies.
Under these conditions -5% of the total Raf-1 coimmuno-
precipitated with BAG-1 (Fig. 1A) and vice versa (not shown).
The association of Raf-1 with the BAG-1 protein was specific,
since in Sf9 cells coinfected with a (3-gal- and a BAG-1-
producing virus, X3-gal protein failed to coimmunoprecipitate
with BAG-1 (Fig. 1A).
The domain within the Raf-1 protein required for its asso-

ciation with BAG-1 was mapped using recombinant baculo-
viruses encoding GST-fusion proteins that contained: (i) full-
length Raf-1, (ii) a mutant consisting essentially only of the
catalytic domain [Raf-BXB], and (iii) a mutant lacking the
catalytic domain [Raf-GRS] (Fig. 1B). Sf9 cells were coin-
fected with a BAG-1 virus and one of these GST-Raf-1-
producing viruses. GST-fusion proteins were then recovered
on glutathione-Sepharose and associated BAG-1 was detected

by SDS/PAGE immunoblot assay, revealing that BAG-1 spe-
cifically associated with full-length Raf-1 and the Raf-l(BXB)
protein, which consists essentially only of the catalytic domain,
but not with the Raf-l(GRS) mutant that lacks the catalytic
domain of Raf-1 (Fig. 1B). Incubating the blot with an
anti-GST monoclonal antibody however confirmed production
of the GST-Raf-l(GRS) protein, excluding problems with
expression of the GST-Raf-l(GRS) protein as an explanation
for its failure to associate with BAG-1 in Sf9 cells. The catalytic
domain of Raf-1 therefore appears to be sufficient for inter-
actions with BAG-1, similar to our previous studies where the
domains in Raf-1 required for coimmunoprecipitation with
Bcl-2 were mapped (9).
To confirm that association of BAG-1 and Raf-1 can occur

in mammalian cells, Cos-7 cells were transiently cotransfected
with expression plasmids producing an HA-tagged BAG-1
protein and the catalytic domain of Raf-l(BXB). Immunopre-
cipitates were prepared using anti-HA antibody and subjected
to SDS/PAGE immunoblot assays using anti-Raf-1 or anti-
BAG-1 antibodies, revealing that Raf(BXB) protein can co-
immunoprecipitate with HA-Bag-1 (Fig. 1C). Endogenous
full-length p72-74 Raf-1 could also be coimmunoprecipitated
with HA-BAG-1 from 293 cells, though the signals were more
difficult to see because of the relative low levels of Raf-1 in
these cells (not shown). The proportion of Raf-l(BXB) asso-
ciated with BAG-1 represented -1% of the total cellular
amount of this protein (Fig. 1A).
The only region in the BAG-1 protein that shares significant

amino acid homology to other known proteins is a ubiquitin-
like domain located between residues 43 and 89. To explore
whether binding of BAG-1 to Raf-1 requires this domain, an
N-terminal deletion mutant of BAG-1 that lacks the first 89
amino acids was expressed in bacteria as a GST-fusion protein
and compared with full-length GST-BAG-1 for ability to
interact in vitro with in vitro translated 35S-Raf-1 protein. The
full-length BAG-1 and BAG-1(AN) GST-fusion proteins
bound to Raf-1 with comparable efficiencies (Fig. 1D), indi-
cating that the ubiquitin-like domain of BAG-1 is not required
for its interaction with Raf-1 and demonstrating that residues
90 -> C terminus of BAG-1 are sufficient for binding to Raf-1.
This experiment also complements the above studies where
Raf-1 and BAG-1 were expressed in mammalian or insect cells,
showing that bacterially-produced BAG-1 can bind in vitro to
Raf-1 produced in reticulocyte lysates. The failure of GST-
BAG-1 to bind to in vitro translated R-Ras protein, as well as
the lack of binding of in vitro translated Raf-1 with GST-CD40
and GST-TNFRI confirmed the specificity of these protein
interactions (Fig. 1D).
Evidence has been obtained that the enzymatic activity of

Raf-1 can be increased through interactions with other pro-
teins, including some members of the Ras and 14-3-3 protein
families, though these protein-protein interactions are prob-
ably insufficient by themselves for fully activating the kinase
(14-20). Like BAG-1, 14-3-3 family proteins can interact with
Raf-1 at least in part through binding to its catalytic domain
(CR3), whereas Ras proteins bind by means of a domain (CR1)
located in the N-terminal portion of Raf-1 (14-20). We
therefore tested whether bacterially-produced GST-BAG-1
protein could influence the enzymatic activity of Raf-1. For
these experiments, full-length Raf-1 was immunoprecipitated
from Sf9 cells that had been infected with a Raf-1 baculovirus
and the resulting immune complexes were incubated in vitro
with 1 Ag of a physiological Raf-1 substrate (bacterially-
produced, affinity-purified GST-MEK) and various amounts
of purified GST-BAG-1 or control GST proteins. GST-
BAG-1, but not control GST, increased the specific activity of
Raf-l as measured by phosphorylation in vitro of GST-MEK
(Fig. 2A). The BAG-1-mediated increase in the kinase activity
of Raf-1 was linear up to -5 ,ug of GST-BAG-1 protein, after
which addition of more GST-BAG-1 protein had either no
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FIG. 1. Raf-1 binds to BAG-1. (A) Coimmunoprecipitation experiment using lysates prepared from Sf9 cells coinfected with either BAG-1 and
Raf-1 or BAG-1 and (3-gal-producing recombinant baculoviruses. Immunoprecipitations were performed using either normal rabbit serum as a
negative control or polyclonal rabbit antisera specific for Raf-1 (10) or BAG-1 (8). Western blots were developed with anti-Raf-1 antibody (lanes
1-3) or anti-f3-gal antibody (Santa Cruz Biotechnology) (lanes 4 and 5). Sf9 lysate (5 ,ul) was run directly in gel for lane 4, without
immunoprecipitation. (B) Sf9 cells (6 x 106) were coinfected with BAG-1 baculovirus or various GST-Raf-1 viruses as indicated. Cell lysates were
prepared using 0.5 ml of NP-40 lysis buffer and incubated with 25 Al of glutathione-Sepharose. After washing 4 times with 1 ml of NP-40 buffer,
the recovered proteins were analyzed by Western blot analysis using anti-BAG-1 and anti-GST monoclonal antibodies (S.T., Kristine Kochel, and
J.C.R., unpublished data) and an enhanced chemiluminescence detection system. The structures of the GST-Raf-1 proteins are depicted at bottom.
(C) Coimmunoprecipitation of HA-BAG-1 and Raf-l(BXB) from Cos-7 cells. Cos-7 cells were transiently transfected with expression plasmids
producing HA-BAG-1 or Raf-l(BXB) proteins as indicated (+), or the same parental vectors lacking BAG-1 or Raf-1 cDNAs (-). Cell lysates
were prepared and immunoprecipitation were done using anti-HA monoclonal antibody followed by Western blot analysis of the resulting immune
complexes using either anti-Raf-1 (left) or anti-BAG-1 (right) antisera. The position of the Raf-l(BXB) protein is noted. Similar results were
obtained when 293 cells were employed (not shown). (D) Bacterially produced BAG-1 binds to in vitro translated Raf-1 in vitro. Various GST-fusion
proteins were immobilized on glutathione-Sepharose and then incubated with in vitro translated 35S-Raf-1 (lanes 2-5) or 35S-R-Ras (lane 7), washed,
and the recovered proteins were analyzed by SDS/PAGE. In some cases, an equivalent amount of in vitro translated Raf-1 or R-Ras protein was
run directly in the gel (lanes 1 and 6). The structures of the mouse BAG-1 and BAG-1(AN) proteins are indicated below.

effect or began to exert inhibitory effects, possibly because of
interference with Raf-1 access to GST-MEK substrate. An
-5-fold elevation in the specific activity of Raf-1 was induced
by 5 ,ug GST-BAG-1, after correcting for any nonspecific
effects of the GST control protein. BAG-1 did not directly
phosphorylate the GST-MEK substrate, based on experiments
where GST-BAG-1 was incubated with GST-MEK in the
presence of [,y-32P]ATP or where GST-BAG-1 was added to
immune complexes that had been prepared from Sf9 cells
infected with a (3-gal baculovirus instead of Raf-1 virus (Fig.
2B and not shown). An His6-tagged, affinity-purified BAG-1
protein activated Raf-1 in vitro to a similar extent as GST-
BAG-1 (-3.5-fold increase), implying that the GST moiety is
unimportant for this effect (Fig. 2B, lane 1). The GST-BAG-
1(AN) protein also activated Raf-1 in vitro, almost as efficiently
as full-length GST-BAG-1 protein (-3-fold) (Fig. 2B, lane 3).
Various GST control proteins, including GST, GST-Bcl-2, and
GST-Bax, did not induce elevations in Raf-1 activity above
their baseline levels (Fig. 2B, lanes 4 and 5, and not shown).
Though Raf-1 bound to BAG-1 in vitro, it did not induce

phosphorylation of BAG-1 protein. For example, experiments
were performed in which GST-BAG-1 protein or GST-MEK

as a positive control were incubated with Raf-1(259D), a
transforming constitutively active form of Raf-1. The Raf-
1(259D) protein induced no detectable phosphorylation of
BAG-1, whereas GST-MEK was heavily phosphorylated (Fig.
2C, lanes 2 and 4). Use of another mutant of Raf-1 that lacks
enzymatic activity, Raf-1 (YY340, 341FF), served as a negative
control (lanes 1 and 3) (21, 22). Raf-1 also did not induce
detectable phosphorylation of BAG-1 in 32PO4-labeled Sf9
cells (not shown). Thus, Raf-1 fails to phosphorylate both
BAG-1 and Bcl-2 (Fig. 2C) (9), though it can be coimmuno-
precipitated with these proteins.
To gain insights into whether BAG-1 can activate Raf-1 in

mammalian cells, expression plasmids producing BAG-1 or
BAG-1(AN) protein were stably transfected into 293 cells and
Raf-1 was immunoprecipitated under conditions of gentle
detergent (0.2% NP-40) designed to preserve protein-protein
interactions or using harsh detergent (RIPA buffer) conditions
that disrupt most protein-protein interactions. When using
gentle conditions, Raf-1 immunoprecipitated from BAG-1 and
BAG-1(AN) expressing cells had 2-2.5 higher specific activity
than when immunoprecipitated from control transfected cells
under the same the conditions. In contrast, when Raf-1
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FIG. 2. BAG-1 stimulates increases in kinase activity of Raf-1. (A) Human Raf-1 protein was expressed in Sf9 cells and immunoprecipitated

using anti-Raf-1 antiserum. Raf-1-containing immune complexes bound to protein A-Sepharose were aliquoted into equal portions and incubated
with various concentrations of purified GST-BAG-1 or GST control proteins in a kinase buffer containing 1 ,tg of purified GST-MEK substrate
and 20 uCi [,y-32P]ATP. The soluble fraction was analyzed by SDS/PAGE autoradiography and the results quantified using a ,3-imager (Bio-Rad;
GS-525). Representative of two of two experiments. (B) Recombinant purified His6- or GST-fusion proteins (5 ,ig) were mixed with Raf-1 immune
complexes that were prepared from Sf9 cells infected with either Raf-1 (lanes 1-5) or ,3-gal (lanes 6 and 7) baculoviruses. In vitro kinase assays
were then performed using GST-MEK substrate and [-y-32P]ATP as described above. C, control in which no GST- or His6-recombinant protein
was added. (C) BAG-1 is not a substrate of Raf-1 in vitro. Constitutively active Raf-1 (259D) or inactive Raf-1 (YY340, 341FF) protein was expressed
in Sf9 cells (9, 21, 22), immunoprecipitated with anti-Raf-1 antibody, and incubated with either 3 ,ug GST-BAG-1 (lanes 1 and 2) or 1.5 jig GST-MEK
(lanes 3 and 4) in a kinase buffer containing [-y-32P]ATP. Phosphorylated proteins were analyzed by SDS/PAGE autoradiography. Arrow indicates
position of GST-MEK phosphoprotein. (D) 293 cells that had been stably transfected with control (CNTR) plasmid or expression plasmids
producing BAG-1 or BAG-1 (AN) proteins were lysed using a buffer containing 0.2% NP-40 (left) or in RIPA buffer (right). Raf-1-containing
immune complexes recovered on protein A-Sepharose were subjected to in vitro kinase assays using GST-MEK substrate and [y-32P]ATP, and the
soluble fraction was subjected to SDS/PAGE analysis. Autoradiograms show phosphorylated GST-MEK protein. Data were quantified using a
,3-imager and normalized relative to Raf-1 derived from control-transfected 293 cells. Western blot analysis of the pellets (Raf-1 immune complexes
on protein A-Sepharose) confirmed the presence of equivalent amounts of Raf-1 protein in all lanes (not shown). Data are representative of two
of two experiments.

immunoprecipitates were prepared using harsh conditions, no
differences were noted in the activity of Raf-1 from the
control-transfected and the BAG-1- or BAG-1(AN)-
transfected 293 cells. Immunoblot analysis of immune com-
plexes prepared under the same conditions revealed similar
amounts of Raf-1 protein for all samples and demonstrated
that BAG-1/Raf-1 interactions were preserved in 0.2% NP-40
but not in RIPA buffer (not shown). These findings therefore
suggest that for BAG-1 to stimulate increases in Raf-1 activity,
it or an associated protein must be bound to Raf-1.

Because the experiments described above did not involve
use of purified Raf-1 protein, we cannot determine whether
BAG-1 directly binds to and activates this kinase. However,
Raf-1 also displayed specific interactions with Bag-1 in yeast
two-hybrid experiments (Fig. 3A), implying either that these

two proteins directly bind to each other or that other required
proteins are conserved even in budding yeast. As expected,
BAG-1 also interacted with Bcl-2 in these two-hybrid assays,
but not with Ha-Ras (V12), Bax, or Fas (Fig. 3A and data not
shown). Moreover, BAG-1 also activated mammalian Raf-1 in
budding yeast (Fig. 3B), based on experiments using the same
reporter gene system that has been employed previously to
document activation of Raf-1 by Ras and 14-3-3 proteins (14).

DISCUSSION
Taken together, the observations described here indicate that
BAG-1 represents a novel Raf-1 activating protein. The
BAG-1 protein shares no obvious amino acid sequence ho-
mology with the other known Raf-1 activating proteins, Ras

7066 Cell Biology: Wang et al.

4z"ll 4i'k "
K. %I

14 4

4.. 4:. 4.. 4..



Proc. Natl. Acad. Sci. USA 93 (1996) 7067

A BAG-1
+Raf-1

Fas+

Bcl-2

Bax+
Raf-1

Ras(V1 2)
+Raf-1

BAG-1+ BAG-1+
Bcl-2 Ras(V1 2)

B Clone

I1 2 3 4 5

-BAG-i
Bcl-2

-SOD
-Mas7OP
-pAAH5~YEp1 3
~~RAS1l

FIG. 3. BAG-1 binds to and activates Raf-1 in budding yeast. (A)
Two-hybrid analysis of BAG-1/Raf-1 interactions. Pairs of fusion
proteins containing either a N-terminal LexA DNA-binding domain (top)
or a B42 transactivation domain (bottom) were expressed in EGY191
strain S. cerevisiae (MATa trpl, his3, ura3 LEU2::(1exAop)2-LEU2). Cells
were streaked on leucine-deficient medium containing galactose and
growth was monitored 4 days later (11, 12). (B) Yeast strain SY1984 cells
(stellA his3A FUSI::HIS3) that express mammalian Raf-1 and STE7P368
proteins were transformed with plasmids encoding BAG-1 and various
negative control proteins (Bcl-2, superoxide dismutase, Mas-70p), yeast
Ras-1 as a positive control, or the empty vectors pAAH5 and YEpl3.
Raf-1-dependent activation of the FUS1/HIS3 reporter gene was mon-

itored by growth of five independent transformants on histidine-deficient
medium for 3 days (14).

and 14-3-3. The region within BAG-1 that is sufficient for
binding to and activating Raf-1 (amino acid 90 -> C terminus),
however, is predicted to contain several a-helical regions, and
to that extent has some similarity with 14-3-3 proteins (23, 24).
Because BAG-1 specifically binds to the catalytic domain of
Raf-1, presumably the mechanism by which it induces activa-
tion of this kinase is more similar to 14-3-3 proteins that can
also bind with at least weak affinity to the catalytic domain of
Raf-1, than Ras proteins that interact with a domain in the
N-terminal regulatory region of this protein kinase (14-20).
Although we can only speculate as to how the interaction of
BAG-1 with Raf-1 promotes activation of the kinase, conceiv-
ably BAG-1 may dislodge the negative regulatory domain of
Raf-1 from its catalytic domain, stabilize the kinase in an active
conformation once activated by other mechanisms, or protect
Raf-1 from inactivation by phosphatases (25-27). Alterna-
tively, BAG-1 may recruit other proteins to Raf-1 that are

directly responsible for activating the kinase. Given that
BAG-1 also activated Raf-1 in yeast, however, its seems more

likely that BAG-1 directly activates Raf-1, but we cannot
exclude the possibility that the cellular machinery required for
BAG-1-mediated activation of Raf-1 is well conserved
throughout evolution or that Raf-1 activation is a (at least)
two-step process with BAG-1 fulfilling one of the necessary
requirements for activation of Raf-1 in yeast and other evo-

lutionarily conserved proteins playing an essential role as well.
In this regard, our previous demonstration that Bcl-2 and
Raf-1 can be coimmunoprecipitated from Sf9 cells coinfected
with Raf-1 and Bcl-2 baculoviruses implies that either Sf9 cells

or baculovirus may encode a homolog ofBAG-1 that facilitates
interactions of Raf-1 with Bcl-2 (9). Finally, by analogy to Ras
that may activate Raf-1 at least in part by targeting it to
membranes, it is conceivable that BAG-1 may promote Raf-1
activation by pulling Raf-1 into the vicinity of intracellular
membranes through its interactions with integral membrane
proteins such as Bcl-2 (28, 29).
The finding that BAG-1 can bind to and activate Raf-1

raises the possibility that Raf-1 may become activated locally
in the vicinity of Bcl-2 though a protein-protein interaction
mechanism, thus potentially targeting Raf-1 to unique sub-
strates presumably involved in the regulation of apoptosis as
opposed to the mitogen-activated protein kinase-signaling
pathway in which Raf-1 has traditionally been implicated. In
this regard, we have obtained evidence that BAG-1, Raf-1,
and Bcl-2 can form trimolecular complexes, but their stoi-
chiometry appears to be low (1i%), suggesting that only a
small proportion of the total cellular Raf-1 may be found in
such complexes (unpublished observations). Consistent with
this idea, however, targeting of the kinase domain of Raf-
l[Raf-BXB] to mitochondrial membranes using the trans-
membrane domain of the yeast outer mitochondrial mem-
brane protein Mas-p70 markedly increases its anti-apoptotic
effects in a hemopoietic cell line in which withdrawal of
lymphokines results in programmed cell death (data not
shown). Given that Bcl-2 is located primarily in the mem-
branes of the mitochondria, nuclear envelope and parts of
the endoplasmic reticulum (30), presumably whatever sub-
strates to which Bcl-2/BAG-1 complexes might target Raf-1
would be different at least in part from those associated with
the plasma membrane where Raf-1 participates in growth
factor receptor signal transduction. Candidates for such
substrates that have been hypothesized as potentially ex-
plaining the anti-apoptotic actions of Bcl-2 include anti-
oxidant enzymes, Ca2+ transporters, and members of the ced-3
family of proteases or their regulators (reviewed in ref. 1).
The kinase inhibitor staurosporine has been reported to

induce apoptosis in a wide variety of types of cells at concen-
trations typically of .1-10 ,tM, implying that inhibition of
certain kinases is a stimulus for apoptosis. Overexpression of
Bcl-2 however protects cells from staurosporine-induced apop-
tosis (8, 31), implying that Bcl-2 does not require a stauro-
sporine-sensitive kinase for its death-suppressing function.
Though staurosporine has been reported to completely inhibit
the activity of purified protein kinase C in vitro at 10 nM (32),
we observed that the activity of Raf-1 was entirely unaffected
by -5 ,tM of staurosporine and only 20% inhibition was pro-
duced by 20 ,uM (data not shown). Raf-1 therefore is a stauro-
sporine-resistant kinase, consistent with the possibility that anti-
apoptotic function of Bcl-2 may be at least in part dependent on
Raf-1. It remains to be determined whether the interaction of
BAG-1 with Raf-1 is essential for suppression of apoptosis.
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